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Abstract. Competitive numerical algorithms for solving partial differential equations have to
work with the most efficient numerical methods like multi-grid and adaptive grid refinement and
thus with hierarchical data structures. Unfortunately, in most implementations, hierarchical data –
typically stored in trees – cause a non-negligible overhead in data access. To overcome this quandary
– numerical efficiency versus efficient implementation – our algorithm uses space-filling curves to build
up data structures which are processed linearly. In fact, the only kind of data structure used in our
implementation are stacks. Thus, data access becomes very fast – even faster than the common access
to non-hierarchical data stored in matrices – and, in particular, cache misses are reduced considerably.
Furthermore, the implementation of multi-grid cycles and/or higher order discretizations as well as
the parallelization of the whole algorithm becomes very easy and straightforward on these data
structures.

Key words. partial differential equations, space-tree, space-filling curves, cache-awareness

AMS subject classifications. 35J05, 25K99, 35R99, 65Y20, 68P05, 68V20

1. Introduction. Most of the computing time for the numerical solution of
partial differential equations is usually spent for the multiplication of a sparse matrix
– representing the discrete operator – with a vector – representing the approximate
solution. The amount of computing time and also the amount of memory heavily
depend on the data structure used to represent the matrix and the solution vector.
Many clever approaches are known, but it is usually impossible to access the memory
in the course of the computation in such a way that the addresses do not ”jump”. As
modern computer architectures use one or more cache-levels for the access of memory,
jumps in the address space may cause cache misses leading to a sometimes dramatic
slow down of the computation. This fact is actually one of the most serious bottlenecks
in high performance computing.

It seems to be very difficult to avoid these jumps in general. Therefore, we re-
strict our attention to a more special situation which is on the other hand general
enough to be useful in many applications. The grid in our context is restricted to
grids associated with space-trees [2], but we allow local (adaptive) refinement because
adaptivity is crucial for the efficient solution of many problems. Moreover, space-trees
allow a simple implementation of modern multilevel methods (additive or multiplica-
tive) using appropriate hierarchical bases or generating systems ([13]) as we shall see
in the sequel. Hierarchical bases or generating systems also allow the simple handling
of hanging nodes appearing in case of local refinement. Complicated geometries can
also be described easily by space-trees if some care is taken of a reasonably accurate
discretization near the boundary.

As a main result of this paper, we show that in this restricted context we can
avoid random access in the memory almost completely by using only a fixed number
of stacks independent of the number of nodes in the grid. Stacks can be considered as
the most simple data structures used in Computer Science. The two basic operations
allowed on stacks are push and pop, where push puts data on top of a pile and pop
takes data from the top of a pile. It is immediately clear that subsequent accesses to
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memory can move only from one memory location to the previous or next location and,
thus, stacks can be implemented very efficiently on modern computer architectures.
As a consequence, the organization of our algorithms has to be done in such a way
that the data needed in the sequence of operations are always on top of one of the
stacks, avoiding transports from one stack to another to get access to elements deeper
in the stack.

The present algorithm described in this paper is based on a standard finite element
discretization but the principle behind can be adapted to other discretization schemes
as well. The leaves of the space-tree describe the finite elements and the accumulation
process for the operator matrix – which is not explicitly stored but instead directly
applied to the approximate solution – runs in a sequence described by a space-filling
curve, the so-called Peano-curve.

Space-filling curves are a well-known device to design efficient algorithms in com-
puter graphics (see e.g. [28, 30]). In the context of numerical simulations based
on space-trees, space-filling curves are already an established tool for some key-based
addressing of grid elements and/or nodes and, in particular, data parallel implementa-
tions (see e.g. [32, 33, 15, 16, 21, 22, 26, 18, 23, 22]). The grid partitioning algorithm
defined by space-filling curves can be shown to have linear complexity and to give
quasi-optimal partitions with respect to cut-sizes ([32]). In addition, the partitioning
is well suited for multilevel grids ([32, 33, 15, 16, 21, 26, 18, 23]).

It is also known that – due to locality properties of the curves – reordering grid
cells according to the numbering induced by a space-filling curve improves cache-
efficiency (see e.g. [1]). Similar benefits of reordering data along space-filling curves
can also be observed for other applications such as matrix transposition ([8]) or matrix
multiplication ([9]). We go one step further and – in addition to the reordering of
cells – construct stacks for which we do not need any addressing and/or hashing as
we always know that all data needed lie on top of one of the stacks and can thus be
accessed in an even more cache-efficient way.

In contrast to other approaches to cache-optimzations for PDE solvers that work
with some hardware-oriented strategies like specialized data padding [?], the efficiency
of our algorithm doesn’t depend on the particular setting of cache parameters like
cache-line length, associativity etc. In literature, such wich are cache-aware by concept
without detailed knowledge of the cache parameters are also called cache-oblivious
[7, 12, 25]. The general need for cache-optimization on the software side can easily
be deducted from the impossibility of the implementation of an optimal replacement
strategy for the cache-lines on the hardware side [29].

Section 2 gives some basic background information on the operator evaluation
during a run along a space-filling curve, in Section 3, the essence of our algorithm,
the construction of stacks with the help of the Peano-curve is described. Section 4
describes the realization of some numerical algorithms like multi-grid and evaluation
of the operator matrix on adaptively refined grids. Finally, in Section 5, we give
some results – processing times, number of cache misses etc. – for some test exam-
ples. Section 6 shortly describes the extension to the three-dimensional case including
numerical results as well.

2. Operator Accumulation along Space-Filling Curves. In the mathe-
matical definition, a space-filling curve is a surjective continuous mapping of the unit
interval [0; 1] to a compact d-dimensional domain Ω with positive measure. In our
context, Ω is always the unit square or the unit cube in 3D, respectively. As we look
at multilevel adaptive rectangular grids, we restrict to recursively defined, self-similar
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space-filling curves with rectangular recursive decomposition of the domain. These
curves are given by a simple generating template and a recursive refinement procedure
which describes the (rotated or mirrored) application of the generating template in
sub-cells of the domain to be covered ([27]). Prominent representatives of this class
of space-filling curves are the Hilbert-curve and the Peano-curve. See figure 2.1 for
some iterates of the two-dimensional curves.

In fact, as our grids have finite resolution, the iterates – so called discrete space-
filling curves – are what we need (instead of the continuous space-filling curves). If
we work with adaptively refined grids, the iterate we use in a particular part of our
domain depends on the local resolution (see also figure 2.1 for some examples).

In our algorithm, this discrete space-filling curve defines the processing order of
grid cells – corresponding to the leaves of our space-tree in a single-level context or
all nodes of the space-tree in a multilevel context. The application of the operator-
matrix to the vector of data is done in a strictly cell-oriented way. For this, we
decompose the discrete operator into parts per cell which accumulate to the result
of the operator evaluation after one run over all grid cells. This method is standard
for finite element methods (see e.g. [6]), but can be generalized to ’local’ discrete
operators, which means that for the evaluation in one grid point, only direct neighbors
are needed. In some cases – if the operator can be composed of a small number of
’local’ operators – this restriction can even be weakend. To illustrate the cell-oriented
operator decomposition, we look at the one-dimensional three-point stencil[

1 −2 1
]

This simple stencil can be decomposed in a cell-part[
1 −1

]
for the grid cell at the left-hand side of the respective point and

for adaptive grid
discrete curve 2. iterate1. iteratetemplate

Hilbert−curve

Peano−curve
Fig. 2.1. Generating templates, first iterates and discrete curve on an adaptively refined grid

for two-dimensional Hilbert- and Peano-curves
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[
−1 1

]
for the grid cell at the right-hand-side.
Thus, if we look at a space-tree with function values located at the vertices of cells,

we have to construct our stacks such that all data from the respective cell-vertices
lie on top of the stacks when we enter the cell during our run along the discrete
space-filling curve.

3. Construction of Stacks.

3.1. Regular Grids with Nodal Data. To show the interaction of discrete
space-filling curves and data stacks, we will start with a simple regular two-dimensional
grid and nodal data. Figure 3.1 shows a grid where the processing order of grid cells
is given by a discrete Peano-curve.

3 4 5 6 7 8 921

Fig. 3.1. Example in 2D using the Peano-curve

Let’s have a closer look at data points on the middle line marked by 1 to 9. In the
lower part of the domain, these data are processed linearly from 1 to 9, in the upper
part vice versa from 9 to 1. For the Peano curve and a regular grid, this linear forward
and backward processing of the middle line can be shown for arbitrarily fine grids, as
well. Analogously, all other grid points can be organized on lines which are processed
linearly forward and backward, if we use the Peano-curve to define the processing
order of cells. Therefore, we organize all data within the well-known concept of stacks
where we only have two possibilities of data access:

• push(data,number): write data on top of stack number
• pop(number): read uppermost element of stack number

Here, data is a structure where all physical information of a grid point is held – for
example the velocity vector and the type of boundary conditions.

A closer look at the 2D example in figure 3.2 shows that it is sufficient to have
two stacks: 1Dblack for the points on the right-hand-side of the curve and 1Dgrey for
the points at the left-hand-side of the curve. These stacks represent the evolving lines
of points along the curve as described above. The behavior of a point concerning read
and write operations on stacks can be predicted in a locally deterministic way. We
only have to classify the points as ’inner points’ or ’boundary points’ and respect the
progression of the curve.

If we have a closer look at the example for the Peano-curve, we can already extract
two important properties our space-filling curves have to fulfil: First, the processing
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1 20
345

6 7 8

Fig. 3.2. Stacks within usage of the Peano-curve

order of grid points on a line has to be inverted if – on our way along the Peano-curve
– we switch from the domain on the right-hand-side of the line to the domain on the
left-hand-side. This is quite easy to fulfill in the two-dimensional case, but in the
three-dimensional case, the same has to hold for grid points on planes (parallel to the
coordinate planes). Second, a refinement of the grid must not destroy the order of
existing points, but only insert new points between existing points. We could not find
any Hilbert-curve in 3D fulfilling these two properties and there are good reasons to
assume that this is not possible at all. Thus, we restrict our attention to Peano-curves
in the following. For the Peano-curve even generalizations to four or more dimensions
are complicated but straightforward.

It is a disadvantage of the Peano curve that in the refinement process each side
of a cube is partitioned into three equal parts leading to ternary trees instead of the
standard binary trees used for quad-trees or octrees. This implies that the number of
grid-points grows like 3d instead of 2d in d-dimensional space from level to level. This
implies that for a three-dimensional problem the number of grid-points is multiplied
by a factor of 27 if we add another refinement level.

An efficient algorithm deducted from the concepts described above passes the
grid cell-by-cell, pushes/pops data to/from stacks deterministically and automatically
and will be cache-aware by concept (not by optimization!) because of the fact that
using linear stacks is a good idea in conjunction with modern processors prefetching
techniques.

3.2. Extension to Adaptive Grids and Hierarchical Data. Up to this
point, we have restricted our considerations to regular grids to explain the general
idea of our algorithm, but the whole potential of our approach gets obvious only when
we look at adaptively refined grids and – in the general case – hierarchical data in
connection with generating systems ([13]). This leads to more than one degree of
freedom per grid point and function on coarse grid levels.

Before we can define our stacks for this case, we need an algorithm which now
recursively visits the cells of different grid levels in a top-down depth-first process.
Since the discrete space-filling curve is defined by a recursion itself, this order can be
deducted directly from the space-filling curve of the respective level. Figure 3.3 shows
an example for such an order. The first cell visited is the coarsest cell, containing the
whole domain. Next, the cells of the first refinement level are processed according to
the first iterate of the Peano-curve. As soon as we reach a cell which is further refined
(in this example the middle cell), we process all ’sons’ of this cell according to the
respective part of the next iterate of the Peano curve before we return to the next cell
of the first refinement level.

In our stack context, we have to assure that even then predictable and linear data
access to and from stacks is possible. As points are visited on different grid levels
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now, we have to assure that grid points of coarser grid levels lie above those of finer
levels in our stacks. Therefore, we have to change two basic properties of the concept
described above: First, we have to look at a cell consisting of 3 × 3 finer cells and
thus containing 16 grid points instead of single cells with only 4 grid points. Second,
we have to introduce four ’colors’ instead of two (in figure ??, the four colors are
marked by crosses, circles, triangles, and squares) and a second type of stacks, so
called 0D-stacks, in addition to the 1D-stacks. The 0D-stacks can be interpreted as
an intermediate storage for vertex data to avoid the hiding of informations associated
to different levels wheras the 1D-stacks represent certain grid lines or parts of them,
respectively. Again, we have a small and fixed number of stacks which is – in particular
– independent of the problem size: four 1D-stacks and four 0D-stacks transporting
hierarchical data over grid levels.

The construction of these stacks can be understood best if we look at an example
again. Figure 3.4 shows two levels of a grid. Points 1 and 2 exist on both levels –
marked by 1a, 2a for the coarse level and 1b, 2b on the fine level. In a first step, we
only look at hierarchical data with respect to a hierarchical basis but not a generating
system yet. We process our grid cells in the recursive top-down order described
above. If we used two ’colors’ or two stacks, respectively, as with the nodal basis, the
following problem would occur: Points 3 and 4 would have the same color as point
2a. Therefore, cells 3 and 8 on the fine level would store points 3 and 4 on their stack
and, due to recursivity, cell 1 on the coarse level would store point 2a after-wards on
top of the same stack (point 2a is needed again in coarse cell 4). So cell 9 and cell 14,
respectively, on the fine level would not be able to pop points 3 and 4 from the stack,
because the uppermost point on this stack would be 2a. If we introduce four ’colors’
representing four different stacks (horizontal/vertical lines at the right-hand side of
the Peano-curve, horizontal/vertical lines at the left-hand side of the Peano-curve) of
the same type as shown in figure 3.4, this will not happen.

If we now allow a generating system, which means that one grid point contains
data on all grid levels, the next problem arises: Cell 20 on the fine level would push
point 1b to the ’triangle’-stack and it would be the uppermost element on this stack,
when coarse cell 3 is finished. Thus, coarse cell 4 could not pop point 2a from the stack.
To avoid level-dependent coloring of points, we decided to overcome this problem by
using two stacks of each ’color’, we call them 1D- or line-stacks and 0D- or point-
stacks. Together with a strict order of pushes and pops of points the problem described
above is eliminated. For example, if coarse cell 1 stores point 2a in the ’ttriangle’-
1D-stack and fine cell 20 pushes point 1b to the ’triangle’-0D-stack, everything is
fine. This consiederation results in an algorithms where every point in the grid is
written to the 0D-stack of the correct ’color’ when needed by a cell for the first time,
poped from there and written to the 1D-stack when needed by the second cell, moved
again to the 0D-stack when needed by the third cell, and, finally, popped from there

1

2 3 4

6
789

1415
101112

13

17 18 19

16 5

Fig. 3.3. Example for the order of hierarchical cells defined by the discrete Peano-curve
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Fig. 3.4. Recursive definition of stack-points using four colors/eight stacks

and written to the output after being used by the fourth neighbouring cell. Since
recursively processed coarser grid points of a local area always lie above the finer
ones, it is guaranteed that they can be popped from stacks before the fine grid points
– which fits the top-down structure of the algorithm.

An extension to adaptively refined grids is very easy, now: a local refinement of
a cell can be handled nearly the same as a refinement in a regular grid. We only have
to provide a set of rules for the ’hanging nodes’ at the boundary of a local refinement
since they will be visited by two (fine) cells only instead of four. The stack-concept
is not disturbed by this since finer grid points are placed between the coarser grid
points on our stacks.

3.3. Iterations on Data. In the previous we have only talked about the inter-
mediate storage of data within one solver iteration. Thus, we have to enhance our
stack system by some input and output stacks to store all data between iterations.
For this, we use so called 2D- or plane-stack stacks (as they include all data of the
computational domain) which contain vertex data in the order of their first usage
during one iteration. To store the output of the iteration, we write all points to a
2D-stack again as soon as they are ’ready’.

It can easily be seen, that, if we process the grid cells in opposite direction in
the next iteration, the order of data within this 2D-stack enables us to pop all grid
points from this 2D-stack as soon as they are ’touched’ for the first time. Such, we
can use the 2D-stack as input stack again very efficiently. We apply this repeatedly
and, thus, change the processing direction of grid cells after each iteration.

With the ideas described above, we can now define numerical algorithms suited
to adaptively refined grids, hierarchical data and generating systems in the following
section.

4. Numerical Algorithms. As mentioned above, our data structures are very
well suited for highly efficient numerical methods such as multi-grid, adaptive grid
refinement and higher order discretizations. In this section, we will describe the
concrete algorithmic realization of these methods.

We assume that we have to solve a system of linear equations
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Lhuh = fh,(4.1)

where h indicates the (locally defined) width of the square/cubic grid cells and the
discrete operator Lh results from some ’local’ (see above) discretization of a differential
operator.

4.1. Relaxation Methods. Before we describe the implementation of a multi-
grid method, we will shortly mention the realization of relaxation methods with the
help of our stacks and the cell-oriented evaluation of operators: The only thing special
in comparison to standard implementations is that we do not compute the residual
components r

(i)
h = f

(i)
h − (Lhuh)(i) in one step per point, but accumulate them while

visiting neighboring cells (as described above when we explained the cell-oriented
evaluation of operators). For this, we need an appropriate decomposition of the right-
hand side into cell-parts, which can easily be achieved for example by dividing fh

into 4 equal parts, which are assigned to the four neighboring cells. As soon as a grid
point is visited the last time, we have computed the whole residual and the respective
value is updated according to the iteration scheme used.

4.2. Multi-grid. As, in our stack, we store data of all refinement levels of the
grid, the algorithm works on a generating system (in the context of finite elements)
instead of a basis only. A multi-grid cycle corresponds to a single run over all data.
Thus, multi-grid does not worsen the performance – in terms of runtime efficiency
– of our program. In the following, we will shortly describe the basic ingredients of
our additive multi-grid algorithms, which turned out to perform well for adaptively
refined grids in [5].

In contrast to relaxation methods, the multi-grid method works on the whole
set of hierarchical data, not only on the finest level. As described in the previous
section, data are processed in a top-down, depth-first order (see also Figure 3.3 for an
example of the processing order of cells). Thus, we can not finish one step (smoothing,
interpolation, or restriction) at all grid points of a level before we proceed to the
next level. The cycle function is called recursively for all (nine in the case of two-
dimensional Peano-curves) sub-cells of a coarse cell and, thus, whenever we enter a
cell, the whole work for one multi-grid cycle within this cell has to be finished before
we enter the next cell of the same level. Therefore, the natural choice in terms of our
algorithm is an additive multigrid method where smoothing is done simultanuously
on all levels1. Descending the space-tree2 within the top-down depth-first run over
the grid along the Peano-curve, we interpolate coarse grid values to the finer grids in
order to achieve nodal values on the finest grid. At the finest level we compute the
residual and apply the smoother. Ascending the space-tree, we restrict the residual
to the coarse levels and apply the smoother on the coarse levels.

Remark 1: We have to take care that residuals are correctly transported from
fine to coarse grid points: since we restrict the residual each time we visit a fine grid
point (and not only when the whole residual is computed), we may only restrict the
cell-part of the respective residual and not the accumulated residual. This complica-
tion requires some additional local variables for the cell-parts of the residual.

1The implementation of a mutlplicative multi-grid method is possible but a little more technical
2In contrast to ’descending’ in the common context of multi-grid methods, descending in our

context means proceeding from the coarsest level to the finest.
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Remark 2: As we use a hierarchical generating system for uh instead of nodal
values, coarse grid corrections are simply done by smoothing the coarse-grid coef-
ficients of the function representations. The transport to fine grid values is done
implicitly during dehierarchization of uh.

4.3. Adaptively Refined Grids. If we use the processing order of cells and
the construction of stacks described in the previous section, adaptively refined grids
can also be handled in a very natural way without any further complications like for
example special difference stencils at borders between differently refined areas.

Like for regular grids, we compute all operators in a cell-oriented way. Thus, the
stencils used look the same for each cell (up to a potential scaling with the cell width
h). Thus, in a first step, we end up with contributions to operators at all vertices
of cells at the locally finest level. In particular, hanging nodes also have to carry
function values and contributions to the operators. To eliminate hanging nodes from
the system of equations (hanging nodes may not be considered as degrees of freedom!)
we have to compute interpolated function values at hanging nodes before the operator
evaluation and distribute the respective cell-part of the operators to the neighbouring
coarse grid points by some suitable restriction. With this restriction, we automatically
get correct operator values at all coarse grid points. From the algorithmic point of
view, this interpolation and restriction works completely analogously to the multi-grid
interpolation and restriction.

5. Examples. To point out the potential of our algorithm, we show some simple
examples and achieved results and make some remarks on the efficiency of our program
concerning storage requirements, processing time and cache behavior. Note that up
to now we work with an experimental code which is not optimized at all yet. Thus,
absolute values like computing time will be improved further and our focus here is
only on the cache behavior and the qualitative dependencies between the number of
unknowns and the performance values like computing times.

5.1. Poisson Equation on the Unit Square. As a first test, we solve the two-
dimensional Poisson equation on the unit-square with homogeneous Dirichlet bound-
ary conditions:

4u(x) = −2π2 sin(πx) sin(πy), ∀ x = (x, y)T ∈ Ω =]0, 1[×]0, 1[(5.1)
u(x) = 0 ∀ x ∈ ∂Ω(5.2)

The exact solution of this problem is given by u(x) = sin(πx) · sin(πy). To discretize
the Laplace operator, we use the common Finite Element stencil 1 1 1

1 −8 1
1 1 1

 .

The resulting system of linear equations was solved by an additive multi-grid
method with bilinear interpolation and full-weighting as restriction operator. As
criteria for termination of the iteration loop we took a value of rmax = 10−5, where
rmax is the maximum (in magnitude) of all corrections over all levels. Table 5.1 shows
performance values obtained on a dual Intel XEON 2.4 GHz with 4 GB of RAM for
regular grids with growing resolution.

Note that the number of iterations until convergence is independent of the reso-
lution, which one would have expected for a multi-grid method. method, which can
be shown by the analysis of cache misses and cache hits on the level 2 cache.
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resolution variables
over all
levels

iterations processing
time

CPU time L2 cache
misses
per itera-
tion

#real
misses
/
#min-
imal
misses

27× 27 744 39 0.083s 0.070s 156 0.11
81× 81 7,144 39 0.779s 0.760s 11,819 0.88
243× 243 65,708 39 5,819s 5,800s 134,432 1.09
729× 729 595,692 39 52,240s 52,130s 1,246,949 1.12
2187× 2187 5,374,288 39 473,699s 472,410s 11,278,058 1.12

Table 5.1
Performance values for the two-dimensional Poisson equation on the unit square solved on a

dual Intel XEON 2.4 GHz with 4 GB of RAM

Table 5.1 shows very high L2-hit-rates of at least 99,13% measured on an Intel
XEON, which is a very high value for ’real’ algorithms beyond simple programs for
testing performance of a given architecture. Even more significant for the efficiency
of our algorithm is the result of a comparison of the minimal number of necessary
cache-misses and actually measured cache-misses: With the size s of the C struct of
stack elements, the number n of degrees of freedom and the size cl of an L2 cache line
on the used architecture we can guess a minimum cmmin = n·s

cl of cache misses per
iteration, which has to occur if we read each grid point once per iteration producing
s
cl cache misses per point. In fact, grid points are typically used several times (in our
case once by each of the four neighbouring cells) in our algorithm as well as in most
FEM-algorithms. Thus, this minimum guess is assumed to be even too low. The
entries of the last column in Table 5.1 are defined as cmreal

cmmin
where cmreal are the L2

cache misses per iteration simulated with calltree. As this rate is nearly one in our
algorithm, we produce hardly more cache misses as if we used every grid point only
once per iteration.

5.2. Poisson Equation on a Disk. The examples above show a very high
performance on the L2-Cache for full grids, but the major advantage of our method is
that this holds also for adaptive grids and on more complicated geometries. To show
this at least for a simple example, we consider the two-dimensional Poisson equation
with inhomogeneous Dirichlet boundary conditions on a disk with radius one:

4u(x) = −2π2 sin(πx) sin(πy), ∀ x = (x, y)T with ‖x‖ < 1(5.3)
u(x) = sin(πx) · sin(πy) ∀ x ∈ ∂Ω(5.4)

Figure 5.1 shows the representation of the disk with the help of an adaptive grid
gained by a geometry-oriented coarsening of an initial grid with 81× 81 cells.

For our numerical tests, we used different adaptive grids gained by local coarsening
strategies starting from an initial grid with 729×729 cells. To get a sufficient accuracy
near the boundary, we did not allow any coarsening of boundary cells.

The stopping criterion for the iterative solver was again |rmax| < 10−5. In Table
5.2, the column ’costs per variable’ shows the amount of time needed per variable
and per iteration. These values are nearly constant or even better for some adaptive
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variables % of
full grid

computing
time

L2-hitrate iter ms per
itera-
tion

ms per
vari-
able per
iteration

66220 15.094% 39.68s 99.28% 287 138.26 0.002088
85289 19.440% 50.05s 99.28% 287 174.39 0.002045
101146 23.055% 58.95s 99.26% 287 205.40 0.002031
117672 26.822% 67.14s 99.25% 285 235.58 0.002002
156316 35.630% 87.94s 99.24% 286 307.48 0.001967
175578 40.021% 97.10s 99.20% 286 339.51 0.001934
351486 80.116% 179.36s 99.11% 280 640.57 0.001822
438719 100.00% 250.23s 99.16% 281 890.50 0.002030

Table 5.2
performance values for the two-dimensional Poisson equation on a disk solved on a dual Intel

XEON 2.4 GHz with 4 GB of RAM

grids than for the full grid. In Figure 5.2 you see the value ’ms per iteration’ plotted
against the number of variables with crosses. The solid line is the corresponding line
from the origin through the full grid point (438719, 768.934). We see that we have
a linear dependency between the number of variables/grid points and the computing
time, no matter whether we have a regular full grid or an adaptively refined grid. This
is a remarkable result as we can conclude from this correlation that in our method
variables on coarser grids do not have higher costs than the ones on the finest level.

6. Extension to 3D. In the previous sections, we only considered the two-
dimensional case. But, as mentioned in the introduction, our concepts can be gen-
eralized in a very natural way to three or even more dimensions. In this section, we
want to give a few preliminary results on the 3D case. The basic concepts are the
same as in the two-dimensional case, but to achieve an efficient implementation, we
introduced some changes and/or enhancements in the concrete realization.

The first – and obvious – change is that we need 3D in- and output stacks and
2D-, 1D- and 0D-stacks (corresponding to faces, edges and vertices of a cube) during

Fig. 5.1. Representation of the disk with the help of an adaptive grid gained by a geometry
oriented coarsening of a 81× 81 grid
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our run through the space tree instead of 1D- and 0D-stacks only. In addition, we
use twelve colors for the 0D- and 1D-stacks and six colors for the 2D-stacks.

Another interesting aspect in 3D is that we replace the direct refinement of a
cell by the introduction of 27 sub-cells by a dimension recursive refinement: A cell is
cut into three “plates” in a first step, each of these plates is cut into three “bars”,
and, finally, each bar into three “cubes” (see Figure 6.1). This reduces the number of
different cases dramatically and can even be generalized to arbitrary dimensions, too
[17]. Detailed despcriptions of the 3D implementations including dynamical adaptiv-
ity, higher order discritizations and full multi-grid methods are given in [24, 20, 11].

As can be seen from the following example, the performance of our algorithm
carries over from 2D to 3D. The L2-hit-rates even get better by an order of magnitude.
Only the absolute computing time per variable and per iteration becomes worse.
Both phenomena can easily be explained for the most part by the more complicated
discretization stencil with more non-zero entries.

We solve the three-dimensional Poisson equation

4u((x)) = 1(6.1)

on a star-shaped domain, a sphere (see Figure 6.2) and the unit cube with homoge-
neous boundary conditions. The Laplace operator is discretized by the common Finite
Difference stencil and – analoguously to the 2D case – we use an additive multi-grid
method with trilinear interpolation and full-weighting as restriction operator. The
termination criterion was |rmax| ≤ 10−5. Tables 6.1 and 6.2 show performance values
obtained on a dual Intel XEON 2.4 GHz with 4 GB of RAM for adaptive grids (see
also Figure 6.2 for a part of the – adaptively coarsened – 243 × 243 × 243 grids).
For the star-shaped domain, the grid-coarsening was restricted to the domain part
outside the computational domain. Table 6.3 shows another important advantage
of our algorithm, so we could handle a huge number of degrees of freedom with the
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Fig. 5.2. Linear dependency: number of variables – computing time
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Fig. 6.1. Dimension recursive refinement of a cell

resolution of
the full grid

variables storage
re-
quire-
ments

computing
time

L2-hit-
rate

iter ms per
vari-
able
per it-
eration

81× 81× 81 18,752 0.7MB 179.73s 99.99% 96 0.0998
243×243×243 508,528 18MB 5,228.3s 99.99% 103 0.0998
243×243×243 508,528 (adp.) 9MB 2,405.86s 99.99% 103 0.0459
729×729×729 13,775,328 (adp.) 230MB 63,502.14s 99.98% 103 0.0448

Table 6.1
Performance values for the three-dimensional Poisson equation on a star-shaped domain solved

on a dual Intel XEON 2.4 GHz with 4 GB of RAM

same performance (e.g. over 400,000,000 variables) and with a very small amount of
memory.

7. Conclusion. In this paper we presented a method combining several features
for the solution of partial differential equations:

• Adaptivity
• Efficient multilevel algorithm
• Geometrical flexibility
• Suitability for modern computer architectures (cache awareness and paral-

lelisability combined with load balancing)
• Suitability for general discretized systems of partial differential equations

The present implementations include the first three of these aspects and part of the
fourth aspect. But the implementation of the other aspects is not difficult. The
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Fig. 6.2. Representation of the star-shaped domain and a sphere with the help of adaptive grids
gained by a geometry oriented coarsening of a 243× 243× 243 grid

parallelization of the method follows step by step the approach of Zumbusch ([32]) who
has already successfully used space-filling curves for the parallelization of PDE-solvers.
The generalization to systems of PDEs is also straightforward. [31] implemented a
version solving the 2D Navier-Stokes equations. A thesis on problems with non-
constant coefficients will be published within the next months.

As all codes used are still in an experimental state in particular without any run-
time optimization, we will publish further detailed performance results in subsequent
papers.

As a further remark we want to mention that space-filling curves can also be used
e. g. for the computation of the product of a full matrix with a full vector or a full
matrix with a full matrix where we also obtain a reduction of cache misses [3].
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resolution of
the full grid

variables storage
re-
quire-
ments

computing
time

L2-hit-
rate

iter ms per
vari-
able
per it-
eration

81× 81× 81 72,576 1MB 167.34s 99.99% 88 0.0262
243×243×243 1,969,872 24MB 4,949.87s 99.98% 96 0.0262
243×243×243 900,024 (adp.) 6MB 773.21s 99.97% 97 0.0089
729×729×729 24,231,440 (adp.) 150MB 20,127.97s 99.94% 100 0.0083

Table 6.2
Performance values for the three-dimensional Poisson equation on a sphere solved on a dual

Intel XEON 2.4 GHz with 4 GB of RAM

resolution of
the full grid

variables storage
re-
quire-
ments

computing
time

L2-hit-
rate

iter ms per
vari-
able
per it-
eration

81× 81× 81 530,096 3MB 98.09s 99.96% 42 0.0044
243×243×243 14,702,584 76MB 2,641.86s 99.91% 42 0.0043
729×729×729 400,530,936 2GB 72,307.26s 99.90% 42 0.0043

Table 6.3
Performance values for the three-dimensional Poisson equation on the unit cube solved on a

dual Intel XEON 2.4 GHz with 4 GB of RAM
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