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Abstract 

Speech recognition systems must often decide between competing ways of 

breaking up the acoustic input into strings of words. Since the possible strings 

may be acoustically similar, a language model is required; given a word string, 

the model returns its linguistic probability. This thesis discusses several Markov 

language models. Subsequently, we present a new kind of language model which 

reflects short-term patterns of word use by means of a cache component, 

analogous to "cache memory" in hardware terminology. The model also contains a 

Markov component of the tradition al type. The com bined model and a pure 

Markov model were tested on samples drawn from the LOB (Lancaster-

Oslo/Bergen) Corpus of English text. We discuss the relative performance of the 

two models, and make suggestions for future improvements. 
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Resume 

Les systemes de reconnaissance de la voix doivent souvent 'evaluer plusieurs 

alternatives afin de regrouper les sons en mots. Une meme suite de sons peut Aetre 

interpretée de plusieurs facons, d'ou le besoin d'un modele associé'a la langue. Les 

suites de mots possibles peuvent Hre testées par le modele pour en obtenir !a 

probabilité linguistique. Cette tfiese porte sur differents modeles Markoviens du 

langage. Un nouveau modele qui ajuste la probabilité d'un mot selon qu'il a été 

utilisé dans un passé l':'ecent est presenté. Ce modele comporte une composante 

similaire 'a une memoire cache ainsi qu'une composante Markovienne traditionelle. 

Le nouveau modele et le rnodele Markovien pur ont été testés sur un échantillon de 

données tiré de l'ouvrage LOB ("Lancaster-Oslo Bergen Corpus of English Text"). 

La performance relative des deux rnodeles est presentée, suivie de suggestions pour 

des ameliorations futures. 
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1. Introduction 

A type or system popular today for Automatic Speech Recognition (ASR) consista or two 

components. An acoustic component matches the acoustic input to words in its vocabulary, 

producing a lillt of the most plausible word candidates together with a probability for each. The 

second component, which incorporates a language model, utilizes the string or previously identified 

words to estimate ror each word in the vocabulary the probability that it will occur next. Each word 

candidate originally selected by the acoustic component IS thus associated with two probabilities, the 

first based on its resemblance to the observed signal and the second based on the linguistic 

plausihility of that word occurrmg immediately after the previously recognized words Multiplication 

of these two probabilities produces an ove rail probability for each word candidate. 

Our work rocuses on the language model incorporated in the second component. The language 

model we use IS based on a c1ass of Markov models identified by Jelinck, the "n·gram" and "Mg

gram" modcls [9, 101. These models, whose parameters are calculated from a large training text, 

produce a reasonable non-zero probabllity for every word in the vocabulary during the speech 

recognition task. Our combined model incorporates both a Markov 3g-gram component and an 

added "cache" ~omponent which tracks short-term fluctuations in word frequency. The addition or 

the cache component and the evaluatlon of its effects are the original contributions of this thesis. 

We adopted the hypothesis that a word used in the recent past is mu ch more Iikely to be used 

soon than either its overall frequency in the language or a Markov model would suggest. The cache 

component of our eombined model estimates the probabJlity of a word from its recent rrequency of 

use. The model uses a weighted average of the Markov and cache camponents in calculating ward 

probabilities, where the relative weights assigned to each component depend on the Part. Of Speech 

(POS). For purposes of comparison, we also created a pure Markov model, consisting of only the 

Markov component of the c:ombined model. 

For each POS, the eombined model may therefore place more reliance on the cache 

component th an on the Markov component, or vice versa; the relative weights were obtained 
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experimentally for each POS from a training text, using the Forward-Backward Method 126J. The 

cache--based probabilities C; ( W, i) were calculated as follows. For eaeh POS, a "cache" (just a 

bufl'er) with room for 200 words was maintained. Each new word was assigned to a single POS gj 

and pushed into the corresponding buffer. As soon as there were 5 words in a cache, it began to 

output probabilities which corresponded to the relative proportIons of words it contained. The lower 

limit of 5 on the size of the cache before it starts producing probabilities, and the upper size limit of 

200, are arbitrary - there are many possible heuristics for producing cache-based probabilities. 

The dependence op. POS in the combined model arose Irom the hypothesis that a content 

word, su ch as a particular noun or verb, will occur in bursts. FUJi.:tlon words, on the other hand, 

would be spread more evenly across a text or a conversation; their short-term frequencies of use 

would vary less dramatically from thelr long-term frequencies. One of the aims of our research was 

to assess this hypothesis experimentally. Ir it is correct, the relative weight calculated from the 

training text for the cache' component for most content POSs will bl' higher than the cache weighting 

for most function POSs. 

Our rœearch was greatly facilitated by the avallability of a large and varied collection of 

modern Eng!ish texts, in which each word is labelled with an appropriate POS. This is the 

Lancaster-Oslo/Bergen (LOP-) Corpus of modern English, consisting of 500 samples (drawn from 15 

different categories) of texts published in the United Kingdom in 1961. This corpus is described by 

Johansson and others in [12, 13, 14]; it is available to researchers from the Norwegian Computing 

Centre for the Humanities. We chose to employ the sa me 153 POSs found in the LOB Corpus in 

oUl' model, in the belief that it was more rational ta rely on the syntactical judgments of a la;ge 

team of trained grammarians and lexicographers than to devise our own idiosyncratic POSs. Part of 

this corpus (391,658 words) was utilized as a training text which determined the parameters of both 

models: the standard 3g-gram Mark·.:>v model, and our combined model consisting of the same 

Markov model along with a cache component. 

We required a yardstick with which to compare the performance of the two models. The 

measure chosen is called "perplexity"; it was devised by F. Jelinek lU]. The perplexity of a model 
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can be estimated by the success with which it predicts a sample text (which should NOT be the one 

used to train the model). The better the model, the higher the probal>ility it will assign to the 

sequence of words that actually occurs in the sample text. To compare two models, one employs each 

to calculate the word-by-word probability of the same sam pie text One can then calculate the 

average probability per word of sample text given by each of the two models; the model for which 

this average probability is hlgher is better than the other. The perplexlty is simply the reciprocal of 

this average probability - low perplexity imphes good performance. 

Once the parameters of the two models, the pure Markov and the combined, had been 

calculated from part of the LOB Corpus, we could have used any sam pie text from any souree 

whatsoever to compare the perplexity of the models \VI' chose to use part of the remaiOlng portion 

of the LOB Corpus because of the wlde range of different types of text represented therein. The 

sample text we constructed (hke the training text) includes such diverse types of written English as 

press reports, reltgious Itterature, love stories, and government documents Tills sample text posed a 

difficult challenge to the two models . if a model pel'forms weil on such a variety of written material, 

it is likely to perform weil on most types of written English 

The re.'>ults of the compartson between the two models exceeded our expectations Jehnek [11] 

gives two figures for the perplexity of his trigram model, whlch was tramed on a 2.5 mllhon-word 

collection of office correspondence. When part of thls training text was used to estimate the 

perplexity of the model, the result was 70 This result is uuimportant, as It measures the fit of the 

model to data used to calculate its parameters. \Vhen a collectIOn of memos not JO the training text 

was used, estimated perplexlty was 128. Our results are not stl'ictly comparable to Jelinek's, for two 

reasons. First, our training text was much smaller tlmn lus, which should make both of our models 

less reliable. Second, the sam pie text we used to estlmate perplcxity was much more varied th an his, 

which should make predIction harder. For both these reasons, even if our models were as good as his, 

we would expect to get a higher perplexity estimate. This was indeed the case for the pure Markov 

model, whose estimated perplexity was 332. However, the combined model had an estimated 

perplexityof 107. This is a significant improvement over Jelinek's result. 
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These results indicate that addition of a cache component ta a language model can lead ta 

dramatic improvement in the performance of the model, as measured by its perplexity. The cache 

component reflects short-term fluctuations in the frequency of word use, on the premise that different 

writers or speakers have idiosyncratic word frequenci. s. Furthermore, a given subject or context 

may demand a particular set of word frequencies. The cache component of our combined model 

represents a cheap, easily-implemented technique ror permitting Automatlc Speech Recognition 

Systems to track these short-term fluctuations ID frequency of word use, whatever their cause. 

Interestingly, one of the hypotheses we tested in the course of this research was disproved. We 

thought it likely that the usefulness of the cache component would depend on the POS, with content 

words such as nouns and verbs being more affected by context than function words such as articles 

and prepositions, which would not vary much from their overall frequency ID the English language. 

Hence, we expected higher best-fit weights for the cache component of content POSs than for the 

cache component of function POSs. Tlus turned out ta be false. When the best-fit values for the 

weightings assignlo to the cache component for each POS were dctermined expenmentally by means 

of the Forward-Backward Method, they did vary considerably from POS to POS. But there was no 

consistent trend of high values for content POSs and lower ones for function POSs. If anything, the 

pattern was the reverse This and other aspects of the results are discussed in the Conclu'lion. 

A preliminary version of the work presented here can be found in [18J. 



• II. Markov Modele for Natutal Language 

2.1 Mathematieal Backgl'ound 

An Automatic Speech Recognition (ASR) system takes an acoustic input, A, and derives Crom 

it a string of words W l' W 2' . . . , Wn taken from the system's vocabulary, V. In the course of 

this process, the system considers a set of plausible word strings, assigns eat:h a probability, and 

outputs the candidate with the highest probability. If V is large, the candidates may ail be equally 

plausible on acoustic grounds. Thus, the system requires a purely linguistic component which assigns 

probabilities to word strmgs. 

Formally, let WB = < W1, W 2, ... , W n > denote one of these possible word strings and 

P( WB lA) the probability that It was uttered, given the acoustic evidence A. TheY} the speech 

recognizer wIll pick the word string WB satisfying P (WB lA) = maxP (WB lA), i.e., the 
ws 

most likely word string given the evidence. 

Since by the Bayes Formula we have P (WB lA) = P ( WB) . P (A IlVB) it follows 
P(A) 

that P (WB lA) = max P (WB)~ (~ 1 WB). Since A is fixed, lt follows that 
ws P A 

WB = { WB such that P(WB) . P(A 1 WB) is a maximum} 

In this report. we will not discu5s P (A 1 WB), the probability of the actual acoustic input 

being observed if the string WB = < W 11 • • • , Wn > is uttered. The calculation of 

P (A 1 WB) is the responsibility of the signal - processing component of the speech recognition 

system. We are concerned instead with the model that estimates P(WS), the probability of a 

given word string independent of the aeoustic input. 

From elementary probabllity theory, we decompose P ( JtVB) as 

n 

P(WS) = P(W1)· IlP(W; 1 < W1, .. ·, W;_l ». 
;-2 

Thus, the probability that a word W. is spoken depends on the past history of the dictation. As 

Jelinek, from whom the above account i8 derived [11, pp. 2-3] points out, the probabilities 
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P (W.. 1 < W 1" .. , W .. -1 > ) are in praetice impouible to estimate, sinee each history 

< W l' ... , Wi -1 > h88 oeeurred at most only a rew times in the history or the English 

language. For a vocabulary ohize V, there are Vi - 1 different possible histories; since 

P( W .. = W 1 < W1, . •. , Wi - 1 >.) must be round ror ea.ch possible W, tha.t is Cor ea.ch word in 

V, there are Vi different probabilities to be estimated. Vi is an astronomically large number for 

reuonahle values oC V and i . thus, another approach must be Cound. 

Whatever solution we adopt will consist of mapping the set of possible histolies 

< W 1, ... , W.·-l > into a more manageable number or equivalence classes. Jelinek denotes this 

many to one mapping by S. Thus, S « W il' .. ' W. -1 » denotes the equivalence class of the 

string < W1,.··, Wa'-l >. 

The probability P ( Wj = W) is approxima.ted by 

P(w. =W) = P(Wj=W 18 « W1,.··, Wj _ 1 »). 

Any language mode! ror speech recognition - whether past present, or ru ture , influenced by the 

work or .Jelinek's group or not, complicated or simple - will consist or such a mapping 8 of word 

strings into equivalence classes. 

2.2 Justification of Jelinek's Markov Appl'Oaeh 

Whenever we design a system intended to a.chieve human performance levels in the 

accomplishment oC a certain task, there are two strategies we could rollow. These might he termed 

the "anthropomorphic" strategy and the "abstraet" strategy. The first requires that we leam as 

much as possible about how human beings perCorm the given task, and then ineorporate this 

knowledge in the soCtware. The second demands that we consider the task in the ahstract as a 

problem to be solved and find the algorithm Cor solving it that will run most efficiently on our 

machines. Thus, the details oC the procedure we come up with might converge on human strategies 

in the task domain 88 we learn more about these strategies, or diverge rrom them as our approach to 

the task becomes incre88ingly a.bstra.ct and as we exploit our hardware more effectively. 
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There is no a priori reaaon Cor preCerring one approach to the other • it depends on our Cocus of 

intereet and on the task domain. Expert systems arose out of programs that modeled the 

haphazard, intuitive thought processes of human experts; earlier, "logical" approaches failed in 

many domains to which expert systems were later successCully applied. Computer chçss has evolved 

in the opposite direction. For several yeara attempts were made ta unravel the complex thought 

processes oC the best human players, and ta write programs that incorporated them. Today, these 

attempts have been more or less abandoned; the best chess programs rely on exhaustive searcbing of 

game trees, though one or the rew tbings tbat is known with certainty about human grand masters 

is tbat they do Dot rely on exhaustive search. In the case or chess, it may turn out that the secret 

or a good program is choosing an algorithm adapted to the hardware. There is no reason to suppose 

that procedures that work weil in an extremely slow, highly connected machine with a vast memory 

(the human brain) are the most suitahle ones Cor a fast sequential machine with a comparatively 

small memory (the computer). 

Language models held by humans undoubtedly incorporate knowledge about syntax, sem an tics 

and the pragmatlcs or discourse, as weil as knowledge about the world and orten about the 

psychology or an individual speaker. or these knowledge sources, only syntax can daim to have 

been successruHy rormalized - or so linguists would have us believe. There is as yet no complete 

Cormal grammar for the English language. Furthermore, rew or the innumerable parsers in the 

literature are equipped ta make probability estimatesi most would assign a probability or 0 to 

ungrammatical sentences, though these occur with high rrequency in spoken English. 

Thus, the case ror an "abstract" strategy in natural language modeling for speech recognition 

is very strong. The exceptions occur in specialized domains where the vocabulary, syntax or 

sem,.ntics are so constrained that the mecllanisms underlying speech recognition by human beings 

within the domain can be guessed at and incorporated into a parser. Where unconstrained buman 

speech i6 concerned, "unmodified parsers can at best serve as final filters accepting word strings that 

were arrivcd at with the help of a more appropriate language model" [1l,pg.3]. 
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The Mu-kov modela employed by Jelinek and his group, therefore, u-e not intended to refteet 

natural language models possessed by humans. Instead, they u-e designed to produce a mapping S 

of word strings to equivalence classes that facilitate estimation of 

P("'i== w IS( < W1, .. ·, »';-1 >)). 

This involves a compromise between the need for a refined classification that loses little relevant 

information about the history < W 1" .. , W; -1 > and the need for a small number of classes 50 

that enough data can be gathered for each one. 

The novelty of Jelinek's approach is that he decided it was more important to keep the 

information contained by the last few words than to concentrate on syntax, which by definition 

involves the entire sentence. A high percentage of English speech and writing consists of stock 

phrases that reappear again and againj if someone is halfway through one of them, we know with 

near-certainty what his next few words will be. Jelinek's trigram model automatically picks up 

this kind of information from a training textj a parser does not. The 3g-gram mode) addresses the 

same task parsers are designed to achieve - the prediction of the part of speech of the next word -

but its structure owes everything to Jelinek's approach and nothing to traditional parsers. Like the 

trigram model, the 3g-gram model uses only the context provided by the two preceding words. 

The advantages of the Jelinek approach are the assignment of a probability to every possible 

word string and the automatic calculation of parameters Crom a training text, permitting the model 

ta incorporate valuable information that is not described by any existing linguistic theory. An 

important disadvantage is the loss of information that goes more than a few words back. 

Furthermore, parameter values do not change once the training text has been processed - no 

information is gathered in the course of the speech recognition task, 50 that there is no way for the 

system to adapt itself dynamically to the speaker. In the next chapter, 1 will discuss our combined 

mode), which tries ta overcome both disadvantages by using lexical information gathered during the 

recognition task. The Markov component of this model is based on the 3g-gram model, which is an 

adaptation of Jelinek's original trigram model. Section 2.3 of this chapter is therefore concerned with 

the tngram model, whlle section 2.4 describes the Sg-gram model. 
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2.3 The Trllram Model 

The trlgram model is based on the mapping of a history 

< W 1"'" Wj -1 > onto the state Cormed by the two Most recent words: 
t 

Thus, it is a Markov model, approximating P(W.·=W 1< W I , ... , Wj _ I » by 

P ( w.. == W 1 w.. -2' Wi -1)' The latter, in turn, is estimated from the training text as the ratio of 

the number or times the word sequence < w.. -2' Wj -1' W > occurred to the number of times the 

sequence < Wj -2' Wj -1 > occurred: 

In practice Many trigrams that do not occur in the training text show up during the 

recognition task, and should thereCore not have the zero probability assigned them by this formula. 

One way of dealing with this problem is to use a weighted average of tri gram, bigram, and 

individual word rrequel!CÎes: 

P(W..=WIW.-2' W.-l) ~ Q2!(Wj =wlwj _ 2, Wj - 1) + q1/(W,·=wIWj - 1) + 

qo! (Wj=W), 

where qo + q 1 + q2 = 1 and 

! (Wi=W 1 Wi- 2, Wi-d = N( Wi- 2' Wi- 1' W)jN(W,'_2' Wj - 1), as before, 

! (W;=W 1 Wj _ l ) = N(W;-l' W)/N(Wi_tl, 

and 1 (W;=W) = N(W;=W)jNT, 

where NT = total number of words in training text. 

If qo ~ 0, this smoothed tri gram model guarantees that any word W that occurs at least once 

in the training text is assigned a non-zero probability, 50 it avoids the problem with the pure 

trigram mo:lel mentioned above. The calculation or the values ror qo, ql' and q2 is quite 
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eomplieated. They are ehosen to meet the maximum likehood eriterion - that is, the probability of a 

new text ealculated by means of the smoothed trigram formula is maximized. Note that these qj 's 

depend on the size of the training text, sinee as it gets larger more of the possible trigrams are 

eneountered, / ( Wj = W 1 "'i -21 Wj -1) beeomes a more reliable estimator, and the value or q 2 can 

be increased. 

There are other ways of usin;J bigram and singlet Crequencies ta smooth trigram estimates. S. 

Katz's method "backs 00''' Crom a trigram ta a bigram ta a singlet estimate ([15]; described in [8, 

11]): 

P(Wj-W 1 Wj - 2! W j - 1) - if N(Wj _ 2! Wj _ l ! W) > 0 

then r2/ (Wj=W 1 Wi-2! Wi-l) 

else if N( W,'-l! W) > 0 

then r If ( W, = W 1 Wi -1) 

else fol (Wj = W). 

The weightings r 2 , ri and r 0 ensure that the probability summed over ail words W adds up 

to 1; as with the qj 's in the previous model, they are chosen to m81'imize the probability or a new 

text, and depend on the size oC the training text. 

2.4 The Sg-gram Model 

The 3g-gram model (terminology oC A. Martelli [21]) is analogous to the trigram model; this 

model is also Markov, but not completely divorced from grammatical theory. It employs 

grammatical parts of speech - henceCorth abbreviated "POS". Let g ( w,.) = gj denoie the POS 

oC the word that appears at time i. Note that we might have w,. = W = Wk Cor i ~ k, but g ( Wi ) 

'fi: g ( Wk ). This is because a word W in the v\.Icabulary can belong ta diO'erent POSs at diO'erent 

times; Cor instance, "light" can be a noun, verb, or adjective. By definition, each occurrence of a 

word only has one POS; in practice, it May be difticult ta single out that POS among the set of 
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poSa auociated with the word . 

The 3g-gram model has two levels. At time i, it assigns a probability to each POS on the basis 

of the information provided by gj -1 and gj -2' This part of the model functions exactly Iike the 

trigram model, except that the vocabulary consists of POSS and not words. Thus, the model gives a 

non-zero probability that gj is a noun or a verb or an article, etc. Next, probabilities of individual 

words are calculated on the basis of their frequency within POSs. Suppose that the model gave a 

probability of 0.99 to the occurrence of a noun at time at time i. Then the estimated probability 

that W .. = "desk" would be almost exactly equal to the frequency of the word "desk" amoDI th. 

nouns in the training text. 

Let G be the set of POSs recognized by our model, and let 9 j be a particular POS whose 

probability of occurring we wish ta predict. The model gives us 

For a word W that only has 01'.! possible POS, g(W), the probability P ( W .. = W) is 

estimated by the product of the estimated probability that g(W) will occur at time i by the 

estimated probability that if g(W) occurs the ward will be W: 

P(W.·=W Ig;-2' g.-d ~ P(W ,g(W))' P(gj=g(W) Ig.-2, gi-l) 

:::: 1 (W 'g( W)) . ! (g;=g (W) Ig.-2' gi-l) 

where the frequencies f are calculated Crom the training text as beCore. 

Generally things are not as simple as this, since many words belong to more than one POS 

category. The probability that "light" wil! OCCUT is the probability that it will occur as a noun plus 

the probabiIity that it will occur as a verb plue the probability that it will occur as an adjective. 

Thus, the general 3g-gram formula is: 

P(w;=W 1 < W 1, .. ·, Wi - 1» = E P(W Igj ) . P(g;=gj Ig"-2' gi-l) 
I, EG 

~ E !(U'lgj )' !(gj=gj 1 gj-2' gi-l)' 

'1 EG 
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Given a sufficiently large training text, / (gj=gj 1 gj-2' 9i-l) eould be ealeulated for every 

POS gj in G. In practice, existing training texts are too small- mrny POS triplets will never appear 

in the training text but will appear during a recognition task. Ir we do not modify the procedure to 

prevent zero probabilities, a particular 9 j that aetually oceurs may have zero estimated probability. 

Recall that an analogous problem occurred with the trigram model. The two solutions we 

described were the "weighted average" approach and the ''back-08''' approach, both using bigram 

and singlet Crequencies to smooth out the trigram Crequencies. These two solutions are also applicable 

to the 3g-gram model. 

Derouault and Merialdo [4,5] employed a variant oC the weighted average 3g-gram approach. 

Their work will be described in some detail, as the Markov component oC our model was based on it. 

It must be emphasized that not ail of their conclusions are relevant to our work, as they were 

dealing with French rather than English. However, their methods are applicable to English. 

Their corpus consisted oC 1.2 million words oC French text tagged with 92 POSs. Only 5 

percent oC the possible triplets occurred. Thus, the doublets were tabulated as weil; this time haIC oC 

the possible pairs occurred. Instead of using individual POS Crequencies as the third component of a 

weighted average, these researchers chose to add an arbitrary small value e = 10-4 to the weigh(,ed 

average oC triplet and doublet POS Crequencies in order to prevent zero estimates Cor the probability 

oC occurrence oC a given POS. Thus, they approximated P(g, =gj Ig,,-2,g,,-I) by 

l tf (9j=9j Igi -2,gi -1) + 121 (g,,=gj Igi-l) + e, e = 10-4, 11 + 12 = 1. 

They experimented with two different ways of calculating 11 and 12, Intuitively, it makes sense 

that if there are many triplets beginning <g;-2,g,-I,'" >, the Crequency / (9;==91' Ig;-2,9;-.) 

gives reliable information; 11 should thereCore be high. If there are Cew such triplets, l2 should be 

given more weight. Following this reasoning, Derouault and Mt"ialdo first let 11 and 12 be a 

function of the count of occurrences of <gi-2,gi-l>' Each possible history <9i-2,9i-l> was 

assigned to one of ten groups, depending on how often it had occurred in the training text. Each of 

the groups had di8'erent values of Il and 12/ with the highest value of l2 occurring in the group for 

hi.tori .. < fi _ •• (Ii _. > 'ha' hev.r ee.urrtd in .h •• r.inin. tMf', 
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Another way or looking at the problem is to argue that 11 and 12 should depend on li -1' the 

POS or the lut word recognized. H it is an article. ror instance, we can be alm08t certain that the 

next word, Wi , is a noun or an adjective. In other cases, we may have to look at Ij -2 as weil. 

Thus, the other way in which these researchers calculated 11 and ' 2 was to allow them ta depend on 

gj-l' 

Let h ( < gj -2,gj -1> ) denote the parameter on which 11 and 12 depend. For Derouault and 

Merialdo's first approach, h = N( < gj -2,gi -1» = the number of occurrences oC 

< gj -2,gj -1> in the training text; Cor the second approach, h = g. -1 = the POS of the 

preceding word. They calculated II (h ) and 12( h ) by the same algorithm in both cases, called the 

Forward-Backward Method [261. Having split the training text into two portions in the ratio 3:1, 

they used the larger portion to calculate 1 (gj Ig.-2,g.-I) and f (g, Igj-l)' They then set II(h) 

and l2( h ) to arbitrary values such that li (h) + 12( h ) = 1, and iteratively reset them frOID the 

remaining portion oC the corpus. Summing over ail triplets < gj -2,gj -1 ,gj > in this portion, they 

defined 

SI(h) = 'L)I(h)/(g; Igj-2,g.-I)/l/I(h)/(g, Ig;-2,g,-I) + ' 2(h)f(gj Igi-I)]' 

S2(h) == 'b /2(h)J (g; Igi-I)/[/I(h)/ (gi Igi-2,gi-l) + 12(h)1 (gi Igi-I»)' 

They th en redefined 

Then the tirst two formulas were calculated again on the same portion oC the corpus. Iteration 

continued until li (h ) and 12( h ) converged to fixed values. This procedure is guaranteed ta produce 

the 11 and 12 that maximize the estimated probability oC the smal1er portion oC the corpus, based on 

the frequencies obtained from the larger portion. 

Derouault and Merialdo round only a small difference between the performance oC the model in 

which 11,/2 depend on the count N( <gi-2,g;-I» and th Ilot in which they depend on the POS 

gi -1' Bath models were superior to one in which the coefficients were arbitrarily set ta 'I == 0.99, 

12 == 0.01 Cor ail POS. As expected, when training text size Wall varied, the algorithm described 

above gave larger values of Il Cor larger text size. 
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The 8nt level of both our eomblned model and our Mark~v model - the level that predicte 

the POS - worb in exactly the way we have deseribed for Derouault and Merialdo's 3g-gram model. 

The other level to be considered is the lexicallevel, whieh estimates the probability of a word giYen 

its POS. At this level, our Markov model is again almost identical to Derouault and Merialdo's 

model. In both cases, the probability of a word given its POS is estimated by iÙJ rrequency amonl 

the words round in that POS category in the training text. Thus the only substantial difl'erence 

between our Markov model and Derouault and Merialdo's mode} is the t~loice of POSs; they define 

92 POSs, we use the 153 POSs in the LOB Corpus. In the next chapter, we will see how the 

combined model dift'ers from the Markov model and Derouault and Merialdo's model at the level 

of lexical prediction. 

2.5 Perplexity: A Measure of the Performance of & Language Madel 

This section is a summary of work done by Jelinek (Appendix A in [U]). We wish ta derive 

an objective measure or language model quality based on Information Theory. Consider a source 

putting out symbols from a finite set V that is known to the user. The output of a symbol removes 

the user's uncertainty about the identity of that symbol, and th us provides him with information. 

For a given size L of the set V, the information is maximal if each of the possible symbols is chosen 

with equal probability, independently of previously chosen symbols. If the source has these 

characteristics, the information content is 

In general, let x denote a symbol put out by the source with probability P(x). Then the 

measure of information (if the symbols are chosen independently of one another) is given by 

H - -~P(x)log2P(x). 
z 

Thu!!, a source of entropy H has as much information content as one whose symbols are choseo 

equiprobably from an alphabet of size 2H . 
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If x; is the ith symbol put out by a well-Ixlhaved, "ergodic" !IOurte, we can estimate its entropy 

by 

H - --{lIn )[log2P (Xl,x2' ... ,xn )), 

where n "bould be as large as possible. Applying this to language, we can view a language as a 

source whose output ayrobola are worda Wj. Unfortunately, we cannot know the probabilities 

P(Wl,W2' . 

P(Wl,W2' . 

,Wn ) for strings or a language. However, each language model provides an estimate 

,Wn ) for such strings. 

The difficulty of recognition of il. sample text using a given language model is thererore given 

by 

LP == -(ljn)[lo92P(Wl,W2" .. ,wn )). 

Jelinek suggests that it is intuitively more satisfying to measure the difficulty or the speech 

recognition task by the value of the perplexlty given by 

pp == 2LP = P(Wl' ... 'Wn )(-l/n). 

Roughly speaking, if the perplexity is PP, the speech recognition task is 8.'. difficult as it would 

be if the language had PP equiprobable words. 

There is another way of looking at the perplexity which Jelinek does not mention. When we 

employ language models to calculate the probability of a sample text, the better models will 8SSign a 

higher probability to it (sin ce they are better at prediction than the others). Thus, the better the 

model, the higher the average probability per word. How cou Id one estimate this average for a text 

of n words 7 The logical answer is to take the nth root or the sample's overall probability as 

estimated by a given model, sin ce the individual probabilities are multiplicative. But this nth root 

IS sim ply the reciprocal of Jelinek's perplexity measure. Thus, low perplexity corresponds to high 

probability per word of sample textj both are signs that the model in question is a good predictor for 

the sample. 
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m. The Combined Model 

3.1 Arsument for the Cache Component 

The central idea underlying the work presented in this thesis concerns a crucial limitation or 

ail the Markov models described earlier. Fortunately, this limitation can easily be overcome by 

means or a mechanism which does not compromise the robust simplicity of the Markov approach. 

The main limitation of the Markov models, as we see it, is their inability ta reftect short-term 

patterns oC word use. Suppose the word sequence "the old ... " has just been recognized, and that the 

word "man" rollowed these two words 10% of the time in the training text, while the word "band" 

Collowed them 1% or the time. The trigram model will assign "man" a probability of 0.1 and "band" 

a probability or 0.01 . If the acoustic component assigns these words roughly equal probability, 

"man" will be chosen. For an isolated sentence, this would be the reasonable choice to make. But 

now suppose that severa! previous sentences contained the word "band", while none contained the 

word "man". We contend that a human being would then assign overwhelmingly higher probability 

ta the word "band", and that he would be right ta do 80. A word used in the immediatc past - say 

the last 2,000 words or so - is mueh more likely ta be used soon than either its ove rail rrequency in 

the English language or any or the popular Markov models would suggest. 

There is strong empirical evidence for this. Studies on three corpora of English and American 

texts by S. JohanSbOn [13, 14) show that "word rrequencies vary greatly depending upon the type or 

text, both among content words and function words" [14, pg. 34]. Jelinek [11] was certainly aware or 

this facto "His choice of words reftects the speaker's habits or expression that. are related, for example, 

to his level of education. His usage is also conditioned by the generaI domain or discourse (e.g. data 

processing, musicology, medical reports, etc.) that calls for a variety of technical terms, cliches, and 

such" [U, pg. 20]. However, in the passage 1 have just quoted, Jelinek wu primarily concerned with 

the question of what words to include in the speech recognition system's vocabulary, rather than 

with the way in which the current context (the identity of the speaker and his domain or discourse) 
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atrect the frequeneies of occurrence of the words in the vocabulary. He did briefty consider the latter 

problem, emerging with a rather pessimistic conclusion. 

''For a dynamically changing active (personalized) vocabulary, a straight trigram language 

model cannot be constructed IIOlely from the text created by the user. He will never dictate enough. 

The only conceivable way is to extract the model from an already stored trigram collection 

appropriate to a large vocabulary that includes the active subset. It is obvious that the more the 

active vocabulary of size L differs from the L most frequent words of the fuced trainmg corpus, the 

less will the trigrams in the dictated text be covered by trigrams collected from the training text. 

Therefore a truly gigantic corpus would have ta be used as a basis for a satisfactory model". 

"A more powerful method of language model construction is required not only to accommodate 

dynamic vocabularies, but also to limit the need ta produce a large number of very different models 

for the many discours~ domains. In fact, it is hard to list the latter, and for sorne important 

domains it will be impossible to finà corresponding data bases" [11, pg. 21]. 

The idea underlying our research was that a language model that exploited short-term shifts in 

word-use frequencies might perform significantly better than the pure Markov models described in 

the previous chapter. A similar problem was faced by computer hardware designers some years ago 

[17, 25]. It was known that computers often accessed a particular memory location with high 

frequency within a sequence of accesses. The designers took advantage of these short-term patterns 

in memory reference by building a small, high-speed, expensive "cache memory" next to the CPU. 

'When a memory access is made, the contents of the accessed location, plus its neighbours, is copied 

ta the cache. If another reference is made to these locations they can be fetched directly from the 

cache without having to go to the slower-speed main memory. For a reasonably sized cache a hit 

rate of 80 percent is common" [25, pg.230]. When space must be made in the cache ta insert new 

information, the least recently used (''LRU'') d&ta is overwritten. 

Following this analogy, we decided ta design a language model that had both a cache 

componeL t and a Markov component. Our linguistic intuition suggested that these short-term 

word frequency fluctuations depend on the POS. For example, a given noun will appear in bursts 
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whenever a topie that evokes it is being discussed; a given preposition, we thought, would be likely 

to appear at a steady rate throughout. This consideration led us to employ a model with a 

component that predicts the POS, !O that the model would be able to weight the short-term cache 

"" component heavily when, ror example, a noun was expected, while virtually ignoring the cache 

component when a preposition was expected. Any Markov model that predicts the POS would have 

suited us - we chose the 3g-gram model because it has been thoroughly studied and weil described in 

the literature. Just as was described for the I-values in the Derouault-Merialdo implementation of the 

3g-gram model in 2.4, the relative weights assigned to the cache and Markov components within 

each POS category were determined experimentally by means or the Forward-Backward Method. 

Thus, the combined model assigns a probability to each POS in the same way as the 3g-

gram model. For a fixed POS, the probability or any word which belongs to it is a weighted average 

or the word's rrequency in that POS category in the training text - the Markov component - and its 

rrequency in the cache belonging to the POS category - the cache component. At a given time 

during the speech recognition task, the cache ror a POS will contain the last N words which were 

guessed to have that POS (we arbitrarily set N to 200). If a word has occurred orten in the recent 

past, it will occur many times in the cache ror its POS lsupposing for the purposes or argument that 

the word only has one possible POS). Thus the word will be assigned a higher probability than when 

its recent rrequency or occurrence is low. In thls way, the inclusion or a cache component satisfies our 

goal or dynamically tracking changing patterns or word use. 

3.2 Mathematical Treatment or the Combined Model 

It is easy to describe the combined model mathematically. Recall that the pure 3g-gram 

Markov model is 

P( Wj == W Igj-2,gj-l) = E P( Wj= W Igj==gl )P(gj ==g} Igj-2,gj-l). 
9,EG 

The combined model Jeaves the POS component P(gj==gj Igi-2,gj-l) or the 3g-gram model 
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unchanged; this probability was es"imated in the precisely the same way as was done by Derouault 

and Merialdo, as described in 2.4 (above). We chOl3e to use the variant oC their model in which the 1· 

values, giving the relative weights of the POS triplet and POS doublet probability estimates, depend 

on the previous POS. Our modification affects only the component that predicts the probability of a 

word given the POS, P ( W; = W 1 gj =g;). In the 3·gram Markov model this is estimated by 

f ( w.. = w 1 9 i =g;), calculated from the training text. This is certainly a good estim . .Lte of the 

mean around which the value P ( W. = w 1 g. =g; ) ftuctuates; however, it does not take account of 

the variance around that mean. 

We believe that the recent past IS a good guide ta the direction of the variance. Thus, let 

C;(W,i) denote the cach~based probability estimate for word W at time i for POS gJ' This is 

calculated from the frequency of W among the N Most recent words belonging ta POS gJ (in our 

implementation, N = 200). Our eombined model estimates P ( W j = W 1 g. =g) ) by 

instead of by f (W; = w 1 gi =g) ) alone. This should allow the estimate of P ( w.. = w 1 g. =g i) 

to deviate from its average value ta reflect temporary high or low values. As described in 4.2, the 

relative weights of kM •
J 

and kc , j are round by the Forward-Backward Method mentioned in 2.4; 

the values thus obtained maximize the probability of the training text. Note that the Markov 

model is simply the special case of the eombined model obtained by setting ail kM,j to 1.0 and 

aH kc.i ta 0.0 . 

Only one major modification ta this model proved ta be necessary in practice. We were faced 

with severe memory limitations, which required that we economize on the amount of data stored. 

For this reason, we decided ta restrict the number of POSs for which 20(}.word caches were 

maintained. Ta be given a cache, a POS had ta meet two criteria. It had ta 

1). comprise more than 1% of the total LOB Corpus 

2). consist of more than one word (for instance, the LOB category BEDZ was exduded because it 

consists of the single ward "was"). 



c 

( 

Only 19 POSs met tbese two criteria: bowever, tbese 19 together make up roughly 65% or the LOB 

Corpus. Tbey are listed in 4.1 . Thus, ror POSs other than these 19, there is no cache component in 

the combined mode): the estimated probability is the pure 3g-gram one, i.e. identical ta that or 

the Markov model. 

In order ta test our hypothesis that eaeh POS should be given a different best-fit pair oC 

weights for its cache and Markov components, we experimented brieRy with & model in which all 

POSs had the same pair oC weights. Recall that the two weights must add up to 1.0 . We 

experimented with (kc,kM ) = (0.0,1.0); (0.1,0.9); (0.2, 0.8); ... ; (0.9,0.1). We did not try ta find 

a best-fit pair of relative weights Cor this simpler version of the combined model. 

We also required an estimate oC the probability that a word would be encountered in the 

sample text that was not in the vocabulary, i.e. was not in the training text. There are ditrerent 

ways of doing thîs 115, 21J; we chost" to estimate this probability by Turing's formula, which uses 

the frequency oC unique words among all words in the training text. There were 13,610 unique words 

among the ;)91,658 words in the training text, so the probability of encountering a wt)rd not in the 

vocabulary was estimated at about 0.035 . When such a word was actually encountered, it was not 

stored in 80y cache, but its POS was gucssed as being the one which had maximum probability at 

that time according to the POS prediction part oC the model. 

Another serious problem is what to do when the recognition task is beginning and the cache 

for 9 j, containing the previous words tbat belong to POS 9 j 1 is nearly empty, i.e. the number of 

words on which our estimate is based is far less than N. One could argue that the closer a cache is 

to being Cull, the more weight its probability estimates should be given. In this view, kc ,i should 

not be fixed but should increase with the number of words in the cache corresponding to POS gj' 

attaining its maximum when that cache is Cull. However, we decided to keep things simple. 

Arbitrarily, we set kC,j= 0 until the corresponding cache bas 5 words in it; at that moment kC,i 

attains its maximum value. III future work, we may permit kc ,i ta increase with the number or 

elements in the corresponding cache. 
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A final point must he made. Although the UIIe oC a caehe component implies the existence oC a 

POS predictor (aince short-term word Crequencies diO'er Crom POS to POS), there iII no reason not to 

merse our combined model with the trigram model. The resulting cache-tr1lram model would 

estimate P(Wi-W 1< W., ... ,Wi- l » by 

al X 1 (W;-W 1 Wi - 2 , Wi - l ) + 

a2 X [ E f (gj Igi-2,gi-l) X [kM,; 1 (W Ig;) + kc,; C;( W,i)} ), 
g,EG 

al + a2 - l, kM,; + kc,; = 1. 

This model would incorporate features trom each of the thrfl>: main approaches we have discussed sa 

far, and might lead to l!Iubstantially improved predictive power over any single one of them. 
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IV. Implementation and Testing or the Combined Model 

4.1 The LOB Corpus and Texte Extracted trom It 

The Lancaster-Oslo/Bergen Corpus of British English consists of 500 samples of about 2000 

words each. The average length per sample is slightly over 2000, as each sample is extended past the 

2~word mark in order to complete the final sentence. Each word in the corpus is tagged with 

exactly one of 153 POSs. The samples were extracted from texts published in Britain in 1961, and 

have been grouped by the LOB researchers into 15 categories spanning a wide range of English prose 

[12, 13, 14]. These categories are A - press reportage (44 samples)i B - editorials (27 samples)i C -

press reviews (17 samples)i D - religion (17 samples)i E - skills, trades, and hobbies (38 samples)i F -

popular lore (44 samples)i G - belles lettres, biography, essays (77 samples)i H - miscellaneous, 

mostly government and industry documents (30 samples)i J - learned and scientific writings (80 

samples)i K - general fiction (29 samples)i L - mystery fiction (24 samples)i M - science fiction (6 

samples) i N - adventure and western fiction (29 samples)i P - love stories (29 samples)i and R. -

humour (9 samples). 

We extracted three dilferent, non-overlapping collections of sampi es from the tagged LOB 

Corpus, and used each for a different purpose. Ali three were designed to reflect the overall 

composition of the LOB Corpus as closely as possible. 

The first collection served as a training text for our models. That is, it was used to obtain 

counts for triplets, doublets, and singlets of POSs. It also gave rise to the vocabulary for the models, 

and to the counts for the number of occurrences of a word within each POS. It contained 169 

samples altogether. There were 15 samples from category A, 9 from B, 6 from C, 6 from D, 13 from 

E, 15 from F, 25 from a, 10 from H, 27 from J, 10 from K, 8 from L, 2 from M, 10 from N, 10 from 

P, and 3 from R, for a total oC 391,658 words. 

The second collection was used Cor further parameter setting, including calculation of the 

l-values in the Derouault-Merialdo formula, which give the relative weights to be placed on triplet 
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and doublet probability estimates tor the POS.prediction portion ot both modela. It wu also used to 

calculate the k-values, which giYe tbe relative weights ta be placed on the cache component and the 

Markov component in the eombined model. It contained 100 samples, distributed as foUows : 9 

samples from LOB category A, 5 samples from B, 3 from C, 3 from D, 8 from E, 9 from F, 15 from 

G,6 from H, 16 from J, 6 from K, 5 from L, 1 from M, 6 from N, 6 from P, and 2 from R. 

The third collection formed the testing text. It was used ta compare the eombined mode. 

with the Markov model. It contained 100 samples distributed among the LOB categories in exactly 

the same way as in the parameter setting text. Note, however, that only the categories and not the 

samples themselves are the same. 

We required labelled texts for training and parameter setting. By contrast, as pointed out in 

the Introduction, any text from any source whatsoever could have been usoo as the testing text. The 

diversity of the testing text poses a difficult challenge to both models we tested. It is true that the 

composition of the two texts used for model-building resembles that of the testing text, but that has 

always been the case in this type of research. It seems ta us that the difficulty of prediction here, 

when ail three texts are derived from a variety of sources, is greater than when ail three are derived 

from business correspondence alone, as in Jelinek's work. In one way only could we be accused of 

making the task of the combined model easier. We kept samples of the same LOB category 

contiguous in the testing text, following the order given above. Thus, the testing text consists of the 

9 A samples followed by the 5 B samples, and 50 on. Note that the cache component of our 

combined model will contain many wards from samples previou~ to the current one. IC, as we 

hypothesize, discourse of a certain type has a characteristic vocabulary and pattern of word 

frequencies, our combined model will work much better on our testing text than on one 

constructed from the same samples in random arder. In other words, the final perplexity result for 

the combined model gives an idea of its performance when the domain of discourse changes slowly. 

This 5eems a reasonable restriction. 

The c\lDlprehensiveness of the LOB Corpus made it an ideal training text and a tough test of 

the robustnesl of the language model. Furthermore, the fact that it has been tagged by an expert 
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team or grammarians and lexicographers rreed us rrom having to devise our own tagging procedure. 

4.2 Parameter Calculation 

Ali parameters for both the Markov model and the combined model were calculated rrom 

the training text and the parameter setting text. The two models share a POS prediction 

component which is estimated by the Derouault-Merialdo method. Triplet and doublet POS 

Crequencies were obtained Crom the 169-sample training text; this text also su pp lied the vocabulary 

and the count for each word, subdivided by POS. The vocabulary size can be given in two different 

ways. If we ignore the POS oC a word, there were 24,279 difTerent words in the training text and 

hence in the vocabulary of our models. On the other hand, iC words with the sa me spelling but 

different POSs are counted separately, the vocabulary size is 30,718 . The l00-sample parameter 

lIetting text gave the weights, [1(g.-1) and l2(9,-1), needed for smoothing between the triplet 

and doublet POS frequencies. These were computed iLeratively using the Forward-Backward 

algorithm described in 2.4 above . 

Now the portion oC both models that ca1culates POS probabilities is complete - it remains ta 

find kM,j and kc,} for the combined model. This was calculated by means oC the Forward

Backward method from the parameter setting text in exactly the same way. 

4.3 Implementing the Combined Model 

Because oC memory limitations, it proved impossible ta implement a cache Cor every one oC the 

153 POSs in the LOB Corpus. As was mentioned in 3.2, two criteria were used ta select the POSs 

which would be assigned a cache: 

a). the POS had to constitute more than 1% or the LOB Corpus 

b). the POS had ta contain more than one word or symbol 

The second criterion is obvious - ir only one vocabulary item has a given POS, the cache component 
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yields no extra inrormation. The first criterion ia baaed on the premise that rare pOSa will he more 

spread out in time, 10 that the predictive power or the cache component will be weakened. 

The 19 POSs that survived this selection process were as Collows : 

1. AT, singular article (a, an, every) 

2. ATI, singular or plural article (the, no) 

3. BEZ (is, 's) 

4. CC, coordinating conjunction (and, and/or, but, nor, only, or, yet) 

5. CD, cardinal (2, 3, etc; hundred, thousand, etc; dozen, zero) 

6. CS, subordinating conjunction (aCter, although, etc) 

7. IN, preposition (about, above, etc) 

8. JJ, adjective 

9. MD, modal auxiliary ('Il, can, could, etc) 

10. NN, singular common noun 

11. NNS, plural common noun 

12. NP, singular proper noun 

13. PPS, possessive determiner 

14. PP3A, personal pronoun, 3rd pers plur nom (he, :ihe) 

15. RB, adverb 

16. VB, base Corm oC verb (uninflected present tense, imperative, infinitive) 

17. VBD, past tense oC verb 

18. VBG, present participle, gerund 

19. VBN, past participle 

4.4 Testing the Combined Model 

As described in 4.2, two parts oC the LOB Corpus were used to find the best-fit parameters Cor 

the pure Markov model and the eombined model, made up oC the Markov model plus a cache 
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component. These two models were then tested on 20% oC the LOB Corpus (100 sampll'Jl) as Collows. 

Each was given this portion oC the LOB Corpus word by word, calculating the probability oC each 

word as it went along. The probability oC this sequence oC 230,598 words as estimated by either 

model is simply the product oC the individual word probabilities as estimated by that model. The 

higher this overall probability, the better the model. Thus the overall probability was calculated Cor 

the pure Markov model and Cor the eombined model; the inerease aehieved by the latter over the 

Cormer is one measure oC the improvement due to addition oC the cache eomponent. This measure is 

somewhat unsatisCaetory, however, sinee it depends on the number of words. Fortunately, the 

perplexity measure originally described by Jelinek (see 2.5 above) can easily be calculated Crom the 

overall probability and the number of words encountered. In practice, during the operation oC the 

programs implementing the two models, the quantity calculated at each step is the log oC the 

product of the probabilities of words previously encountered, since the product itself quickly becomes 

infinitesimally small. 

Recall that we also tested a simpler version oC the eombined model, in which the cache 

component has the same weight for ail POSs. The weights tried were 0.0, 0.1, 0.2, .. , , 0.9; the 

Markov component is always 1.0 minus the cache component. The perplexity was atso estimated 

Crom the testing text Cor these 10 variants of the simpler model. 

Note that in order to calculate word probabilities, both models must have guessed the POSs oC 

the two preceding words. Thus every word encountered must be assigned a POS. There are three 

cases: 

a). the word did not occur in the tagged training text and thereCore is not in the vocabulary; 

b). the word was in the training text, and had the same tag wherever it occurred; 

c). the word was in the training text, and had more than one tag (e.g. the word "light" might 

have been tagged as a noun, verb, and adjective). 

The heuristics employed to assign tags were as follows : 

a). in this case, the two previous POSs are substituted in the Derouault-Merialdo weighted

average Cormula and the program tries ail 153 possible tags to find the one that maximizes the 
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probability given by tbe formula . 

b). in this case, there is no ehoice; the tag chosen is the unique tag associated with tbe word in 

the training text. 

e). wben the word has two or more possible tags, the tag chosen from them is the one which 

makes the largest contribution to the word's probability. 

Tbus, although the portion or the LOB Corpus used for testing is tagged, these tags were not 

employed in the implementation or either model; in both cases the heuristics given above guessed 

POSs. A separate part or the program compared actual tags with guessed ones in order to collect 

statistics on the performance of these heuristics. 
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v. Results 

5.1 Calculation of the L-Valuea 

The first results oC our calculations are the values ' 1(g,-I) and 12(gi-l) , obtained iteratively 

to optimize the weighting between the POS triplet frequency 1 (g, Igi-2,gi -1) and the POS 

doublet Crequency 1 (g, Igi-l) in the estimation oC P(gi=gj Igi-2,g .. -d. As one might expect, 

11(g .. -I) tends to be high relative to 12(gi-l) when g'-1 occurs oCten, because the triplet Crequency 

is quite reliable in this case. For instance, the most Crequent tag in the LOB Corpus is "NN", singular 

common noun; we have 11 (NN) = 0.57. The tag "HVG", attached only to the word "havir.g", is 

Cairly rare; we have 11(HVG) = 0.17 . 

However, there are other Cactors to consider. Derouault and Merialdo state that when g"-l 

was an article, Il was relatively low because we need not know the POS gj -2 to predict that gj is a 

noun or adjective. Thus doublet Crequencies alone were quite reliable in this case. On the other hand, 

when gj-1 is a negation, knowing gi-2 was very important in making a prediction oC gj, because oC 

French phrases Iike "il ne veut" and "je ne veux", 50 Il was high. 

Our results Crom English texts show 50mewhat similar patterns. The tag "AT" Cor singular 

articles had an II that was neither high nor low, 0.46 . The tag ''XNOT'', including only "not" and 

"n'tIf, had a high Il value, 0.84 . Adjectives ("JJ") and adverbs (''RB'') had 11 values even higher 

than one would expect on the basis oC their high Crequencies oC occurrence : 0.85 and 0.80 

respectively. 

5.2 Calculation of the K-Values 

For each part oC speech gj' we calculated the weight kC,j given to the cache component oC 

the combined model and the weight kM,j given to its Markov component. Recall that we 

originally created a different cache for each POS because we had hypothesized that the cache 
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The rollowing optimal weights, calculated by means oC the Forward-Backward Method, 

decisively reCute this hypothesis : 

POS Description /cc . 
,J 

/cM . ,J 

AT (singular article) 0.999 0.001 

ATI (sing. or pl. art.) 0.998 0.002 

BEZ (is, 's) 0.999 0.001 

CC (coord. conjunction) 0.997 0.003 

CD (cardinal) 0.783 0.217 

CS (subord. conjunction) 0.973 0.027 

IN (preposition) 0.919 0.081 

JJ (adjective) 0.402 0.598 

MD (modal auxiliary) 0.989 0.011 

NN (sing. noun) 0.403 0.597 

NNS (pl. noun) 0.498 0.502 

NP (sing. proper neun) 0.592 0.408 

PPS (possessive det.) 0.997 0.003 

PP3A (pers. pron. 3rd pers. nom) l.()OO 0.000 

RB (adverb) 0.660 0.340 

VB (verb base Corm) 0.456 0.544 

VBD (verb past tense) 0.519 0.481 

VBG (present part., gerund) 0.518 0.482 

VBN {past part.) 0.326 0.673 

The pattern here is just the opposite or what we had expected, with function POSs having 

significantly higher optimal weights for the cache component of the combined model than content 

POSs. This btriguing result is discussed in the Conclusion. 

o 
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5.3 Performance ot 80th Modela on the TatinS Text 

The m08t important results will be given first. The pure Markov model gives perplexity 

equal to 332 (average probability per word is 0.003008). This compares unCavourably to Jelinek's 

value oC 128. On the other hand, the eombined model gives perplexity equal to 107 (average 

probability per word is 0.(09341). This dramatic, more than three-Cold, improvement can only be 

attributed to the inclusion oC a cache component in the eombined model. 

Would su ch a dramatic improvement have been obtained if ail caches had had the same 

weight? Recall that we experimented with a simpler version of the eombined version in which ail 

19 caches had the same weight. The results were as follows: for cache component weight equal to 0.1, 

perplexity was 180 (average prob. 0.(05551); for weight of 0.2, perplexity was 152 (0.006570); for 

0.3, perplexity of 137 (0.007277); for 0.4, perplexity was 128 (0.007790); Cor 0.5, perplexity of 122 

(0.008150); for 0.6, perplexity was 119 (0.008363); for 0.7, perplexity was 118 (0.008411); for 0.8, 

perplexity was 121 (0.008232); and for 09, perplexity was 131 (0.007620). Thus the lowest 

perplexity, 118, was obtained when the cache component weight was 07 and the Markov component 

weight was 0.3. It is diflicult to be sure without using the Forward-Backward Method to obtain the 

optimal weights, but these figures seem to indicate a minimum for the perplexity of this simpler 

version of the eombined model of about 116 - still a vast improvement over the Markov model. 

We collected statistics on the success rate of the POS component of both lDodels in guessing 

the POS of the latest word (using the tag actually assigned the word in the LOB Corpus as the 

criterion). This rate has a powerful impact on the performance of both models, especially the 

eombined model; each incorrectly guessed POS leads to looking in the wrong cache and thus to a 

cache-based probability of zero (unless the same incorrect guess has been made in thl' recent past). 

We are particularly interested in forming an idea of how Cast this success rate will increase as we 

increase the size of the training text. 

There were 230,598 words in the testing text. Of these, 14,436 (6.2%) had never been 

encountered in the training text and were thus assumed not to be in the vocabulary (not recognised). 
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OC the remaining 216,162 words that had oc:curred at least once in the training text, 202,882 (93.8%) 

had tags that were guessed correctly (6.2% incorrectly). The 14,436 words that never occurred in 

the training text were assigned the correct tag only 3676 times (25.4% correct, 74.6% incorrect). 

RecaU that a w<.rd that was encountered in the training text is always assigned one of the POS tags 

that it had there. Apparently the information contained in the counts oC POS triplets, doublets, and 

singlets is a good POS predictor wh en combined with sorne knowledge or the possible tags a word 

may have, but not nearly as good on its own. Overall, oC the 230,598 words in the training text, 

206,558 (89.5%) were assigned the correct POS. 

Among the 216,162 words that appeared at least once in the training text, a surprisingly high 

number - 111,319 (51.4%) - had more than one possible POS. or these, 99,242 (89.1%) had POSs 

that were guessed correctly. OC the 12,077 faulty guesses that occurred for words with more than 

one possible POS, only 294 (2.4%) occurred be(.ause the POS for the word in the testing text had 

not been encou.ltered in the training text. 
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VI. Conclusions 

The r~ults listed in the previous chapter strongly confirm our hypothesÎ5 that reccntly-used 

words have a higher probability of occurrence than a pure Markov model would predict. When a 

3g-gram Markov model and a combined model resembling it but containing in addition a cache 

component (whose effect is to assign a higher probability to recently encountered words) were used ta 

calculate the perplexity of a testing text, the perplexity of the combined model was lower by a 

Cactor oC more than three. This dramatic result emphasizes the utility oC including a cache 

component in a Markov language model. 

Surprisingly, the cache component seems to be even more helpCul for predicting function words 

than it is for predicting content words, if we regard the magnitude of the best-fit weight for the 

cache component as an indication of the usefuiness of this component. An observation that May help 

to explain this is that the weight of the rache component seems to be inversely proportionate to the 

diversity of the POS in question. For instance, POS category BEZ is not a function word category; 

however, it con tains only the word "is" and its variant "'s". It has a best-fit cache weight of 0.999 . 

POS category PP3A contains only the two words "he" and "she"; its cache weight is 1.000. 

This suggests the following explanation. The size of the best-tit weight of the cache component 

for a given POS does not depend only on the extent to which words belonging to that POS tend to 

appear in bursts, as we nalvely assumed when we began our work; there is another factor involved. 

The less diverse a POS category is, the better an estimator its cache component will be of the short

term frequencies of the smaU number of dlfferent words belonging to that category. Content 

categories are usually much more diverse than function categori~, and this may explain why the 

former tend to have lower cache weights in spite of greater "burstiness". This \ine of thought can be 

illustrated by what causes the worst performance of the cache component. This will occur when the 

current word is not in the appropriate cache, 50 t.hat the cache estimate of its probability will be O. 

This will happen often with nouns, verbs, adjectives, and indeed with any POS category with Many 

different members. On the other hand, for a POS category with few members, it is likely that aIl oC 

them will appear in a collection of 200 successive words with that POS. Take the PP3A category as 
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an example. It is almost inconceivahle that the word "he" could appear 200 times in a text without 

the word "she" appearing once. More investigation is required to determine if this explanatioD is 

correct. It is quite possible that content words are NOT more "bursty" than function words ! 

Since the cost of maintaining a 200-word cache, in terms of memory and time, is modest, and 

the increase in predictive power can he great, the approach outlined above should be considered as a 

simple way of improving on the performance of a 3g-gram language model for speech recognition. If 

memory is Iimited, one would be wise to create caches only for POSs that occur with high frequency 

and ignore other POSs, as we have <lone. 

How could this research be extended ? One might explore the possibility of building a. 

morphologie al component so that the occurrence of a word would lllcrease the estimated probability 

of related words. Thus the occurrence of the singular form of a noun would raise the probability of 

its plural (and vice versa). Different tenses and persons of a verb could be related in the same way. 

Another promising idea would be to extend the idea of a model that dynamically tracks the 

linguistic behaviour of the speaker or writer from the lexical to the syntactic component of the 

model. In other words, perhaps the recent past is a good guide to the POSs that, will be employed, as 

weIl as to the words that will be uttered. Recently employed POSs would be assigned higher 

probahili ties. 

One might also consider combining the model described here with the tri gram model. Word 

probabilities could be a weighted average of trigram and cache-based 3g-gram componentsj 

alternatively, one could use the latter only when a bigram not round (or rarely found) in the training 

text appeared. 

Trigram pUl'ists who dislike the use of POSs in the 3g-gram model might prefer to construct a 

dynamic version of the pure tri gram model, which would include a eache-hased trigram 

component. In other words, the system would keep track of trigrams encountered during the 

recognition task. It is obvious that this model would, at a minimum, handle noun phrases better 

than any existing model - one has only to glance at a newspaper story to see the same Doun phrases 

appearing again and again. 
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(1 am grateCul to Matthew Lennig, Andrew Mc Gregor, and their colleagues at Bell Northem 

Research Cor discussing these possible extensions with me; some oC them had already occurred to me, 

but some had not). 

The line oC research described in this thesis has more general implications. The results above 

seem to suggest that nt a given time, a human being works with only a small Craction oC his 

vocabulary. Perhaps if we followed an individual's written or spoken use oC language through the 

course oC a day, it would consist largely of time spent in language "islands" or sublanguages, with 

brieC periods oC time during which he is in transition between islands. One might attempt to chart 

these "islands" by identiCying groups oC words which oCten occur together in the language. If this 

work is ever carried out on a large scale, it could lead to pseudo-semantic language models Cor speech 

recognition, since the occurrence oC several words characteristic oC an "island" makes the appearance 

of ail ",ords in that island more probable. 
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