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ABSTRACT NamedData Networking (NDN) aims to improve the efficiency of data delivery for the Internet.

One of the typical characteristics of NDN is ubiquitous caching, that is to say, each network participant in

NDN is capable of caching contents. This caching feature is beneficial for enhancing the data availability but

also raises a problem of cache consistency. In this paper, we propose a novel strategy of cache invalidation,

called PIOR (Proactive Invalidation with Optional Renewing), to provide strong consistency for NDN.

PIOR is based on a lightweight publish/subscribe model, actively publishing the updated contents to the

router nodes to guarantee the copy validity. We also conceive customized publish/subscribe rules to relieve

the unbearable burden on the server imposed by the excessive publishing traffic. The advantage of PIOR

lies in simple deployment and compatibility, since the invalidation process of PIOR is independent of the

inherent process of NDN. We conduct extensive simulations over a real topology to evaluate the achievable

performance of PIOR. The simulation results show that PIOR is able to achieve a high hit ratio and low

server load at the low cost of network management.

INDEX TERMS Cache, consistency, invalidation, publish/subscribe, Named Data Networking.

I. INTRODUCTION

In the past decades, the major usage of the Internet

has shifted from the information browsing to the content

dissemination [1]. To achieve efficient content delivery,

Information-Centric Networking (ICN), a modern Internet

architecture, replaces the current host-centric communication

model with the content-centric communication model [2].

As a promising approach to ICN, Named Data Network-

ing (NDN) [3] provides an excellent foundation for data

distribution systems. In NDN, communications are driven

by consumers through interest packets and data packets.

A consumer first sends a named interest packet for a desired

content to the network. When a router receives this interest

packet, the router first performs a Content Store (CS) lookup.

If a match is found, it then is returned to the consumer.

Otherwise, the router checks the Pending Interest Table (PIT).

If a PIT entry with the same name is found, the router adds the

incoming face of this interest packet to the in-record list of the

The associate editor coordinating the review of this manuscript and

approving it for publication was Jose Saldana .

matching PIT entry. Finally, if there is no matching entry in

the PIT, the router creates a new PIT entry and then forwards

this interest packet according to the Forwarding Information

Base (FIB).

Throughout the process of data delivery in NDN, we can

see that one of the fundamental features of NDN is in-network

caching (CS). No matter the user terminals or the net-

work infrastructures, all network participants in NDN have

caches [4]. The routing node on the transmission path

can cache the content passing by it, therefore the sub-

sequent requests for the same content can be quickly

responded by the nearest router. In-network caching, that

has been widely employed by many computer systems, is

a very useful technology to reduce the bandwidth usage

over links, user-perceived delays and loads on the origin

server [5].

However, due to the introduction of caching, how to guar-

antee the cache consistency has also attracted the attention

of researchers. If, for example, a content is updated at the

server, the copies of this content stored in caches may be

inconsistent [6]. Hence, it is extremely important to deal with
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the stale copies to ensure the copies received by users are

valid.

Specifically, the solutions to cache consistency are classi-

fied into validation and invalidation [7]. Validation refers to

an approach where the cache periodically checks the consis-

tency of the cached copies with the original server. This solu-

tion can only provide a weak consistency because the content

update could occur between two successive checks. Never-

theless, some scenarios, like real-time processing systems,

require strong consistency that can be offered by invalidation.

Cache invalidation can be further divided into four basic

schemes: (i) reactive invalidation: each time a request hits

the cache, the cache will send an invalidation message to

the server to verify the validity of the requested content [8];

(ii) proactive invalidation with removing: when a master con-

tent is updated at the server, the server will inform the caches

to remove the stale copies of this content; (iii) proactive

invalidation with renewing: when a master content is updated

at the server, the server will push the latest content to the

cache to replace the stale one; (iv) proactive invalidation with

optional renewing: this scheme, as amix of the second and the

third ones, selects some contents to renew and the remains to

remove. Popularity is often used as a criterion for selection in

this scheme [9].

As copies of named contents are extensively distributed all

over the in-network caches, cache consistency is a consider-

able challenge in NDN caching [6]. For reactive invalidation,

each cache hit will yield a verification process, the number

of which increases sharply with the scale-up of the network.

Hence the application scenarios of this approach is limited in

NDN. For proactive invalidation, the original server needs to

maintain a list of caches that have obtained its contents [7].

Unfortunately, the information of this list, like address, can-

not be provided inherently by NDN owing to the content-

centric. Additionally, such a list must be maintained for every

content [7], which brings significant overheads to the server.

How to reduce these overheads also requires to be taken into

account if the proactive invalidation is applied in NDN.

Another issue about proactive invalidation is how to be

implemented. The communication model of NDN is a bal-

anced model, which means one interest packet corresponds to

one data packet [10] (single-interest single-data). The record

of an interest packet that has been responded or has not

been responded for a period of time will be removed from

the PIT. However, the communication model of proactive

invalidation is that one interest packet could correspond to

multiple data packets (single-interest multiple-data). This

contradiction here leads that the subsequent data packets in

proactive invalidation could be dropped by the router due to

the lack of the corresponding interest packet.

Naturally, an approach to the implementation of proac-

tive invalidation is the publish/subscribe model in which

a cache subscribes a time-sensitive content once and the

server publishes the updated content multiple times. There

have been several publish/subscribe models proposed for

NDN in the literature [11]–[15]. Most of them are built on

top of the NDN architecture to provide a publish/subscribe

service fundamentally. Nevertheless, this kind of service is

overqualified for the scenario of proactive invalidation with

creating many new data structures and basic packets to the

network. Besides, in the publish/subscribe model of proactive

invalidation, the subscriber is the cache (or router) rather

than the consumer (or user), and the published contents are

only different versions of the same content rather than the

hybrid of the different versions and contents in a separate pub-

lish/subscribe process. Thus, the traditional publish/subscribe

model of NDN cannot satisfy the requirements of the proac-

tive invalidation scenario.

In this paper, to solve the above issues, we develop a

lightweight NDN publish/subscribe model, based on which

we propose a cache invalidation strategy in the network layer

of NDN, called PIOR (Proactive Invalidation with Optional

Renewing). Several customized publish/subscribe rules are

conceived in PIOR to reduce the overheads on publishing

traffic and maintaining content status list. Only the caches

that store the selected content copies can subscribe to the

server, and only the selected contents can be published to the

caches. The selected criteria are flexible and can be based on

popularity, importance, etc.

The major contributions of our work are:

• We developed a lightweight publish/subscribe model for

NDN. By adding control and track fields into the basic

packets, this model is able to maintain the forward-

ing path without creating specialized PIT-like tables or

semi-persistent interest packets.

• We propose a cache invalidation strategy, PIOR, based

on the developed lightweight publish/subscribe model.

In PIOR, the server actively publishes the updated con-

tents to the router nodes to provide strong cache consis-

tency.

• We conduct comprehensive simulation experiments via

a real network topology and compare our PIOR strat-

egy with several common cache consistency strategies

including validation and invalidation. The experiment

results show that PIOR can achieve a high hit ratio and

low server load at the low cost of network management.

The rest of this paper is organized as follows. In the

next section, we review the related work of cache invali-

dation and publish/subscribe in NDN. Section III describes

the lightweight NDN publish/subscribe model and the PIOR

algorithm. In section IV, we implement the PIOR algorithm

and present simulation results. Finally, conclusions and future

work are provided in Section V.

II. RELATED WORK

A. NDN PUBLISH/SUBSCRIBE MODELS

The research of the publish/subscribe is an active topic in

NDN. One of the typical communication models in pub-

lish/subscribe is single-interest multiple-data [15], and sev-

eral solutions to this model have been proposed.
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Chen et al. [11] present a content oriented publish/sub-

scribe system (COPSS) to provide efficient pub/sub-based

content delivery for CCN. In COPSS a PIT-like table, Sub-

scription Table (ST), is created to maintain the forwarding

path of the data packet towards the subscribers. The record of

the interest packet is stored in the ST to offer the outgoing face

of the data packet for a long period of time. A compact version

of COPSS for CCN-based Interest of Thing, COPSS-lite [12],

also uses a PIT-like table to maintain above information.

Another solution to keep the outgoing face is using persis-

tent interest packet. The Persistent Interests (PIs), proposed

by Tsilopoulos and Xylomenos [13], is remained in the PIT

until users explicitly unsubscribe or its lifetime expires. The

Persistent Interest Packet (PIP), proposed by Nour et al. [14],

is set with a persistence value, which is decremented with

each data packet in the back-forwarding path. When the

persistence value reaches 0, the record of the PIP is evicted

from the PIT.

The Group-based Publisher-Subscriber (GbPS) architec-

ture [15] uses both a dedicated table (Subscription Interest

Table, SIT) and a semi-persistent interest packet (S-Interest)

to offer the outgoing face of the data packet. And the pub-

lish/subscribe communication model is provided as an inte-

grated part of NDN in GbPS.

It is noted that the above publish/subscribe models are

built on top of the NDN architecture and aim to become

fundamental communication services. Applying these mod-

els to the scenario of proactive invalidation is not straight

forward, because the subscriber is shifted from the consumer

to the cache. In addition, creating many new data structures

for NDN to achieve the publish/subscribe model of proac-

tive invalidation is a bit of overkill. Hence, a particular and

lightweight publish/subscribe model is highly desired.

B. APPROACHES TO CACHE CONSISTENCY

It is acknowledged that caching generates massive copies

of contents scattered throughout the network. If a content

is updated at the server, the copies of this content stored

elsewhere will become outdated.Without an special approach

to renewing or removing the stale copies, these copies could

be requested by unwitting users. As we mentioned above,

there are two underlying approaches to guaranteeing cache

consistency: validation and invalidation [7].

The cache validation can only provide weak consistency.

The simplest validation scenario is the TTL-based (Time-To-

Live) cache where each content is associated with a live time.

The cached copy can be visited only when it leaves the server

less than the live time. Moreover, according to the different

settings of live time, the TTL-based can be divided into the

fixed TTL [16] and the adaptive TTL [17].

Different from the cache validation, cache invalidation,

usually classified into the reactive and the proactive, can pro-

vide strong consistency. However, there are extra overheads

for invalidation on maintaining cache lists at the server and

sending invalidation messages. Considering that the content

copies are largely scattered across the in-network caches,

these overheads could grow exponentially with the expan-

sion of network scale [7]. Several invalidation scenarios for

in-network caches also have been proposed such as Leases

[18] for distributed file system, Piggyback server invalida-

tion [19], IR-based cache invalidation [20], etc.

When providing cache consistency for NDN, the validation

or invalidation strategy should take into consideration that

NDN is content centric. Because the existing strategies of

traditional in-network caches are based on TCP/IP network

and the IP address is unavailable in NDN, these strategies

cannot be applied directly. Version stamp or time stamp is

commonly used in the design of cache consistency strategy

for NDN.

Content Update Validation System (CUVS), proposed

in [21], attaches a version number to each content name in

ICN. A user can request for a specific version of content by

adding the objective version number to the name of the inter-

est packets. Nevertheless, the cost of distributing all contents’

version numbers to all users and servers in advance is gigantic

in CUSV. Feng et al. [22] propose a cost-effective Popularity-

based Cache Consistency (PCC) mechanism, where two new

types of packets, Query and Ack, are created to transfer

controlling messages. The caches in PCC can spontaneously

request for the updated version numbers from the server,

which reduces the traffic of distributing the version numbers

to the whole network. However, PCC will suffer from heavy

overheads on transferring Query and Ack packets as the

contents updating more frequently.

Both CUVS and PCC use version stamp to distinguish

the different versions of the same content. Essentially, this

approach is an extension of the TTL cache in which the

version stamp that reaches the live time will be replaced by

a new one. But in some scenarios, the version stamp could

not be supported by the naming scheme of NDN and the

consumers also might not know the latest version stampwhen

they just join the network.

By substituting version stamp with freshness in CCN,

Quevedo et al. [23] propose the Consumer Driven Informa-

tion Freshness Approach (CDIFA), in which the consumers

are able to specify their desired content freshness in an

optional field of the interest packet. When providing strong

cache consistency, CDIFA is a Nocache-like strategy where

all requests for the latest content will be forwarded to the

server. This is because the freshness of the latest content is

always 0 and the freshness of the content copies is always

greater than 0. Therefore, the request response time in CDIFA

increases.

As we can see, most of the current proposals for cache

consistency in NDN either imposes significant overheads to

network or increases request response time. Additionally, all

these proposals are based on the version stamp [21], [22] or

time stamp [23] (freshness is a kind of time stamp). Little

work is based on the proactive invalidation. To the best of our

knowledge, we are the first to propose a strategy of proactive

invalidation for NDN, which can provide strong consistency

with high performance and low cost.
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FIGURE 1. The lightweight publish/subscribe model.

III. PIOR: A CACHE INVALIDATION STRATEGY

In this section, we will introduce the full algorithm of

the PIOR strategy. First, we present the lightweight pub-

lish/subscribe model and provide an overview of PIOR. Sec-

ond, we give the data structures of the algorithm. Then we

divide the whole algorithm into six parts to describe respec-

tively. Finally, a thorough example is offered to show how the

algorithm works.

A. THE LIGHTWEIGHT PUBLISH/SUBSCRIBE MODEL AND

PIOR OVERVIEW

Fig. 1 shows the lightweight publish/subscribe model used

by our PIOR strategy. The router (or cache) subscribes a

time-sensitive content to the server by sending an interest-

2 or interest-3 packet. At each router node along the forward-

ing path, the interest packet appends the current incoming

face ID to its FaceList field. When receiving this interest

packet, the server will record the FaceList field into the Face

List Table (FLT for short) and then a subscribing process

is done. After a period of time, there is a content updated

in the server, which successively sends a data-4 packet

according to the previously recorded FaceList field. When

receiving this data packet, the router will update the out-

dated content cached before and then a publishing process is

done.

By above processes, it is noted that the subscriber in

the lightweight publish/subscribe model is the router and

the published content is the latest version of the previously

requested content. Besides, this model is packet-based which

means the track of forwarding path is maintained in the

packet. This design avoids creating a PIT-like table in the

network layer. Thus, the implementation of the lightweight

publish/subscribe model is much simpler than that of other

existing publish/subscribe models.

Based on this model, PIOR is equipped with the subscrib-

ing and publishing processes, which work with other four

processes (cleanup process, recording process, data coming

process and interest coming process) to make up the whole

algorithm. The relationship among the processes and the

main algorithms of PIOR are illustrated in Fig. 2. The major

characteristics of PIOR are summarized as follows.

• Compatibility: By tagging the contents that have

requirements for validity, the PIOR process is

independent of the original NDN process. The contents

that have no requirements for validity can be requested

normally.

• Implementation simplicity: PIOR requires no new

types of packets. All controlling messages are trans-

ferred by the modified interest and data packets. The

only new data structure added in PIOR is the FLT,

relying on which the updated contents selected by some

criteria can be actively published without changing the

inherent forwarding mechanism of NDN.

• Backtracking: PIOR uses the FaceList field in the inter-

est packet to track the upstream forwarding path, due

to the lack of the notion ‘‘address’’ in NDN. When

receiving an interest packet, the server records the infor-

mation of FaceList in the FLT table, which provides the

back-forwarding path to the updated contents.

• Strong consistency: With the entries in the FLT,

the publishing process of PIOR updates the stale con-

tents stored in the in-network caches. In addition,

the cleanup process of PIOR ensures the tracking infor-

mation of the contents stored in the caches is maintained

in the FLT. In other words, if a content is no longer

maintained in the FLT, the server will inform the caches

to remove the copy of this content through the cleanup

process. On the basis of these two processes, PIOR can

guarantee the strong consistency in NDN.

• High performance: By publishing the updated contents,

the requests for them can be responded on the in-network

caches. Thus, PIOR can achieve a higher hit ratio and

lower server load against other invalidation strategies,

which has been demonstrated in our simulations.

• Low cost: The server in PIOR needs extra load to send

controlling messages and to actively publish updated

data packets. However, the subscribing mechanism can

reduce the extra load by applying proactive invalidation

only for the contents recorded in the FLT and the nodes

forwarding these contents before. The simulation results

also show that the proportion of the extra load in the total

server load is pretty low in PIOR.

B. PACKET FORMATS AND FACE LIST TABLE

There are two basic NDN packet types, Interest and Data.

In order to implement the algorithm of PIOR, we need add

some new fields in original interest and data packets as shown

in Fig. 3.

Fig. 3(a) is a modified interest packet. If a content

requested by users has requirements for validity, the Inter-

estInvalidation in the interest packet will be set to 1, other-

wise to 0. FaceList is an array of incoming face IDs which

keeps track of interest packets forwarded upstream toward the

server.

Fig. 3(b) is a modified data packet. The function ofDataIn-

validation in the data packet is the same as that of Inter-

estInvalidation in the interest packet to identify whether the

content has requirements for validity. FaceListBack is also an

VOLUME 8, 2020 80077
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FIGURE 2. The relationship among the processes and the main algorithms of PIOR.

FIGURE 3. Packet formats and FLT (Face List Table).

TABLE 1. Interest packet types.

array of face IDs, on which the published data packets can

be forwarded downstream to users. Eligibility is used to mark

whether the requested content is eligible to be published (set

to 1) or not (set to 0). Publication is used to identify whether

the data packet is actively published (set to 1) or normally

returned (set to 0). Eviction is used in the cleanup process.

If a node receives a data packet with Eviction=0, the data of

the same name cached in this node will be evicted.

By setting above new fields to different values, we obtain

various types of interest packets and data packets which are

listed in Table 1 and 2 respectively.

TABLE 2. Data packet types.

Fig. 3(c) shows a new data structure, the FLT (Face List

Table), which is created in the server and has three main

functions: (i) storing the ContentName of the content which

needs to be published actively, (ii) storing the track of interest

packets forwarded upstream and aggregating the overlapping

FaceList, and (iii) providing forwarding paths for the actively

pushed data packets.

C. SUBSCRIBING PROCESS

In the subscribing process (Algorithm 1), the routers on the

forwarding path of the interest packet subscribe a content with

validity requirements to the server. As long as the content is

updated and exists in the FLT, the server will push the latest

content to these routers.

The user first requests for a content with validity by send-

ing an interest packet of which the InterestInvalidation is set

to 1. At each node on the interest packet forwarding path,

if the cache is hit, the data packet will be returned imme-

diately. Otherwise, the interest packet will be forwarded to

the next node after appending the requesting face at this node

to the FaceList. When the interest packet reaches the server,
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Algorithm 1 Subscribing Process

initialize (a user sends an Interest-2 packet)

1: while the current node is not the server do

2: if hit the cache then

3: return the Data-2 packet

4: else

5: if the previous node is not the user then

6: append the requesting face to the FaceList of the

interest packet

7: forward the interest packet

8: end if

9: end if

10: end while

11: if the requested content is eligible to be actively pub-

lished then

12: activate the recording process

13: prepare a Data-2 packet

14: return the Data-2 packet

15: else

16: prepare a Data-3 packet

17: return the Data-3 packet

18: end if

if the requested content is eligible to be actively pushed, the

ContentName and FaceList will be inserted into the FLT and

then a data packet with DataInvalidation=1, Eligibility=1,

Publication=0, Eviction=0 and FaceListBack=null will be

returned. Otherwise, the server only returns a data packet with

setting above Eligibility to 0.

D. PUBLISHING PROCESS

Once a content with validity requirements is updated at the

server, publishing process (Algorithm 2) will be activated. If

the updated content is in the FLT (supposing the entry is (C1,

[251, 251, 252])), the server will prepare a new data packet

with DataInvalidation=1, Eligibility=1, Publication=1 and

Eviction=0. Afterwards the last face (252) of the FaceList

in the FLT is used as the current forwarding face. Removing

the last face from the FaceList, we obtain a new face list

([251, 251]) which will be written into the FaceListBack of

the data packet. Finally the updated data packet will be sent on

face 252.

At each node on the data packet back-forwarding path,

if there is a content with the same name cached in the CS, the

stale content will be removed. Then a new copy of this content

will be cached after setting Publication to 0. Afterwards,

similar to the forwarding process described above, we remove

the last face from the FaceListBack and use it as the current

forwarding face to send the data packet.

E. CLEANUP PROCESS

To avoid the FLT being too enormous to maintain, the FLT

must be kept at a reasonable size. For examples, associate

each entry with an expiration time, fix the size of the FLT

Algorithm 2 Publishing Process

initialize (a content is updated at the server)

1: if the content name is in the Face List Table then

2: prepare a Data-4 packet

3: get the FaceList corresponding to this content in the

Face List Table

4: get the last face ID in the FaceList as the current

forwarding face

5: remove the last face ID from the FaceList and write the

remainder in the FaceListBack of the data packet

6: send the Data-4 packet on the face obtained in line 4

7: end if

8: while the length of FaceListBack is not 0 do

9: if Publication=1 then

10: if there is a content with the name in the CS then

11: remove the stale data from the CS

12: end if

13: cache the new data’s copy as Data-2 by setting

Publication=0 of the copy

14: get the last face ID in theFaceListBack as the current

forwarding face

15: remove the last face ID from the FaceListBack of

the data packet

16: forward the Data-4 packet on the face obtained in

line 14

17: else

18: forward the Data-1 or Data-2 or Data-3 packet

normally

19: end if

20: end while

or remove the content’s eligibility for residing in the FLT.

Evicting the entry from the FLT will activate the cleanup

process (Algorithm 3). It can ensure that the nodes on the path

of the FaceList do not cache the content which is no longer

actively published by the server.

F. RECORDING PROCESS

In the recording process (Algorithm 4), the entries of contents

that are eligible to be actively published are inserted into the

FLT as (ContentName, FaceList). Moreover, We also merge

the entries, the FaceList of which coincides at the tail, to

reduce the load of the server actively publishing.

G. DATA COMING PROCESS

As mentioned above, we add four new fields in the data

packet. Hence the node needs to handel five different types

of the data packets (Table 2) separately in the data coming

process (Algorithm 5):

• Data-1 is the data packet without validity requirements

and will be forwarded normally.

• Data-2 is sent normally from the server and is eligi-

ble to be actively published. The router will cache it

and forward it normally. In particular, if the Data-2 is
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Algorithm 3 Cleanup Process

initialize (the FLT no longer maintains a content entry)

1: prepare a Data-5 packet with an empty data segment

2: get the FaceList corresponding to this content in the FLT

3: get the last face ID in the FaceList as the current forward-

ing face

4: remove the last face ID from the FaceList and write the

remainder in the FaceListBack of the data packet

5: send the Data-5 packet on the face obtained in line 3

6: while the length of FaceListBack is not 0 do

7: if Eviction=1 then

8: if there is a content with the same name in the CS

then

9: remove the stale data from the CS

10: end if

11: end if

12: get the last face ID in the FaceListBack as the current

forwarding face

13: remove the last face ID from the FaceListBack of the

empty data packet

14: forward the empty Data-5 packet on the face obtained

in line 12

15: end while

Algorithm 4 Recording Process

initialize (an interest-2 or interest-3 packet arrives at the

server and the requested content is eligible to be actively

published)

1: if there is a content with the same name in the FLT then

2: if theFaceList of the interest packet coincides with that

of the FLT at the tail then

3: insert the longer one in the FLT

4: remove the original entry

5: else

6: insert the ContentName and FaceList in the FLT

7: end if

8: else

9: insert the ContentName and FaceList in the FLT

10: end if

not cached in the current router before, this router will

request for this content by sending an interest packet

with InterestInvalidation=1, LocationRegistration=1

(Interest-3). Unlike the subscribing process, the routers

on the forwarding path of Interest-3 will not respond

to it. When the interest packet reaches the server,

the FaceList of it will be inserted into the FLT (see

details in Section Recording Process). In other words,

the location of the requesting router is registered in

the server. The purpose of this operation is for the

server to remember the routers where the content copies

with the validity requirements are located. Therefore,

the updated content can be pushed (see details in

Algorithm 5 Data Coming Process

initialize (a router receives a data packet)

1: if DataInvalidation=0 then

2: forward the Data-1 packet normally

3: else

4: if Publication=0 then

5: if Eligibility=1 then

6: if there is a content with the same name in the CS

then

7: request for this content by sending an Interest-

3 packet

8: remove the stale data from the CS

9: end if

10: cache the new data’s copy

11: forward the Data-2 packet normally

12: else

13: forward the Data-3 packet normally

14: end if

15: else

16: if Eviction=0 then

17: if there is a content with the same name in the CS

then

18: remove the stale data from the CS

19: end if

20: cache the new data’s copy as Data-2 by setting

Publication=0 of the copy

21: forward the Data-4 packet according to the

FaceListBack

22: else

23: if there is a content with the same name in the CS

then

24: remove the stale data from the CS

25: end if

26: forward the Data-5 packet according to the

FaceListBack

27: end if

28: end if

29: end if

Section Publishing Process) and the copies of the con-

tent which is no longer maintained in the FLT can be

evicted from the cache (see details in Section Cleanup

Process) in time.

• Data-3 is sent normally from the server and is not eligi-

ble to be actively published. The router will not cache it

but will forward it normally.

• Data-4 is published from the server. The router will

cache it and forward it according to the FaceListBack

(see details in section Publishing Process).

• Data-5 is a type of data packet with an empty data

segment actually. It is sent by the server to inform the

router to remove its copies with the same name from

the cache. The router forwards it also according to the

FaceListBack.
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Algorithm 6 Interest Coming Process (Router)

initialize (a router receives an interest packet)

1: if InterestInvalidation=0 then

2: if there is a same name of the interest packet existing

in the PIT then

3: update the incoming faces list of the PIT entry

accordingly

4: else

5: create a new PIT entry

6: forward the Interest-1 packet

7: end if

8: else

9: if LocationRegisteration=0 then

10: if there is a same name of the interest packet existing

in the PIT then

11: update the incoming faces list of the PIT entry

accordingly

12: else

13: create a new PIT entry

14: append the incoming face to the FaceList

15: forward the Interest-2 packet

16: end if

17: else

18: append the incoming face to the FaceList

19: forward the Interest-3 packet

20: end if

21: end if

Algorithm 7 Interest Coming Process (Server)

initialize (a server receives an interest packet)

1: if InterestInvalidation=0 then

2: return a Data-1 packet

3: else

4: if LocationRegisteration=0 then

5: if the requested content is eligible to be actively

published then

6: activate the recording process

7: return a Data-2 packet

8: else

9: return a Data-3 packet

10: end if

11: end if

12: else

13: activate the recording process

14: end if

H. INTEREST COMING PROCESS

The interest packets are classified into three types (Table 1)

in our algorithm:

• Interest-1 is the interest packet without validity require-

ments and will be forwarded normally.

• Interest-2 is initially sent by the user. Every time the

interest packet arrives at a node, the incoming face of

FIGURE 4. Example topology.

this node will be appended to the FaceList (see details in

section Subscribing Process).

• Interest-3 is initially sent by the router of which the

location will be registered at the server. The interest

packet also appends the incoming face of the current

router to the FaceList on the forwarding path. Finally,

the server will not respond to this interest packet, but

will insert the FaceList of it in the FLT.

Due to the aggregation effect of the PIT, when an interest

packet of Interest-1 or Interest-2 with a name that has been

seen previously is received by the router, the PIT entry will

be updated accordingly and the interest packet will not be

forwarded. However, the interest packet of Interest-3 does

not yield the aggregation of the PIT and is forwarded after

appending the incoming face to the FaceList. The details

of the interest coming process for the router and server are

presented in Algorithm 6 and 7 respectively.

I. EXAMPLE

In order to illustrate our algorithm intuitively, we combine the

six processes described above together through an example.

Fig. 4 shows the example topology where the incoming face

of each node is marked.

Supposing that User 1 sends an Interest-2 packet to request

for content C1 that is eligible to be actively published. When

this packet reaches the server, the FaceList of it is [251,

252, 251, 251, 251] which will be recorded in the FLT with

the name of the content as an entry (C1, [251, 252, 251,

251, 251]) (denoted as Entry-1). The server then sends a

Data-2 packet which will be cached on the each node of the

back-forwarding path.

Once content C1 is updated at the server, a Data-4 packet

is published with initial FaceListBack [251, 252, 251, 251]

on Face 251. Receiving this packet, Router 5 caches its

copy, the Publication of which is set to 0 in the CS. Then

this packet continue to be forwarded on Face 251 with the

modified FaceListBack [251, 252, 251]. The same action will

be repeated on Router 3, 2, 1 in turn until the data packet

reaches User 1.

Shortly afterwards, User 2 also requests for content C1 by

sending an Interest-2 packet. According to the topology, this

packet is responded on Router 3 which successively returns a
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Data-2 packet. Because Router 4 did not cache C1 before,

when receiving the Data-2 packet, Router 4 will send an

Interest-3 packet to the server to register its location in the

FLT. The FaceList of this interest packet is [252, 251, 251]

which does not coincide with the FaceList of Entry-1 when

arriving at the server. Thus a new FLT entry (C1, [252, 251,

251]) (denoted as Entry-2) is created.

When content C1 is updated at the server later, two Data-4

packets will be published to Router 1 and 2 in accordancewith

the FaceList of Entry-1 and Entry-2 respectively. Similarly,

the data packets of the above publishing process are replaced

with Data-5 packets in the cleanup process when content

C1 is no longer maintained in the server.

IV. EXPERIMENTAL EVALUATION

To evaluate the performance of PIOR, we conduct enormous

performance simulations using ndnSIM 2.1 [24]–[26], which

is a widely used simulation platform for NDN. We also

compare PIOR against other common invalidation strategies

in terms of hit ratio, server load and proportion of extra load.

Particularly, the last metric, extra load, represents the load

that is actively published by the server in PIOR and Reactive

Invalidation.

A. EXPERIMENTAL SETUP

Abilene network [27] is a high-performance backbone net-

work, consisting of 11 nodes and 14 links. Fig. 5 shows the

core topology of Abilene which is used in our simulations to

make the simulation results close enough to reality.

A content server is installed on node 0. Each of nodes

0∼10 is connected to 5 users (55 users in total), and each user

requests for 5000 contents with mean rate 4 req/s. The dis-

tribution of request probability follows the Zipf-Mandelbrot

law [17] with α ranging from 0.2 to 1. The cache size of each

node is the same and ranges from 50 to 150. The default cache

replacement strategy is Least Recently Used (LRU) that is

commonly applied in most of the cache systems [5]. The

content update period is uniformly distributed over [0, 2u],

where u is ranging from 5s to 50s. The size of a data packet

is 1024 bytes and the size of an interest packet (or signaling,

e.g., Data-5) is 64 bytes.

The strategies to be compared with PIOR are: (i) Reactive

Invalidation: Each time a request hits the cache, the cache

will send an invalidation message to the server, which suc-

cessively either returns a latest full content if the requested

content is outdated or a validation signaling if the con-

tent is deemed up to date. (ii) Freshness: Freshness is a

TTL-like strategy where each data packet is associated with

a live time. This strategy is natively supported in NDN.

(iii) Nocache: Nocache is the most direct way to ensure the

contents obtained by the users are valid. The performance of

Nocache is regarded as a baseline for the performance of other

strategies in our experiments.

In addition, to simplify the complexity of implementa-

tion, we select the top N popular contents to be published

FIGURE 5. Abilene network topology.

actively in PIOR, and N is equal to the cache size in different

scenarios.

B. HIT RATIO

The hit ratio here refers to the average hit ratio of the whole

network. Given that all requests are forwarded directly to

the server in Nocache, there is no metric of hit ratio in this

strategy. Thus we only consider PIOR, Reactive Invalidation

and Freshness in this section.

Fig. 6(a) shows the impact of different update period on hit

ratio. It is noticed that the curve of PIOR is almost a straight

line. That’s because (i) once popular contents are updated,

the server will publish them to caches immediately, and

(ii) popular contents contribute more to the average hit ratio.

For the same reason, on average, the hit ratio of PIOR is

64.52% and 49.68% higher than that of Reactive Invalidation

and Freshness respectively.

Fig. 6(b) shows the impact of different cache size on hit

ratio.With the increase of cache size, more contents are stored

in caches, leading to the growth of all three curves. From

Fig. 6(b), we can see that PIOR still maintains a large advan-

tage on hit ratio, 59.75% and 47.97% higher than Reactive

Invalidation and Freshness respectively on average.

Fig. 6(c) shows the impact of different Zipf factors on hit

ratio. For large Zipf factors, PIOR still performs the best

among all the strategies. However, when the Zipf factor is

small, the curve of the content popularity flattens, resulting

that popular contents cannot have a significant effect on

the average hit ratio. Therefore, the advantage of PIOR is

not obvious on hit ratio for small Zipf factors. Also from

Fig. 6(c), we notice that the hit ratios of all three strategies

are pretty low in the case of a small Zipf factor, because more

contents have opportunities to be requested by users, making

the contents in caches be replaced more frequently.

C. SERVER LOAD

Considering that the server in PIOR or Reactive Invalidation

sends not only data packets but also signaling and the latter

is much smaller than the former, we provide two indicators

to measure the server load, one is the number of packets sent

per second (denoted as packet load, packets/s), the other is the

number of kilobytes transferred per second (denoted as byte

load, kb/s).
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FIGURE 6. Hit ratio vs update period / cache size / Zipf factor.

FIGURE 7. Server load vs update period / cache size / Zipf factor.

Most obviously in Fig. 7, the packet load curves are almost

identical with the corresponding byte load curves, except for

the curves of Reactive Invalidation. This is because that there

is a large amount of signaling transferred between the nodes

and the server for controlling communications in Reactive

Invalidation, and the size of signaling is quite small. Hence

the number of packets is pretty greater than the number

of kilobytes numerically (given that one data packet is one

kilobyte) in this strategy. Due to space limitations, we only

consider the byte load in the following of this section.

The curves of PIOR, Reactive Invalidation and Freshness

decrease first and then flatten in Fig. 7(a). Since the server

in PIOR publishes the contents at a higher frequency when

content update period is small, the byte load of PIOR is

5.11% higher than that of Freshness, but 2.66% lower than

that of Reactive Invalidation for update period of 5 seconds.

However, as the update period increasing, the publishing

frequency reduces, making the byte load of PIOR lower than

that of Reactive Invalidation and Freshness. From Fig. 7(a),

it is also noticed that the change range of the byte load for

PIOR is larger than that for other strategies. In other words,

the byte load of PIOR is more sensitive to changes in update

period.

For the same reason mentioned in the analysis of Fig. 6(b),

with the growth of the cache size, more requests are

responded at caches, resulting the decline of the byte load

as shown in Fig. 7(b). We also note that PIOR has a great

advantage on byte load for small cache size. The maximum

advantage over the second best strategy, Freshness, is around

7.11%.While for large cache size, the byte loads of PIOR and

Freshness are almost the same but still 5.6% lower than that

of Reactive Invalidation.

As shown in Fig. 7(a) and Fig. 7(b), due to the server

responding to all requests directly in Nocache, the content

update period and cache size have no effect on the byte load,

the curves of which are straight lines.

From Fig. 7(c), it is seen that when the Zipf factor is

small, PIOR has no advantages on server load in comparison

to Reactive Invalidation and Freshness with the maximum

disadvantage of 5.62%, and even has the same performance

as Nocache. However, with the increasing of the Zipf factor,

PIOR performs better than other strategies gradually.

Associating Fig. 7(c) with Fig. 6(c), now we can conclude

that, PIOR does not outperform other strategies in terms of

hit ratio and byte load when the Zipf factor is less than (or

equal to) 0.2. Nevertheless, when the Zipf factor equals 0.3,

the byte load of PIOR is 4.03% higher than that of Reactive

Invalidation and Freshness on average, but the hit ratio of

PIOR can achieve up to 17.39% improvement. When the Zipf

factor equals 0.4, the above two data are 2.53% and c respec-

tively. In other words, PIOR can obtain a great improvement

of hit ratio with a low cost of byte load for not too small Zipf

VOLUME 8, 2020 80083



Y. Kan et al.: Cache Invalidation Strategy Based on Publish/Subscribe for NDN

FIGURE 8. Proportion of extra load vs update period / cache size / Zipf factor.

factor (larger than 0.2). Furthermore, when the Zipf factor is

larger than 0.5, the popularity of hot contents become higher,

yielding greater benefits of actively publishing these popular

contents and reducing the cache replacement rate. Thus in this

case, PIOR outperforms other strategies in terms of both hit

ratio and byte load.

D. PROPORTION OF EXTRA LOAD

In this section, we introduce the extra load to measure the cost

which is incurred by the server to guarantee the cache consis-

tency. For PIOR, this cost contains the publishing load (Data-

4) and the cleanup load (Data-5). For Reactive Invalidation,

this cost represents the feedback load which is generated after

the server receiving validation messages. For other strategies,

there is no extra load.

Additionally, to better reflect the impact of extra load on

the server, we use the proportion of extra load in total load as a

substitute for the quantity of extra load. In general, the higher

the proportion, the greater the cost for the server to maintain

the cache consistency. Similar to the server load, we also

separate the extra load into the extra packet load and the extra

byte load.

From Fig. 8, it is apparent to see that the proportion of extra

packet load for PIOR is much lower than that for Reactive

Invalidation, and the average advantages are 86.79%, 92.06%

and 72.95% in terms of update period, cache size and Zipf

factor respectively. For Reactive Invalidation, only when the

cache is hit, will the node send validation messages to the

server, and a larger cache size as well as Zipf factor can

improve the hit ratio. Thus, the proportion of extra packet

load for Reactive Invalidation increases noticeably with the

growth of the cache size and Zipf factor. On the contrary,

for PIOR, only when the content is updated or stale, will the

server publish the latest content or cleanup signaling. Thus,

the proportion of extra packet load grows slowly as the cache

size and Zipf factor increasing, while the proportion reduces

noticeably as the update period increasing.

Fig. 8 also shows that the difference between the proportion

of extra packet load and the proportion of extra byte load for

PIOR is very small, while this difference for Reactive Inval-

idation is prominent. This indicates that the major packets

in the extra packet load of PIOR is the actively published

data packet, and the major packets in the extra packet load

of Reactive Invalidation are the signaling.

For the proportion of extra byte load, we can see fromFig. 8

that PIOR keeps an edge over Reactive Invalidation in most

conditions, except for small update period and small Zipf

factors. However, the proportion of extra byte load for PIOR

is low enough (3.28%, 1.96% and 1.81% on average in terms

of update period, cache size and Zipf factor respectively),

which has indicated that the cost of the server guaranteeing

the cache consistency in PIOR is little.

V. CONCLUSION

In this work, we propose a proactive cache invalidation strat-

egy, PIOR, to provide strong consistency for NDN based on

a lightweight publish/subscribe model. The updated contents

will be actively published to the nodes where the requests for

these contents have been forwarded before. The FLT table

and Eligibility field are used in PIOR to limit the flow size of

the actively publishing, avoiding the server suffering from a

heavy overhead of extra load. By tagging the contents which

have requirements for validity, we also separate the invali-

dation process of PIOR from the inherent process of NDN,

simplifying the PIOR deployment on NDN andmaking PIOR

fully compatible with the original NDN mechanism. Finally,

we evaluate the performance of PIOR in terms of hit ratio,

server load and extra load against Freshness, Reactive Invali-

dation and Nocache. The simulation results demonstrate that

PIOR outperforms other invalidation strategies and has a low

overhead for the server.

Indeed, for PIOR, actively publishing popular (or impor-

tant) contents can improve the hit ratio, but on the other hand

it also increases the extra load of the server. How to balance

the hit ratio and extra load by controlling the number of

published contents and the size of the FLT table is the key

to further enhancing the performance of PIOR. We will keep

on investigating these issues in the future.
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