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	iswork reports an e
ective design of cache system for ChipMultiprocessors (CMPs). It introduces built-in logic for veri�cation of
cache coherence in CMPs realizing directory based protocol. It is developed around the cellular automata (CA) machine, invented
by John vonNeumann in the 1950s. A special class of CA referred to as single length cycle 2-attractor cellular automata (TACA) has
been planted to detect the inconsistencies in cache line states of processors’ private caches. 	e TACAmodule captures coherence
status of the CMPs’ cache system andmemorizes any inconsistent recording of the cache line states during the processors’ reference
to a memory block. 	eory has been developed to empower a TACA to analyse the cache state updates and then to settle to an
attractor state indicating quick decision on a faulty recording of cache line status. 	e introduction of segmentation of the CMPs’
processor pool ensures a better e�ciency, in determining the inconsistencies, by reducing the number of computation steps in the
veri�cation logic. 	e hardware requirement for the veri�cation logic points to the fact that the overhead of proposed coherence
veri�cation module is much lesser than that of the conventional veri�cation units and is insigni�cant with respect to the cost
involved in CMPs’ cache system.

1. Introduction

	e continual search for performance enhancement in com-
putation has resulted in a variety of modi�cations in the
processor design technique. 	is ultimately leads to the
inevitable transition toward multicore architecture, the Chip
Multiprocessors (CMPs), with thousands of processor cores
on chip. 	e increasing number of cores in CMPs, however,
puts threats on the reliability and dependability of a design
[1]. A number of works [2–5] addressed these issues from
di
erent perspectives. Further, the low supply voltage in
today’s semiconductor technology narrows down the noise
margin and increases the susceptibility to various factors
causing transient faults [6] in CMPs.

Most of the fault tolerant schemes reported so far for
CMPs are based on the spatial redundancy techniques which
may not be e
ective for faults in on-chip hardware compo-
nents [2]. Although the cache and memory components are
protected by Error Correcting Codes and other techniques,

the logic circuits commonly serving the multiple cores are
error prone [2].

A CMPs memory subsystem is made up of multilayer
caches including private cache for each processor core. It
demands very e�cient realization of cache coherence pro-
tocols. 	e cache coherence controller (CC) is dedicated to
ensuring coherency of shared data in theCMPs’ cache system.
Such a prime hardware component can also be subjected
to fault as well as design defect. A fault in the CC has
serious e
ect on the correctness of computation as well as
on maintaining power e�ciency of a system. 	e schemes
proposed in the literature [2, 4, 7, 8], for ensuring coherency
in CMPswith thousands of cores, incur huge communication
overhead along the global wires. In [2], a veri�cation logic has
been proposed to detect errors in the coherence controller. It
targets a system realizing snoopy protocol.

	e snoopy protocols are easy to implement but are not so
scalable [9]. For large scale CMPs, updating and invalidating
caches, following snoop based protocols, become impractical
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Figure 1: 	e tiled CMPs organization.

[10]. Several variants of directory based coherence protocols
have been proposed in [5, 10, 11]. However, the veri�cation
of cache data inconsistencies resulting from defects in such
systems is yet to be addressed.

	e above concerns motivate us to design an e
ective
cache system for CMPs by developing a scheme to determine
the accuracy in maintaining data consistency in the CMPs’
cache system realizing directory based protocol. It targets
design of built-in logic for veri�cation of cache coherence that
can function at speed and can be cost e
ective. To explore
such a design, we consider cellular automata (CA) tool [12]
invented by John von Neumann in the 1950s. As CA can
handle large volume of data and e�ciently be employed to
make a decision, a CA based built-in veri�cation logic is
proposed to ensure accuracy in functioning of the directory
based cache system in tiled CMPs [11]. A special class of CA
structure referred to as the single length cycle 2-attractor
cellular automata (TACA) is introduced for the design. 	e
TACA analyses the status of CMPs’ cache updates and
settles to an attractor state (point state) indicating any faulty
recording of cache line status and the sharing vector [9] stored
in the directory of cache system. 	e hardware realization
of the CA based design enables quick decision on the cache
coherency. Further, the introduction of segmentation of the
CMPs’ processor pool assures better e�ciency of the design.
It reduces the computation steps while making decision on
inconsistency, if any, in each cache update.	e basic concept
of the CA based solution is reported in [13, 14]. 	e precise
contribution of this paper can be summarized as follows:

(i) A built-in veri�cation logic for CMPs cache system,
realizing directory based protocol, is proposed. For
ease of understanding, the design is detailed out
with the basic 3-state MSI protocol. However, the
methodology proposed can be applicable for MESI,
MOSI, MOESI, and others.

(ii) 	e veri�cation logic is developed around an uncon-
ventional tool, called cellular automata (CA). 	e
modular structure of the CA is exploited to enable
scalable design.

(iii) Design of a high-speed veri�cation unit for cache,
harnessing the feature of CA to memorize informa-
tion, is reported.

(iv) 	e veri�cation unit is realized for full map as well as
for the limited directory based cache systems.

(v) Relevant CA theory has been developed to provide
the theoretical basis of the cache system design.

(vi) Experimental result establishing the claim has been
reported.

	e following section (Section 2) highlights the coher-
ence issues in CMPs’ cache system. Section 3 narrates CA
theory relevant for the current design.	e CA based veri�ca-
tion unit is introduced in Section 4, and Section 5 describes
the design in detail. 	e hardware realization and delay
overhead reduction through introduction of segmentation
are reported in Sections 6 and 7, respectively. A test structure
that memorizes the inconsistent recording of cache line
states during the processors’ references to a memory block
is reported in Section 8. 	e simulation results establishing
the e
ectiveness of the CA based design and its hardware
requirement are reported in Section 9. A sketch of the
veri�cation unit for limited directory based system is shown
in Section 10. In Section 11, we provide a brief on the related
works. Section 12 concludes the paper.

2. Cache Coherence in CMPs

In Chip Multiprocessors (CMPs) with a large number of on-
chip cores, the shared bus cannot be a good choice due to area
overhead and bus contention [11]. 	e alternative to shared
bus is a tiled CMPs architecture. A tile is composed of an
array of identical building blocks connecting the cores with
point-to-point unordered network [11, 15]. In this work, we
consider the ATAC processor architecture [15] which uses
a tiled multicore architecture (Figure 1). It is a low-latency,
energy-e�cient, global, and long distance communication
network. Each core in ATAC consists of private L1 and shared
L2 caches.	e L2 typically follows Nonuniform Cache Access
(NUCA). An L1 cache miss in ATAC generates coherence
messages. 	e other L1 cache line states of the system are
updated in accordance with the coherence messages.

In general, for large scaleCMPs, the directory based cache
coherence system is desirable [11]. A directory, in directory
based system, is a collection of sharing vectors [9]. Each
vector corresponds to a data block B and maintains pointers
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Figure 2: Sharing vector for full-map directory.

to the processors that have the cached copies of B. 	e
directory also stores the state of cached copies in L1 caches.
	e organization of a sharing vector is shown in Figure 2.	e
“d” speci�es the dirty bit and d = 1 (true) implies that there
is a cache with the latest copy of B and the main memory
copy is an invalid copy. 	e p�’s are the presence bits. p� = 1
implies that the processor P� is having a cached copy of B.
In the current design of coherence veri�cation logic/unit, we
consider a distributed directory based system.

Figure 3 is to describe the logical steps followed to main-
tain the cache coherence in CMPs, realizing the distributed
directory based protocol, on a read miss. It consists of
processors P�, P�, and P� with local memory modules L2�,
L2�, and L2�, respectively. 	e distributed directories D�, D�,
and D� are also local to the corresponding processors P�, P�,
and P�. In such a system, if a processor (P�) requests block
B, which is not present in P�’s L1 (C�), P� encounters a read
miss and consults its communication assistance unit to �nd
the home (say processor P�, i.e., L2�) of block B. 	e request
then goes to P�’s site and the directory D� is consulted. If the
sharing vector of B, stored in D�, shows that d = 0, that is,
the L2� has the valid copy of block B, then P� sends block B
to P� and updates the sharing vector corresponding to B at
D� by setting p� = 1. On the other hand, if d = 1, that is,
the copy of block B at L2� is not a valid copy and P� is having
the dirty copy (as shown in Figure 3), then P� sends block B
to P� and also writes it back to L2� (home site for block B).
P� then updates the sharing vector of block B at D�. Here we
have assumed a 4-hop communication (request to directory
→ reply with owner→ request to owner→ reply to requester)
to resolve read miss. However, for a system realizing 3-hop
communication (request to directory→ forward to owner→
reply to requester), as in [16], the proposed veri�cation logic
is also compatible.

3. CA Preliminaries

A cellular automaton (CA) consists of a number of cells
organized in the form of lattice. It can be viewed as an
autonomous �nite state machine (FSM). In a two-state 3-
neighborhood CA, each CA cell stores either 0 or 1 that refers
to the present state (PS) ��� at time � of the cell � and the next
state (NS) of the cell � at (� + 1) is

��+1� = �� (�
�
�−1, �
�
� , �
�
�+1) , (1)

where ���−1 and ���+1 are the present states of the le� neig-
hbor and right neighbor of �th cell at time � and �� is the next
state function (Figure 4). 	e state of all the cells �� = (��1,
��2, . . . , ���) at � is the present state of the CA. 	erefore,

Table 1: Next state functions.

PS 111 110 101 100 011 010 001 000 Rule

RMT (7) (6) (5) (4) (3) (2) (1) (0)

NS 1 1 1 1 1 1 1 1 254

NS 1 1 1 1 1 1 1 0 255

the next state of an 	-cell CA is ��+1 = (�1(��0, ��1, ��2), �2(��1, ��2,
��3), . . . , ��(���−1, ���, ���+1)).

	e next state function �� of the �th CA cell can be
expressed in the form of a truth table (Table 1). 	e decimal
equivalent of the 8 outputs (NS) is called “rule” 
� of the cell
[12]. 	ere are 256 rules in 2-state 3-neighborhood CA. Two
such rules 254 and 255 are illustrated in Table 1. 	e �rst row
lists the possible 23 (8) combinations of present states ���−1, ��� ,
and ���+1. 	e last two rows indicate the next states of the �th
cell at time (� + 1), de�ning the rules 254 (�� = ��−1 +�� +��+1)
and 255 (�� = 1), respectively.

	e rule vector 
 = ⟨
1, 
2, . . . , 
�, . . . , 
�⟩ con�gures
the cells of a CA. If all the 
�’s are the same, that is, 
1 =

2 = ⋅ ⋅ ⋅ = 
�, the CA is a uniform CA; otherwise,
it is a nonuniform/hybrid CA [17]. In Figure 4, the le�
(right) neighbor of the le�most (rightmost) terminal cell is
permanently �xed to 0-state. It is a null boundary CA.

De�nition 1 (RMT). A combination of present states shown
in the 1st row of Table 1 is the Min Term of a 3-variable
���−1, ��� , and ���+1 switching function and is referred to as the
Rule Min Term (RMT).

Column 011 of Table 1 is the 3rd RMT. 	e next states
corresponding to this RMT are 1 for both rules 254 and 255.

De�nition 2 (reversible and irreversible CA). A CA is reve-
rsible if its states form only cycles in the state transition
diagram (all states are reachable); otherwise, it is irreversible
(Figure 5).

De�nition 3 (attractor and attractor basin). A set of states of
a CA forms loop (cycle) and is called attractor. An attractor
(�) forms an �-basin with the states that lead to the attractor.

	e cycles (7→7 and 9→1→9) of Figure 5 are the two
attractors of the CA ⟨1, 236, 165, 69⟩. 	e 7-basin of the CA
contains 12 states including the attractor state 7.

De�nition 4 (depth). 	e depth of a CA is de�ned as the
length of the longest path from a state to an attractor in the
state transition diagram.

	e depth of the CA shown in Figure 5 is 5 (2→10→
6→4→5→7).

De�nition 5 (active and passive RMT). An RMT x0y (x1y) in
a CA rule is called passive (self-replicating) if the RMT x0y
(x1y) is 0 (1). On the other hand, if an RMT x0y (x1y) is 1 (0),
it is active (non-self-replicating).

For example, the RMT 0 (000) is 0 and RMT 2 (010) is 1
in 254 (Table 1); that is, these two RMTs are passive. However,
RMT 0 in 255 is active as it is 1 (Table 1).
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4. Overview of Verification Logic

A defect in the computing logic of the cache coherence
controller (CC) can lead to faulty next state computation

in CMPs. Even if the computing logic operates correctly,
faulty recording of state(s) may also result due to fault(s)
in the communication network of the CMPs cache system.
	ese faulty recordings of state(s) introduce inconsistencies
in the cache data states. 	e identi�cation of cache data
inconsistencies in such a system, while maintaining the cache
coherence, is addressed in [2]. 	e solution reported detects
errors in aCC. It targets a snoopy protocol based cache system
and involves complex data structures as well as computation
intensive steps. In [18], we also report design of veri�cation
unit for the CC working in a snoopy protocol based system.

	e cache coherence protocol (ACKwise) in ATAC pro-
cessor architecture is the coupling of directory and snoopy
protocol named ACKwise [15]. In addition to the probable
defects in CC and faults in the communication network, the
faulty update of sharing vector is a major concern in ATAC.
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Table 2: Cache sharing vector update.

Current sharing vector Event Desired sharing vector Faulty sharing vector Fault e
ect Cases

(1) (2) (3) (4) (5) (6)

All p’s are 0s

P� reads p� is 1 and all others are 0s
All p’s are 0s Faulty (F) Case 1

p� is 1 and all others are 0s Faulty (F) Case 2

P� writes p� is 1 and all others are 0s
All p’s are 0s Faulty (F) Case 1

p� is 1 and all others are 0s Faulty (F) Case 2

All p’s are 1s P� writes p� is 1 and all others are 0s

p� is 1 and all others are 0s Faulty (F) Case 2

p� & p� are 1 and others are 0s Faulty (F) Case 3

p� is 1 and others are 1s & 0s Faulty (F) Case 3

p’s are 1s & 0s
P� reads p� is 1 and all others are 1s & 0s p� is 0 and others are 1s & 0s Faulty (F) Case 1

P� writes p� is 1 and all others are 0s p� is 1 and others are 1s & 0s Faulty (F) Case 3

p� is 1 and all others are 0s P� writes p� is 1 and all others are 0s p� & p� are 1 and others are 0s Faulty (F) Case 3

	e sharing vector may also be subjected to faults, even if
the sharing status of a cache block is recorded correctly thus
making the coherence veri�cation process hard to realize.
Incorporating separate veri�cation units for sharing status
and sharing vector would be extremely costly. 	erefore, we
formulated the problem of coherence veri�cation in ATAC
like architectures by modelling it as the veri�cation of the
compatibility of sharing status and sharing vector on each
cache state update. To prove the e
ectiveness of the proposed
cellular automata (CA) based veri�cation logic, we consider
the ATAC (tiled CMPs) architecture realizing the directory
based cache coherence system with MSI protocol. However,
this scheme is also applicable for MESI/MOSI/MOESI proto-
col based designs.

Figure 6 describes the basic 3-state MSI protocol. Table 2
displays the e
ect of faulty noting in sharing vector, resulting
in faulty (“F”) state (column 5) with full-map directory. 	e
entry “All p’s are 0s,” in column 1 of the �rst row, represents
that none of the processors’/tiles’ L1 caches has a copy of block
B. On the other hand, the entry “All p’s are 1s,” in column 1 of
the second row, represents that all the processors’ caches have
a copy of B. Similarly, the entry “p� is 1 and all others are 0s”
indicates only processor P� has a copy of block B and there is
no other cached copy of B.

On a read/write operation (event) of a processor P�
(Figure 3), the corresponding sharing vector for block B is
noted in column 3 of Table 2. 	e contents of column 4
represent the possible faulty noting at the sharing vector. For
example, row 1 of column 1 notes the sharing vector prior to
“P� read”. Initially, B does not have a cached copy (represented
by “All p’s are 0s”). On an event of read byP� (noted in column
2 of row 1), the desired sharing vector is “p� is 1 and all others
are 0s” (column 3 of row 1). All the possible faulty recordings
of the sharing vector are shown in column 4. Column 5 notes
the e
ect of fault (“faulty (F)”). Classi�cation of faulty cases is
noted in column 6.	e consideration of columns 1, 4, and 5 of
Table 2 indicates that the proposed fault detection unit should
respond as “F” for the states of cached copies of B (cache lines
for B) when the following cases occur:

Case 1. Processor P� reads/writes block B, but P� ’s presence bit
(p�) in sharing vector for B is not updated to “1”; that is, it is
still “0”.

Case 2. P� reads/writes and some other processors’ (P�’s)
presence bit(s) (p�’s) is (are) set to “1,” instead of P�’s presence
bit (p�).

Case 3. P� writes and some other processors’ (P�’s) presence
bits are not updated; that is, p�’s remain “1”.

It is to be noted that Cases 2 and 3 include all cases of all
possible faults that a
ect more than one bit.	e proposedCA
based logic (shown in Figure 7), to realize the veri�cation in
cache coherence system, therefore, is designed so that it can
correctly respond with either “NF” (nonfaulty) or “F” (faulty)
following the above three cases. It employs an n-cell CA for
CMPs with 	 private (L1) caches (C1,C2, . . . ,C�, where C� is
the cache attached to processor P� and �thCAcell corresponds
to the cache C�). Now, with each read/write operation,
the cache line state (sharing status ��0��1 assuming MSI
protocol) aswell as the presence bits (p’s) in the sharing vector
are updated. In a fault-free system, the update of sharing
status and sharing vector should be compatible.	erefore, the
sharing status, to be more speci�c, the MSB of sharing status
(in the current design), and the presence bits of the sharing
vector are fed as input to the veri�cation unit to form 	-bit
compatibility status (CS). 	e 	-cell CA of the veri�cation
unit is then run for certain number (�) of time steps with CS
as the seed.	e CA settles either in an attractor designated as
�1, corresponding to “NF” for nonfaulty recording, or in an
attractor �2, corresponding to “F” (faulty) for the instance
of a fault. 	erefore, by observing the attractor (“NF” or
“F”), the fault in coherence controller logic can be detected.
Observing an attractor, however, is reduced to sensing of LSB
of the attractor (least signi�cant cell of the CA) to detect
fault in the system. 	e steps in realizing the veri�cation
unit for a full-map directory are summarized in the following
algorithm.
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Algorithm 1 (FUNCTION-CAVUFULL-DIR).

Input. Presence bits andMSBs of sharing status of cache lines.

Output. Decision on presence of fault.

(1) Form the 	-bit compatibility status (CS) where CS� =
��0 ⊕ p�, ∀� = 1, to 	.

(2) Run the CA selected for veri�cation logic for t time
steps (� = (	 − 1) for the current design) with CS as
the initial state (seed). It reaches the attractor state.

(3) Check LS cell of the CA (LSB of attractor). If it is “0”,
then record of sharing status and sharing vector is
fault-free; otherwise, it is faulty.

5. The Design of CAVUFULL-DIR

	ecellular automata (CA) based solution for the veri�cation
of cache inconsistencies, introduced in the earlier section,
demands the following:

(i) 	e CA constructed for the veri�cation unit
CAVUFULL-DIR should form single length cycle
attractors.

(ii) 	enumber of attractors should beminimum, prefer-
ably two attractors: one (�1) corresponds to “NF”
(nonfaulty) and the other (�2) corresponds to “F”
(faulty) and the CA should correctly report all the
faulty cases of Table 2.
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(iii) 	e attractors �1 and �2 should di
er at least at one
position (say, LSB) so that the decision on “NF” or
“F” (sensing a single bit of the attractor, that is, least
signi�cant cell of the CA) can be taken at speed.

	e e
ect of fault propagates through the CA as it strides
over time and induces LSB of the attractor. 	erefore, the
incidence of fault is translated as a switch from �1 attractor
basin to�2-basin (say from 0-basin of Figure 8 to its 1-basin).
	e following subsections characterize the single length cycle
attractor CA that can be employed for the current design.

5.1. Single Length Cycle Attractor. 	e next state of a single
length cycle attractor is the attractor itself. In a single length
cycle attractor CA, for at least one RMT (Section 3) of each
cell rule 
� of 
 (CA), the cell � is passive (De�nition 5).
It implies that the state change in cell � is � → �. 	is is
summarized in the following property.

Property 1. Arule
� can lead to the formation of single length
cycle attractor(s) if at least one of its RMTs is passive; that is,
at least one of the RMTs 0(000), 1(001), 4(100), or 5(101) is 0
and/or at least one of the RMTs 2(010), 3(011), 6(110), or 7(111)
is 1 [19].

In [19], based onProperty 1, the 256CA rules are classi�ed
in 9 groups (groups 0–8). Rule 254 (11111110) is in group 5
as it follows Property 1 for 5 RMTs (RMTs 0, 2, 3, 6, and 7
are passive (Table 1)). A CA con�gured with the rules that
maintain Property 1 for its RMTs is a probable CA with the
single length cycle attractors [19]. 	e construction of single
length cycle 2-attractor CA (Figure 8) can be followed from
the theory of Reachability Tree for attractors introduced in
[20].

5.2. Reachability Tree for Attractors. Reachability Tree for
attractors (RTA) is a binary tree representing single length
cycle attractors of a CA [20]. Each node is constructed with
RMT(s) of a rule that follows Property 1. 	e le� edge is the
0-edge and the right edge is 1-edge (Figure 9). For an 	-cell
CA, the number of levels in the tree is (	 + 1). Root node
is at level 0 and the leaf/terminal nodes are at level 	. 	e
nodes at level � are constructed from the RMTs of (� + 1)th
CA cell rule 
�+1.	e decimal numbers within a node at level
� represent the RMTs of the CA cell rule 
�+1 based on which
the cell (� + 1) can change its state. 	e RMTs of a rule for
whichwe follow0-edge or 1-edge are noted in the bracket.	e
number of leaf nodes in an RTA denotes the number of single
length cycle attractors of the CA and a sequence of edges from
the root to a leaf node, representing an n-bit binary string, is
the attractor state. 	e 0-edge and 1-edge represent 0 and 1,
respectively. For example, the number of single length cycle
attractor states in the CA ⟨254, 254, 254, 254⟩ of Figure 9 is 2
(�1 and�2).	e root node (level 0) of theRTA is constructed
from passive RMTs 0, 2, and 3 as cell 1 (rule 11111110) can
change its state following any one of the passive RMTs (null
boundary). As the state of le� neighbor of cell 1 is always 0,
the passive RMTs 6 and 7 of rule 254 are the do not care RMTs
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for cell 1. Similarly, as the right neighbor of cell 4 is always 0,
the passive RMTs 3, 5, and 7 are do not care for cell 4.

	eRMTs of two consecutive CA cell rules
� and
�+1 are
related while the CA changes its state [20]. 	is relationship
between the RMTs of 
� and 
�+1 is shown in Table 3. It
implies that if the �th CA cell changes its state following RMT
��, then (�+1)th cell changes its state following RMT��+1 . For
example, if the 1st cell in Figure 9 changes its state following
RMT 0, then the 2nd cell changes its state following RMTs 0
and 1 (from Table 3).

	e RTA of Figure 9 can be generalized to depict the
attractors for an n-cell CA. 	e generalized RTA of the CA
⟨254, 254, . . . , 254⟩ is shown in Figure 10. 	e 0-edge at B�

of Figure 9 evolves to node D� with the same set of RMTs
({0}); that is, nodes B� and D� are equivalent and, therefore,
transition B� to D� is replaced by the transition B� to B�

(Figure 10). Similarly, the transition C� → F� in Figure 9
is replaced by the transition C� → C� in Figure 10. Such
transitions between equivalent states are true for level 1 to
level (	 − 2). For the last cell of a CA (⟨254, 254, . . . , 254⟩),
some of the RMTs of B� and C� (e.g., RMT 1 of B� and RMT
7 of C�) are do not care RMTs. 	erefore, level (	 − 1) is
shown separately (G� and K� in Figure 10). RTA of Figure 10
depicts that the n-cell uniform CA with rule 254 forms 2-
single length cycle attractors (all 0s and all 1s).

5.3. CA Rule Selection for the CAVUFULL-DIR. As described in
the earlier section, the CA with only two single length cycle
attractors �1 and �2 (TACA) can be the best choice for the
current design. 	e following properties guide the proper
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selection of CA rules for the CAVUFULL-DIR. To reduce the
search space, the CA rules that form only single length cycle
2-attractors (TACA) for all lengths (	-cell) are identi�ed.
	e theory reported in this subsection guides us to select
appropriate TACA rules required for the current design.

Property 2. In 3-neighborhood null boundary, the 	-cell
uniform TACA should have either an all 0s or an all 1s
attractor or both. 	e attractors (say, �1 and �2) di
er in
consecutive 20 or 21 or 2⌊log �⌋ terminal bits [21].

Property 3 (see [21]). 	e rules of groups 3, 4, and 5 can only
form single length cycle 2-attractor CA (TACA).

Property 4 (see [21]). For all the TACA rules, RMT 5 is an
active RMT.

Property 5 (see [21]). For any TACA rule, at least one of RMTs
2 and 3 as well as at least one of RMTs 0 and 7must be passive.

�eorem 6. In a single length cycle uniform CA with all 0s
attractor, the RMT 0 of the rule selected for CAmust be passive.

Proof. 	e root node of an RTA can only be formed with one
ormore RMTs of the RMT set {0, 1, 2, 3}. Among these, RMTs
0 and 1 can be 0 (passive) and RMTs 2 and 3 can be 1 (passive).
For all 0s attractor, either of RMTs 0 and 1 should be passive.
Now, the next cell RMT for RMT 0 is {0, 1} and it is {2, 3} for
RMT 1 (Table 3). If only RMT 1 is passive (RMT 0 is active),
its next cell RMTs (i.e., {2, 3}) having value “1” block the 0-
edge (edge labelled with RMT value 0) of the RTA. Hence,
RMT 0 must be passive for the continuity of 0-edge which
corresponds to the all 0s attractor.

�eorem 7. In a single length cycle uniform CA with all 1s
attractor, RMTs 3, 6, and 7 must be passive.

Proof. In RTA, among the RMTs of root node, if RMT 0
and/or 1 is passive, the RTA follows a 0-edge and if 2 and/or 3
is passive, it follows 1-edge. So, for an all 1s attractor, the root
node RMTs should be 2 and/or 3. For RMT 2 as passive, the
next cell RMTs are {4, 5} (Table 3). RMTs 4 and 5, having value
0, cannot contribute to all 1s attractor. Now, for RMT 3 as
passive RMT, the next cell RMTs are {6, 7}. So, for continuity

Table 3: Relationship between RMTs of cell � and cell (�+1) for next
state computation.

RMT�� of �th rule RMTs ��+1 of (� + 1)th rule

0/4 0, 1

1/5 2, 3

2/6 4, 5

3/7 6, 7

Table 4: CA rules for single length 2-attractor CA (TACA).

Group Rule for TACA

3 38, 52

4 46, 106, 116, 120, 166, 180, 235, 249

5 174, 239, 244, 253, 254

of the 1-edge (edge labelled with RMT value 1), the RMT 7
must be passive. However, since for the last cell RMT 7 is
do not care, RMT 6 must also be a passive RMT, hence the
proof.

Corollary 8. In 3-neighborhood null boundary, the uniform
CA constructed with only 16 rules (out of 256) can generate all
0s and all 1s single length cycle attractors.

Proof. 	eproof is obvious as for all 0s attractor RMT 0must
be passive and for all 1s attractor RMTs 3, 6, and 7 are to be
passive. 	erefore, such CA rules vary in RMTs 1, 2, 4, and
5, leading to 16 possible combinations, that is, 16 possible CA
rules.

�eorem 9. �e uniform CAwith rule 254 has only two single
length cycle attractors (all 0s and all 1s states).

Proof. 	e self-replicating RMTs of rule 254 (11111110) are
RMTs 0, 2, 3, 6, and 7. 	at is, root node of the RTA of the
uniform CA con�gured with rule 254 (Figure 10) contains
the self-replicating RMTs 0, 2, and 3. Now, the RMTs for the
next cell rule (following Table 3) are (0, 1) for RMT 0, (4, 5)
for RMT 2, and (6, 7) for RMT 3. Since RMTs 1, 4, and 5 are
non-self-replicating, they will not appear in the RTA. Only
RMTs 0, 6, and 7 appear. So, there can be two sets of self-
replicating RMTs, set 0 = {0} and set 1 = {3, 6, 7}, that
create two distinct paths from the root to two leaf nodes (�1
and �2 in Figure 10), hence producing two attractors: all 0s
(�1 = 000 ⋅ ⋅ ⋅ 0) and all 1s (�2 = 111 ⋅ ⋅ ⋅ 1).

	e above properties and theorems enable identi�cation
of 15 rules as the TACA rules (Table 4). Further, from
Property 3 and Corollary 8, it can be concluded that there are
only 5 rules 218, 234, 248, 250, and 254 that have only all 0s
and all 1s single length cycle attractors. However, from the
NSRT diagrams introduced in [21], it can be shown that only
rule 254 forms a uniformTACA for all lengths.	e other four
rules formmultilength cycle attractors along with the two (all
0s and all 1s) single length cycle attractors.

From the state transition diagram of the uniform CA
con�gured with rule 254 (Figure 8), it can be observed that
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the appearance of “1”(s) in initial state can act as a switch
from 0-basin to (2� − 1)-basin (referred to as 1-basin in the
�gure). 	e 4-cell CA ⟨254, 254, 254, 254⟩, when initialized
with all 0s seed, follows 0-basin (LSB “0” attractor); on
the other hand, the CA when initialized with nonzero seed
follows the 15-basin (1-basin), that is, with LSB 1 attractor.	is
behavior of rule 254 matches with the design requirement
for CAVUFULL-DIR. 	e design is detailed out in the following
subsection.

5.4. �e CAVUFULL-DIR. Let the attractors of CA formed for
all the cases of column 3 (“NF” cases) of Table 2 be�1 (all 0s)
and for other cases (“F” cases) the attractors are �2 (all 1s).
	e best selection of CA rules is, therefore, such that

Cond 1: �1 = {�1} belongs to “NF” and
�2 = {�2} belongs to “F” are di
erent.

For the current design, we consider a uniform CA with
rule 254. In the “NF” case, the CA representing the cache
system traces through the�1-attractor basin (0-basin). Now,
if there is a fault in the cache coherence system, the CA traces
through the �2-basin (1-basin). Hence, the LSB of attractor
“0” signi�es “nonfaulty” recording and “1” signi�es a “faulty”
recording.

While representing the states “M,” “S,” and “I” of a cache
line in the sharing status, we consider 11 for “M,” 10 for “S,”
and 00 for “I”. If a cache line for B is in “M” or “S” state in
the C� (�th processor’s cache), the �th bit of the sharing vector
(p�) corresponding to block B is 1.	at is, in a nonfaulty case,
the MSB of sharing status at C� and the �th bit of the sharing
vector (p�) both are equal (either 1 or 0).

�eorem 10. �e MSB of sharing status (denoted as “11” for
Modi�ed, “10” for Shared, and “00” for Invalid) suces to be
considered for checking compatibility of sharing status with
sharing vector.

Proof. 	e cache line states when represented in the sharing
status vector, the states “M,” “S,” and “I” are encoded as 11,
10, and 00, respectively. Whenever a block (say, block B) is
in “M” state in one cache, the block’s state in other caches
should ideally be “I” for maintaining coherence. 	e cache

holding the block in “M” state becomes a dirty sharer. Now,
whenever, one or more caches have the block in “S” state; on
read(s) the cache(s) (processor(s)) become clean sharer(s). In
both cases of clean and dirty sharing, the presence bit(s) in the
sharing vector should be set to “1”.	is “1”(s) in the presence
bits conforms to the “1”(s) in the MSB of state code for “M”
(11) or “S” (10). Hence, checking compatibility of the sharing
status and the sharing vector can be performed by checking
the MSB of sharing status and the presence bits.

To ensure the correctness in recording of sharing status
and the sharing vector at an update of data block B, the
CAVUFULL-DIR accepts the compatibility status which is
formed by performing XOR of the MSB (��0) of 2-bit sharing
status (��0��1) of B at C� and the �th presence bit (p�) of
sharing vector for B as the initial state of �th cell of the CA
selected for the test design. 	e CA is then run for � = (	 − 1)
time steps and the state of its least signi�cant cell (LSB of
attractor) de�nes presence of fault(s) either in sharing status
or in sharing vector.

	e scheme reported above is described forMSI protocol.
However, the scheme also applies for MOSI/MESI/MOESI
protocols. For example, if the states “M,” “O,” “E,” “S,”
and “I” of MOESI are represented by 111, 101, 110, 100,
and 000 (001, 010, and 011, do not care), respectively, then
the same logic as applied in case of MSI can be e
ective
for veri�cation for MOESI. 	e MSBs of the state code
for “M,” “O,” “E,” and “S” are chosen as 1 (	eorem 10).
Accordingly, the corresponding presence bits should be 1 and
the compatibility of these two can be checked by applying
XOR logic as in MSI (Section 4). Henceforth, for any state
code of arbitrary length, if the state(s) representing a sharing
(dirty or clean) is represented by a binary code having a “1”
in MSB, the proposed logic applies.

6. Hardware Realization

	e hardware realization of CAVUFULL-DIR is shown in
Figure 11. If the state of cached copy of B at �th cache C� is
“Invalid,” that is, ��0��1 = 00 and the �th bit in sharing
vector (p�) is “0,” then the XOR of ��0 and p� is 0 ⊕ 0 = “0”.
	e uniform CA ⟨254, 254, 254, . . . , 254⟩, loaded with such
all 0s seed, is then run for (	 − 1) time steps to settle to the
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attractor ⟨00 ⋅ ⋅ ⋅ 0⟩. However, with B’s state at �th cache C� as
“Invalid,” that is, ��0��1 = 00, if the �th bit in sharing vector
(p�) is “1,” then the XOR of ��0 and p� is 0 ⊕ 1 = “1”. If
uniform CA ⟨254, 254, 254, . . . , 254⟩ is loaded with nonzero
seed (⟨00 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 0⟩) and run for (	−1) time steps, it settles to
the attractor ⟨11 ⋅ ⋅ ⋅ 1⟩ (Figure 8). Hence, the LSB of attractor
(state of least signi�cant CA cell) “0” indicates the absence of
fault and “1” indicates presence of single or multiple faults.
	e part of the next state logic, shown in Figure 11, is also
shared in realizing the next state logic of cell (� − 1) and cell
(� + 1).

	e design of CAVUFULL-DIR reported in this section
requires an 	-cell CA for CMPs with 	-processor cores and
the CA needs to run for t (=depth of CA) time steps to decide
on the inconsistency in the recording of cache line states. 	e
computation steps � = (	 − 1), that is, delay, however, can be
reduced through introduction of segmentation of the CMPs
processor pool.

7. Delay Minimization

In segmentation, an 	-core CMPs processor pool is consid-
ered as the collection of 2
 (� = 1, 2, . . .) segments each of
� = 	/2
 cores. At each transition from a current cache line
state to the next state (Table 2) and the corresponding update
of the presence bit in the sharing vector and sharing status, the
proposed veri�cation unit forms 2
 number of�-cell CA. For
example, let us consider the case when � = 1 (Figure 12). 	e
	-bit compatibility status of the 	-core CMPs is partitioned

into 2
 = 21 = 2 halves/segments which are fed to two
CA, CA1 and CA2, respectively.	e compatibility status from
C1,C2, . . . ,C�/2 is fed toCA1 and that of C�/2+1 , . . . ,C� toCA2
(assuming 	 is in powers of 2). 	e CA1 and CA2 are then
run parallelly for� − 1 = (	/2 − 1) time steps. 	e resulting
attractors of both CA1 and CA2 dictate an inconsistency
(Figure 12), if it exists. 	at is, by sensing the LSBs of two
attractors (called check bits) of CA1 and CA2, the presence
of fault can be detected.

	e segmentation e
ectively reduces the number of
computation steps of the veri�cation logic by a factor of 2

(the number of segments). However, this is achieved at the

cost of number of check bits. 	e number of check bits equals
the number of segments (2
).

	e veri�cation unit introduced in the earlier sec-
tions decides on the inconsistencies a�er each transaction.
However, instead of verifying each individual transaction,
sometimes we need to maintain a log book for a set of
transactions. 	e target is to keep trace of whether one or
more transactions are faulty. 	e CA has the capability to
store/memorize information [17] and this feature has been
successfully exploited to synthesize a more e�cient (high-
speed) test design, reported in the next section.

8. High-Speed Verification

	e proposed high-speed veri�cation unit
(CAVUHIGH-SPEED) is capable of verifying a set of
transactions. For a set of � transactions, if the �th transaction
(� ≤ �) is faulty, the CAVUHIGH-SPEED keeps a trace of this
transaction till completion of all the � transactions. 	at
is, for an instance of a faulty transaction, CAVUHIGH-SPEED

captures it and memorizes it.
For each transaction in 	-processor core CMPs, with

compatibility status CS, an 	-cell CA is formed at the
CAVUHIGH-SPEED. CS� (�th bit of CS) is used to set the �th
CA cell rule. If the CA is then run for certain number (�)
of steps, it settles to an attractor. During the execution of
� transactions, if one or more transactions are found to be
faulty, the e
ect of fault propagates to the least signi�cant
cell (LSB) of the CA (attractor). For the instance of faulty
transaction(s), the CA settles to an attractor with LSB “1”
and in cases wherein all the transactions are nonfaulty, the
CA settles to an attractor with LSB “0”. 	e precise steps
followed to realize the CAVUHIGH-SPEED design are noted in
the following algorithm.

Algorithm 2 (FUNCTION-CAVUHIGH-SPEED).

Input. Presence bits and MSBs of sharing status for � transac-
tions.

Output. Decision on presence of single ormultiple faults a�er
� transactions.

(1) Initialize the 	-cell CA with all 0s.
For � = 1 to 	

��� = 0 and store it in �� [�] (2)

(2) For � = 1 to � repeat (a) to (e):
(a) Perform �th transaction (read/write).

(b) For � = 1 to 	
CS� = ��0 ⊕ p� (3)

(c) Construct the CA (CS� sets the �th cell rule-

CS� = 0 sets rule 
� and CS� = 1 sets rule 
ℎ).
(d) Run the CA 1-step to compute ��+1 from ��.
(e) Store ��+1 to ��.

(3) Run the CA for (	 − 2) time steps considering �� as
the present state. It settles to an attractor state A. 	e
LSB (1/0) of attractor indicates the presence/absence
of fault(s).
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Unlike CAVUFULL-DIR, the current design demands syn-
thesis of uniform as well as hybrid CA. 	at is,

(i) the CA formed should be of single length cycle
attractor CA;

(ii) when all the transactions are nonfaulty, a uniform CA
is formed with LSB of attractor “0” and the CA traces
through the 0-basin of the attractor;

(iii) in presence of one or more faulty transactions, a
hybrid SACA having LSB of attractor “1” should
be formed (say, all 1s attractor) and the CA traces
through the 1-basin;

(iv) the hybridization of uniformCA results in conversion
of the CA into an SACA so that the occurrence of
a fault is translated as a one-way switch from the 0-
basin to the 1-basin. 	is helps in preserving the trace
of a faulty transaction, if any.

For example, the CA of Figure 8 can be chosen for the
nonfaulty transactions. It then traces through 0-basin (self-
loop). In presence of a faulty transaction, the hybrid CA of
type shown in Figure 13 is formed. 	e hybrid CA traces
through the 1-basin, that is, attractor with LSB “1”.

�eorem 11. �e uniform TACA with rule 
 can be converted
into an SACA, when hybridized with rule 255 at single or
multiple positions (cells), if both RMTs 0 and 7 and either of
RMTs 1 and 3 and one of RMTs 4 and 6 are passive in R.

Proof. Let us consider the uniform TACA with rule 
 is
hybridized with rule 255 at (� + 1)th cell. Since the passive
RMTs of rule 255 are 2, 3, 6, and 7, the passive RMTs for the �th
cell can be RMTs 1 and 5 (for which the RMTs of (� + 1)th cell
are 2 and 3) and RMTs 3 and 7 (for which the RMTs of (�+1)th
cell are 6 and 7). Since
 is a TACArule, RMT5 of
 cannot be
passive (Property 4). Further, the RMTs on which the (�+2)th
cell (con�gured with 
) can change its state are 4, 6, and 7
(RMT 5 is active). 	e 0 branch (created with passive RMT 0
of 
) of the RTA is stopped due to hybridization, as rule 255
does not have RMT0 as passive. Now, for the continuity of the
nonzero branch, either of RMTs 1 and 3 and one of RMTs 4
and 6 must be passive. With these sequences of passive RMTs
of rule 
 and rule 255, only one path from root to (� + 1)th
node as well as only one path from (� + 1)th node to the leaf
is possible in the RTA of the CA; that is, the RTA is having

only one path from root to leaf nodewhich corresponds to the
only single length cycle attractor. Further, it can be veri�ed
from the NSRT diagram [21] of the hybrid CA that it does not
introduce any additional multilength cycle in hybridization.
Hence, the CA resulting from hybridization is an SACA.

For example, the uniform CA constructed with TACA
rules 174/244/254 when hybridized with rule 255 at single or
multiple positions is transformed into SACA.

Corollary 12. �e uniform TACA with rule 254 (
�) is
converted into an SACA when hybridized with rule 255 (
ℎ)
at single or multiple positions.

Proof. Uniform TACA con�gured with rule 254 forms only
two attractors, �1 = 00 ⋅ ⋅ ⋅ 0 and �2 = 11 ⋅ ⋅ ⋅ 1 (	eorem 9);
that is, the RTA has only two branches leading to two leaf
nodes (�1 and �2). 	e all 0s branch is followed on the self-
replication of RMT 0.	e passive RMTs of rule 254 are RMTs
0, 2, 3, 6, and 7 and those of rule 255 are 2, 3, 6, and 7. Now,
if the uniform CA ⟨254, 254, . . . , 254⟩ is hybridized with rule
255 at any position, it blocks the “0” branch (all 0s attractor),
thus leaving only the all 1s attractor. Further, it can be veri�ed
from the NSRT diagram [21] of the hybrid CA that it does not
introduce any additional multilength cycle in hybridization.
Hence, the resulting CA is an SACA.

For the current realization, we consider hybridization
(with 
ℎ = 255) of a uniform CA formed with rule 
� = 254.
Such hybridization allows merger of attractor basins of the
uniform CA (0-basin of uniform CA is merged with the 1-
basin of hybrid CA). 	at is, for “NF” case of Section 4, the
system traces through the�1-basin (0-basin, Figure 8) of the
uniform CA and for a fault the hybrid CA is formed and
the system traces through the merged �2-basin (15-basin,
Figure 13) of hybrid CA.

Figure 14 describes the operation of the CAVUHIGH-SPEED.
Let us consider a system of 4 caches and a set of 5 transactions
on the caches among which the 1st transaction results in
a single fault and the 2nd transaction results in a double
fault (indicated by the 1s in the compatibility status). 	e
0th transaction is a nonfaulty transaction (compatibility
status 0000, as shown in Figure 14). So, a 4-cell uniform CA
⟨254, 254, 254, 254⟩ is formed. 	e CA is then run for 1 time
step with all 0s initial seed. It produces the next state 0000.
Since transaction 1 is a faulty transaction, it results in a hybrid
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CA con�gured with rules 254 and 255 (⟨254, 255, 254, 254⟩).
	e hybrid CA, when running for 1-step from 0000 state,
produces the next state 0100. Transaction 2, being a faulty
transaction with double faults at cell 1 and cell 2, also
results in a hybrid CA ⟨254, 255, 255, 254⟩. 	is CA, when
running 1-step from 0100 state, produces the next state 1110.
Transactions 3 and 4 are nonfaulty transactions. Hence, the
CA constructed for transactions 3 and 4 are the uniform CA
with rule 254 (⟨254, 254, 254, 254⟩). 	e CA for transaction
3, when running for 1-step from 1110 state, results in 1111 state.
	e CA for transaction 4 is then run for (	 − 1) = 3-steps
and it reaches the attractor 1111 state. 	e “1” in the LSB of the
attractor indicates the presence of faulty transactions.

9. Experimental Results

	e performance of proposed veri�cation unit is evaluated
in Multi2Sim [22]. A module realizing the veri�cation unit
is developed and is augmented in Multi2Sim. 	e standard
programs in SPLASH-2 benchmark suit [23] are used as the
workload.	eL1 cache in each core is uni�ed for instructions
and data and L2 is shared. 	e following test environment
and parameters as described in Table 5 are considered for the
experimentations. 	e benchmarks programs are run with
input data sets as listed in Table 6:

(i) Operating system: Ubuntu 12.04LTS (64 bits).

(ii) Number of cores used: 4, 8, and 16.
We evaluate the percentage of memory references

(load/store) that results in a state change in caches (Figure 15)
to determine how frequently the veri�cation unit needs to
verify transactions. If the number of memory references
resulting in state change increases, it points to system vulner-
ability even for a single fault in the system. Figure 15 denotes
that the memory references increase with the number of
cores.	is is due to increase inmemory tra�c resulting from
coherence misses and other aspects.

Some faults in the system do not lead to error and
hence remain hard to detect. Figure 16 depicts the percentage
of faults turning into errors. For our evaluation, we have
randomly injected fault at various parts of CC at an interval of
1000 and 10,000 clock cycles. 	e error coverage (percentage
of errors detected) for fault injection interval of 10,000 cycles
and 1000 cycles is reported in Figures 17 and 18, respectively.

	ese show that the proposed CA based veri�cation unit
(CAVUFULL-DIR) ensures error coverage which is almost the
same as that of the scheme reported in [2].

Table 7 reports the comparison of the CA based schemes
with and without segmentation (Section 7). Column 1 notes
the number of processor cores. Columns 2 and 3 report the
number of computation steps and the number of check bits
required to decide on the incoherency (without segmenta-
tion). 	e requirements in segmentation based scheme are
shown in columns 4–6.

In columns 5–10 of Table 8, we report the area overhead
(gate counts, FFs, and the 2-input NAND/XOR gates) of the
CAbased designs for the CMPswith 16 to 256 processor cores
(column 1). 	e area computation follows units speci�ed in
mcnc.genlib [24]. 	e requirements for the design reported
in [2] are given in columns 2–4 for comparison. Columns
5–8 show the overhead (gate count and area) of the veri�-
cation logic for MSI (Section 4), without the consideration
of segmentation of processor pool. 	e �gures of columns 9
and 10 represent the area requirement for MESI and MOESI
protocols, respectively. Comparison of the �gures noted in
columns 4 and 8 reveals the fact that theCAbased veri�cation
logic achieves a considerable reduction in area.

	e overhead of the CAVUHIGH-SPEED is shown in Table 9.
	e gate counts are provided in columns 2, 3, and 4. 	e
area computed as per [24] is reported in column 5. Column
6 is reproduced (for CAVUFULL-DIR) for comparison. It can
be observed that the hardware overhead of CAVUHIGH-SPEED

is the same as that of the CAVUFULL-DIR. However, the
CAVUHIGH-SPEED can be better accepted when there is a
need for verifying a set of transactions rather than individual
transactions. For a system of 	-processor cores, the design of
CAVUFULL-DIR requires (	 − 1) computation steps to make
a decision on a defect a�er each transaction whereas, for
� number of transactions, the CAVUHIGH-SPEED ensures a
correct decision on fault in exactly (� + 	 − 2) computation
steps ((�−1)-steps for the �rst (�−1) transactions and (	−1)-
steps for the last transaction) of the CA hardware. 	e design
thus achieves a speedup of

�� =
� (	 − 1)
� + 	 − 2

(4)

over the design of CAVUFULL-DIR for a set of � transactions.



VLSI Design 13

Table 5: Parameters used in full system simulation.

Parameter Value

Processors x86 cores, 1 GHz, single issue, in-order

L1 cache 64KB per core, uni�ed, LRU replacement policy

4-way associative, 2-cycle latency, 64-byte line

L2 cache
2MB, LRU replacement policy, 4-way associative,
20-cycle latency, 64-byte line

Memory 1 GB, 100-cycle latency

Network
2D mesh topology, 2-cycle router, 1-cycle link
latency, 36 bytes wide

Table 6: Benchmark and input data set.

Benchmark Input parameter

Barnes 16K particles

FFT 256K integers

FMM 16K particles

Ocean 258 × 258
Radix 1024Kkeys

LU 512 × 512
Raytrace car.env

10. Verification for Limited Directory

	e design described in Sections 4 and 5 is tuned to full-
map directory in which traditionally a sharing vector is
maintained for a block B to indicate cached copies of B in the
system.	is sharing vector is of length (	+ 1) for a system of
	-processor cores. As a result, the directory storage overhead
is quite unacceptable for CMPs with thousands of processor
cores. 	e alternative scheme that considers compact direc-
tory organization is the limited directory protocol [25, 26]. In
such organization, the (	 + 1)-bit sharing vector of block B is
replaced by the �xed number of pointers to the processors’
caches which are having a copy of B. In this section, we
address the design of a veri�cation logic for a system with
limited directory, considering non-broadcast-based solution
to handle the case of directory runs short of pointers [25].

In a system with limited directory protocol, the pointers
indicating processor ids/caches need to be decoded. 	e
structure of limited directory, shown in Figure 19, indicates
that caches C2 and C3 (corresponding to processors P2
and P3) are currently sharing a block B and at most four
processors can share block B simultaneously (as 4 �elds are
for the pointers). 	at is, the update of sharing status and
the pointers involves a small and �xed number of entries.
Hence, the CA based veri�cation unit for limited directory
(CAVULIM-DIR) can be realized with an �-cell CA (� ≪ 	),
where � is the maximum number of sharers allowed for a
block and thereby reduces the time to decide the coherence
status.

Figure 20 describes an architecture of CAVULIM-DIR with
four pointers. For each cache transaction, a�er the pointer
updating, the pointer is decoded to access the corresponding
cache and the status of the block is read from the cache.
Depending on the number of pointers r (in Figure 20, � = 4),

For 8 processors

0

10

20

30

50

40

P
er

ce
n

ta
ge

 o
f 

st
at

e 
ch

an
ge

Benchmark programs

For 4 processors

For 16 processors

Barnes FFT FMM Ocean Radix LU Raytrace

Figure 15: Percentage of memory references causing state change in
caches.
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Figure 16: Percentage of faults leading to errors.

an r-cell CA is formed.	eMSB of status of a block (B) in the
cache, pointed to by the �th pointer, is used to set the �th CA
cell rule. If theMSB of status is “1”, the corresponding CA cell
rule is set to 254; otherwise, it is set to rule 255. 	is di
ers
from the rule selection for CAVUFULL-DIR. Once the CA cell
rule is set, the r-cell CA is run for (� − 1) time steps and the
LSB of the attractor (“1”/“0”) indicates the presence/absence
of a fault in limited directory entry.

	e overhead of CAVULIM-DIR, considering a four-
pointer representation of the limited directory (as shown in
Figure 19), is illustrated in Table 10. Column 1 represents the
number of cores and columns 2 and 3 note the gate counts
(number of FFs and 2-input NANDs). Column 4 records the
area overhead. 	e area overhead of the CAVUFULL-DIR has
been reproduced in column 5 for comparison. 	e results
show considerable reduction in gate count and the area over-
head in CAVULIM-DIR compared to those of CAVUFULL-DIR.

11. Related Work

	e schemes ensuring coherency in CMPswith large number
of cores are reported in [2–5, 11, 27]. 	ese deal with the
interactions between on-chip interconnection network and
the cache coherence protocol. Liqun et al., in [3], propose
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Table 7: Performance in CA segmentation.

CAVUFULL-DIR without
segmentation

CAVUFULL-DIR with segmentation

Number of
cores

Number of
comp. steps

Number of
check bits

Number of
segments

Number of
comp. steps

Number of
check bits

(1) (2) (3) (4) (5) (6)

16 16 1
2 8 2

4 4 4

256 256 1
2 128 2

4 64 4

1024 1024 1

2 512 2

4 256 4

8 128 8

Table 8: Hardware requirements for CAVUFULL-DIR.

Scheme [2]
CAVUFULL-DIR

MSI MESI MOESI

Number of
cores

Number of
FFs

Number of
NANDs

Area (units)
Number of

FFs

Number
of

NANDs

Number of
XORs

Area (units) Area (units) Area (units)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

16 12824 159 47824016 16 144 16 259840 259840 259840

32 21152 159 78737552 32 288 32 519680 519680 519680

64 41512 159 154313872 64 576 64 1039360 519680 519680

128 80432 159 298784912 128 1152 128 2078720 519680 519680

256 159288 159 591498384 256 2304 256 4157440 519680 519680
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Figure 17: Error coveragewith fault injection interval of 10000 clock
cycles.

a solution with interconnection network composed of wires
with varying latency, bandwidth, and energy characteristics,
and coherence operations are intelligently mapped to the
appropriate wires of heterogeneous interconnection. Zhao et
al. [28] propose an alternative novel L2 cache architecture,
where each processor has a split private and shared L2 cache.
When data is loaded, it is located in private L2 or shared
L2 according to its state (exclusive or shared). 	is scheme
e�ciently utilizes the on-chip L2 capacity ensuring low
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Figure 18: Error coverage with fault injection interval of 1000 clock
cycles.

Pointer 1 Pointer 2 Pointer 3 Pointer 4

Dirty bit Presence bits

d C2 C3

Figure 19: Sharing vector for limited directory.

average access latency.	is scheme employs a snooping cache
coherence protocol and veri�es it with formal veri�cation
method. A network caching architecture was proposed to
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Table 9: Hardware requirements for high-speed design (CAVUHIGH-SPEED).

CAVUHIGH-SPEED CAVUFULL-DIR

Number of cores Number of FFs Number of NANDs Number of XORs Area (units) Area (units)

(1) (2) (3) (4) (5) (6)

16 16 144 16 259840 259840

32 32 288 32 519680 519680

64 64 540 64 1039360 1039360

128 128 1152 128 2078720 2078720

256 256 2304 256 4157440 4157440

Table 10: Hardware requirements for CAVULIM-DIR.

CAVULIM-DIR (considering
four pointers)

CAVUFULL-DIR

(Section 4)

# cores # FFs
#

NANDs
Area
(units)

Area (units)

(1) (2) (3) (4) (5)

16

4 114 345216

259840

32 519680

64 1039360

128 2078720

256 4157440

M/S/I

Decoder Pointer decoded to access cache

Cache status for block B

MSB of status is used to set CA cell rule

(MSB “1”-sets rule 254, “0”-sets 255)

CA runs for (r − 1)-step with all 0s seed

r-cell CA is con�gured with rules

LSB of attractor dictates 
presence/absence of fault

Pointer 1 Pointer 2 Pointer 3 Pointer 4 Limited directory pointers

Figure 20: Veri�cation unit for limited directory.

address the issues of on-chip memory cost of directory and
long L1 cache miss latencies in [5].	e directory information
is stored in network interface component thus eliminating
the directory structure from L2 cache. A veri�cation logic
that can dynamically detect errors in coherence controller
(CC) has been proposed in [2]. Ros et al. have proposed the
coherence protocol Dico-CMP for tiled CMP architecture
[11]. Dico-CMP avoids indirection by providing a block from
the owner node instead of home node thus reducing the
network tra�c compared to broadcast-based protocols. Fur-
ther, a scalable organization of directory based on duplicating
tags has been proposed to ensure that the directory bank
size is independent of the number of tiles. However, the
veri�cation of cache coherence, an important problem, has
not been addressed properly, possibly due to lack of e�cient

veri�cation tool [29]. A veri�cation logic which caters to
snoop based systems only is reported in [2].

12. Conclusion

A solution for quick determination of data inconsistencies
in caches as well as in recording of the sharing vectors in a
system realizing directory based cache coherence protocol is
reported. It avoids rigorous computation and communication
overhead assuring robust and scalable design, specially, for
a system with thousands of processor cores. 	e design
is proved to be highly �exible to cater to di
erent cache
coherence protocols, for example, MSI/MESI/MOESI. 	e
introduction of segmentation of the CMPs’ processor pool
ensures better e�ciency in making decision on the inconsis-
tencies in maintaining cache coherence. Further, the design
has been modi�ed to cope up with limited directory based
protocol.
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