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Abstract. CAMELLIA is a 128 bit block cipher certified for its security
by NESSIE and CRYPTREC. Yet an implementation of CAMELLIA can
easily fall prey to cache attacks. In this paper we present an attack on
CAMELLIA, which utilizes cache access patterns along with the differen-
tial properties of CAMELLIA’s s-boxes. The attack, when implemented
on a PowerPC microprocessor having a 32 byte cache line size requires
power traces from 216 different encryptions. Further, the work shows that
this trace requirement reduces to 211 if a 64 byte cache line is used.

1 Introduction

With the development of newer and better encryption schemes, it has become
increasingly difficult to find flaws in the algorithm and therefore the schemes are
more secure. However, implementations of the encryption algorithms are highly
susceptible to being attacked. Attacks that target implementations are known
as side channel attacks, and were discovered by Paul Kocher in 1996 [10]. These
attacks take advantage of the information that gets leaked during the cipher’s
execution. The channels for leakage are generally power consumption, timing for
execution, and electro-magnetic radiation.

Cache attacks are a class of side-channel attacks that glean secret information
from the behavior of the processor’s cache memory. These attacks utilize the fact
that a cache miss has a different power and timing profile compared to a cache
hit. Cache attacks were first prophesied by Kelsey et al. in [9]. A theoretical
model of a cache attack was then constructed by Page in [12]. In [17] and [18],
the first cache attacks were successfully demonstrated. The ciphers targeted were
MISTY1, DES, and 3-DES. Since the arrival of AES, it has been the favorite
choice among side-channel attackers. There were several variants of cache attacks
that were demonstrated on AES [1,3,4,5,6,7,8,11,16]. All attacks on AES can be
classified into three depending on the channel used to collect information. These
channels are power consumption traces, spy processes, and timing information.
In scenarios where the attacker has direct access to the encryption device, mon-
itoring power consumption traces is the best strategy in order to minimize the
interactions with the device. These attacks, which came to be known as cache
trace attacks, was the method used to attack AES in [1,4,7,8].
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One strategy common to all cache attacks is to split the large secret key of
the cipher into a number of small key parts (for example the 128 bit key of AES
is split into 16 bytes). During the attack, each of these key parts is obtained
independently and then combined to obtain the entire key. In a Substitution-
Permutation Network (SPN) structure like AES, all 16 bytes of the key are used
in the first round itself. Attacking just the first round is simple because it is easy
for the adversary to have control of the round inputs. In Feistel ciphers however,
retrieving the entire 128 bit key often requires attacking more than one round.
This is much more difficult because as the depth of the attack (in terms of the
round being attacked) increases, it becomes increasingly difficult for the attacker
to control the round inputs. In [13] for example, an attack was demonstrated on
the generalized Feistel cipher CLEFIA [15], where obtaining the entire 128 byte
key required attacking three rounds of the cipher. As seen in [13], the attack on
the first round is very simple compared to the second round, while the third is
the most complex.

In this paper we propose a cache trace attack on the 128-bit block cipher
CAMELLIA [2]. CAMELLIA like CLEFIA is based on the Feistel structure.
Therefore our attack follows a similar strategy as the attack on CLEFIA de-
scribed in [13]. CAMELLIA however has the classical Feistel structure, while
CLEFIA uses a type-2 generalized Feistel structure [19]. In a type-2 generalized
Feistel structure, the adversary can control round inputs up to the 4th round.
In the classical Feistel structure, however, only the second round inputs can be
controlled. Further, retrieving the 128 bit CLEFIA key required attacking only 3
rounds. On the other hand, for CAMELLIA, 4 rounds need to be attacked. These
reasons make an attack on CAMELLIA a bigger challenge and hence motivates
the work in this paper.

The outline of the paper is as follows: the next section introduces cache at-
tacks and gives a brief summary of CAMELLIA. Section 3 present the attack
procedure. Section 4 discusses how the attack was practically mounted. The final
section has the conclusions and future directions.

2 Preliminaries

In this section we first present the principle behind cache attacks and then give
a brief description of the CAMELLIA structure.
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Fig. 2. Partial Structure of CAMELLIA

2.1 Principle of Cache Attacks

All cache attacks target structures in the block cipher such as in Figure 1. The
figure shows two accesses to table S with indices (x⊕k(0)) and (y⊕k(1)). When
a cache hit occurs the following relation holds, leading to leakage of information
about the ex-or of the keys.

〈k(0) ⊕ k(1)〉 = 〈x ⊕ y〉 (1)

We note that due to the affects of the cache line, only the most significant bits
can be equated, therefore 〈·〉 refers to only these most significant bits. If the size
of k(0) and k(1) is l bits, and there are 2δ elements that share a cache line, then
only the most significant b = l − δ bits satisfy the above equation. Similarly,
when a cache miss occurs, the following inequality holds.

〈k(0) ⊕ k(1)〉 �= 〈x ⊕ y〉 (2)

2.2 The CAMELLIA Structure

CAMELLIA is the 128-bit block cipher that was jointly developed by Mitsubishi
and NTT in 2000. Since this cipher has been made available under a royalty-free
license, it has been certified for use by the European Union and Japan. It has
also become part of the OpenSSL Project, and incorporated in Mozilla’s Network
Security Services (NSS modules). Support for CAMELLIA has been added to
several security libraries as well as Mozilla’s popular web-browser, Firefox 3.
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CAMELLIA has been so designed that an encryption can be done using either
a 128-bit, a 192-bit or a 256-bit key. We have tested our attack on a 128-bit
implementation. However the techniques described can be extended to other key
lengths.

The 128−bit block cipher CAMELLIA [2] has a Feistel structure as shown in
Figure 2. The 16 bytes plaintext input P1 · · ·P16 is grouped in two words of 8
bytes each. There are 18 rounds in all, broken up into groups of 6 each. After the
6th and the 12th rounds, there are two FL/FL−1 function layers. In each round,
there is an F -function, which is a combination of key addition, substitution and
diffusion. The substitution is done by using four s-boxes, whereas the diffusion
is implemented as follows:
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Each round has an addition of a round key. The ith round uses the round key ki.
Each of these round keys are of 64 bits. Additionally, whitening keys kw1 and
kw2 are applied at the start of encryption, while kw3 and kw4 are applied at the
end of encryption.

The implementation of CAMELLIA attacked in this paper consists of one 256
byte table which implements each s-box. The next part of the section discusses
the basic principle behind cache attacks.

3 The Attack on CAMELLIA

We depict the first two rounds of CAMELLIA’s Feistel structure to describe the
principle behind the proposed attack (Figure 3).

The input x consists of 8 concatenated bytes (x1|x2|x3|x4|x5|x6|x7|x8) and is
known as the differential introducing input. The input y consists of the bytes
(y1|y2|y3|y4|y5|y6|y7|x8) and is known as the restoring input. The F in the figure
is CAMELLIA’s F function (see Figure 2). For a particular fixed value of x, we
vary the bytes of y until we obtain cache hits in all s-box tables in the second
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Fig. 3. First two rounds of CAMELLIA

round F function. We call this the collision setup phase. At the end of the setup,
the following equations holds for 1 ≤ i ≤ 8 if a cache hit is obtained.

〈xi ⊕ k
(0)
i 〉 = 〈yi ⊕ k

(1)
i ⊕ F (x, k(0))i〉 (3)

Similarly, the following inequalities hold if a cache miss is obtained.

〈xi ⊕ k
(0)
i 〉 �= 〈yi ⊕ k

(1)
i ⊕ F (x, k(0))i〉 (4)

We now displace the input byte x1 by dx1 �= 0, keeping the rest of the bytes
of x unchanged. After the s-box operation, the displacement is diffused to the
output bytes of the F function. As a result, some or all of the cache hits in the
second round are lost. We now modify the bytes of y to restore cache hits in
the second round, and once again obtain the collision state. This is called the
restoring phase. Let y′ = (y′1|y′2|y′3|y′4|y′5|y′6|y′7|y′8) be the new value of y after
the modification. Therefore, the differences in the output of the F function are
dyi = yi ⊕ y′i.

From the difference distribution table for the s-box, one can derive the set of
possible output differentials corresponding to the input differential dx1 . Let this
set be called D. For every output differential do ∈ D, we compute the matrix
product M · (do , 0 , 0 , 0 , 0 , 0 , 0 , 0)T . This is used to obtain the differentials
(dz1 , dz1 , dz2 , dz3 , dz4 , dz5 , dz6 , dz7 , dz8)T . For the correct s-box output dif-
ferential do, 〈dzi〉 = 〈dyi〉 for 1 ≤ i ≤ 8. We exploit this to obtain the set of
possible keys (S) for the key byte k

(0)
1 . The number of candidate keys can be re-

duced by repeating the attack several times and taking the intersection between
the sets. If r repetitions are done, then,

Expected number of candidate keys after r repetitions =
|S|r

256r−1
(5)

In a similar way, displacements introduced at x2, x3,. . . , x8, would lead to leak-
ages in k

(0)
2 ,k(0)

3 , . . . , k
(0)
8 respectively. The technique used to generate the candi-

date keys is given by Algorithm 1, provided the collisions have been set up. The



A Cache Trace Attack on CAMELLIA 149

next part of the section describes the full attack on CAMELLIA. The proposed
attack first determines k1⊕kw1, then k2⊕kw2, followed by k3⊕kw1, and finally
k4 ⊕ kw2 (see Figure 2). This information is used to reverse the key scheduling
algorithm to obtain the entire key.

Algorithm 1. find : Finding Key Byte k
(0)
i assuming collisions have been

setup
Input: i ∈ {1, 2, . . . , 8}, the differential introducing input x and restoring input y

Output: S(k
(0)
i ) : Candidate Key Set for k

(0)
i

1 begin

2 S(k
(0)
i )← {}

3 xi ← xi ⊕ dxi

4 Restore collisions : Find y′
1, y′

2, . . . , y′
8 which causes collisions in the accesses of the

2nd round
5 D ← output difference set corresponding to the input difference dxi

6 foreach do ∈ D do

7 (dz1 , dz2 , dz3 , dz4 , dz5 , dz6 , dz7 , dz8)
T ←M · (do , 0 , 0 , 0 , 0 , 0 , 0 , 0)T

8 if (〈dz1〉 = 〈y1 ⊕ y′
1〉 and 〈dz2〉 = 〈y2 ⊕ y′

2〉 and 〈dz3〉 = 〈y3 ⊕ y′
3〉 and

〈dz4〉 = 〈y4 ⊕ y′
4〉 and 〈dz5〉 = 〈y5 ⊕ y′

5〉 and 〈dz6〉 = 〈y6 ⊕ y′
6〉 and

〈dz7〉 = 〈y7 ⊕ y′
7〉 and 〈dz8〉 = 〈y8 ⊕ y′

8〉) then

9 S(k
(0)
i )← S(k

(0)
i ) ∪ {do}

10 end

11 end

12 end

3.1 Determining k1 ⊕ kw1

Let the 16 bytes of the input plaintext be (P1|P2| · · · |P16). We consider the
memory accesses to the first and second round F functions. The structure is
similar to Figure 3 with the 8 leftmost bytes P1, P2, · · ·P8 as the differential
introducing input, and the 8 rightmost bytes P9, P10, · · ·P16 as the restoring
input. In CAMELLIA, each s-box is used twice per round. Therefore, a resulting
cache hit in the second round would be due to collisions with either of these
accesses. Let Iαi

Sβ be the index to the ith access to table Sβ in round α (see
Figure 2). Thus, a collision in I21

S1 could be with either or both of I11
S1 and

I12
S1. To eliminate this ambiguity, we ensure that all accesses in the first round

are themselves colliding. That is for S1,

〈I11
S1〉 = 〈I12

S1〉

Similarly, for S2, S3 and S4 we have

〈I11
S2〉 = 〈I12

S2〉

〈I11
S3〉 = 〈I12

S3〉
and

〈I11
S4〉 = 〈I12

S4〉
We call such a state the 1−round collision state. Algorithm 2 shows how a
1−round collision state can be obtained in the cipher. Algorithm 3 is then used
to determine k1 ⊕ kw1.
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Algorithm 2. 1−round collision
Input: P1, P2, P3 and P4
Output: P5, P6, P7 and P8

1 begin
2 Find P5 causing a collision in I12

S1
3 Find P6 causing a collision in I12

S2
4 Find P7 causing a collision in I12

S3

5 Find P8 causing a collision in I12
S4

6 end

Analysis : From side-channel analysis, it is possible to determine whether a
memory access resulted in a cache hit or a miss. Testing for a collision at
a particular memory access requires 256

C encryptions, where C is the cache
line size. However, by using the inequality in Equation 4, it is sufficient to
have 256

C − 1 encryptions in order to find the collision. Algorithm 2 therefore
requires 4(256

C − 1) encryptions. Setting up the 8 collisions in line 4 of Algo-
rithm 3 requires 8(256

C − 1) encryptions. Further, each invocation of the find
function requires 8(256

C − 1) encryptions. Thus in total, finding all the 8 bytes of
k1 ⊕ kw1 requires 60(256

C − 1) encryptions.

Algorithm 3. Finding candidate keys for κ = k1 ⊕ kw1

Output: S(κi) : Candidate Keys for κ = k1 ⊕ kw1, where i ∈ {1, 2, . . . , 8}
1 begin
2 Randomly select P1, P2, P3 and P4
3 (P5, P6, P7, P8)← 1−RoundCollision(P1, P2, P3, P4)

4 Set up collisions : Find P9, P10, · · · , P16 causing collisions in I21
S1, I21

S2, . . . , I22
S4

respectively
5 S(κ1)← find(1, P1 · · ·P8, P9 · · ·P16)
6 S(κ2)← find(2, P1 · · ·P8, P9 · · ·P16)
7 S(κ3)← find(3, P1 · · ·P8, P9 · · ·P16)
8 S(κ4)← find(4, P1 · · ·P8, P9 · · ·P16)
9 S(κ5)← find(5, P1 · · ·P8, P9 · · ·P16)

10 S(κ6)← find(6, P1 · · ·P8, P9 · · ·P16)
11 S(κ7)← find(7, P1 · · ·P8, P9 · · ·P16)
12 S(κ8)← find(8, P1 · · ·P8, P9 · · ·P16)

13 end

For a 64 byte cache line, 228 encryptions are required to obtain a set of 64
candidates per key on average. On average repeating the attack 4 times would
result in a single key. Therefore in total 912 encryptions are required. Similarly
for a 32 byte cache line, 532 encryptions are required to obtain a candidate key
set. Filtering out the wrong keys would require a total of 1596 encryptions.

3.2 Determining k2 ⊕ kw2

We consider the F functions in the second and third rounds to determine can-
didates for k2 ⊕ kw2, with P9 · · ·P16 as the differential introducing inputs, and
P1 · · ·P8 as the restoring inputs. As in the first stage of the attack, ambigui-
ties about collisions may arise when cache hits are forced in the third round F
function. Therefore, the cipher is put in a 2−round colliding state. In a 2−round
colliding state, all accesses except the first are in collision for each table, i.e.,
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〈I11
S1〉 = 〈I12

S1〉 = 〈I21
S1〉 = 〈I22

S1〉

〈I11
S2〉 = 〈I12

S2〉 = 〈I21
S2〉 = 〈I22

S2〉

〈I11
S3〉 = 〈I12

S3〉 = 〈I21
S3〉 = 〈I22

S3〉

〈I11
S4〉 = 〈I12

S4〉 = 〈I21
S4〉 = 〈I22

S4〉

We note that the results obtained in the previous stage of the attack (i.e. deter-
mining k1 ⊕ kw1) may be used to put the cipher in the 2−round colliding state.
Hence, no additional encryptions are required.

To prevent further ambiguities in the third round accesses to a table, the
inputs must be controlled in a manner that causes no hits to be lost in all
previous accesses made to that table, i.e. the 2−round colliding state remains
intact. This is accomplished as follows.

The restoring inputs for this stage of the attack are formed by P1 · · ·P8 ex-
ored with the outputs of the second round F (see Figure 2). These values may
be controlled by displacements made in the values of P1 · · ·P8 ensuring that
collisions are not lost in the first two rounds. For example, suppose a hit is desired
in I31

S1. This is done by controlling P1. However changing P1 may result in loss
of collision in I12

S1. Further, the change in P1 would affect several outputs of the
first round F function due to the diffusion. This might disturb the collisions in
the second round. To avoid this loss in the 2−round colliding state, the previously
determined value of k1⊕kw1 is used. Using this, P8 can be set to ensure collision
in I12

S1 persists. The determined key is also used to compute the outputs of the
first round F . The values of P9 · · ·P16 are now ex-ored with these outputs, so
that the effect of the disturbance on the second round accesses is annulled. Thus,
the 2−round colliding state persists.

This principle can similarly be applied to determine candidates for all the
bytes of k2 ⊕ kw2. Algorithm 4 describes the steps for the attack. An important
point to note is the modification that needs to be made in the restore collisions
phase of Algorithm find. This step must now be performed in keeping with the
discussion in the previous paragraph.

Algorithm 4. Finding candidate keys for κ = k2 ⊕ kw2

Input: P1 · · ·P16, so that a 2−round colliding state has been set up
Output: S(κi) : Candidate Keys for κ = k2 ⊕ kw2, where i ∈ {1, 2, . . . , 8}

1 begin
2 Set up collisions : Find P1, P2, · · · , P8 causing collisions in I31

S1, I31
S2, . . . , I32

S4
respectively

3 S(κ1)← find(1, P9 · · ·P16, P1 · · ·P8)
4 S(κ2)← find(2, P9 · · ·P16, P1 · · ·P8)
5 S(κ3)← find(3, P9 · · ·P16, P1 · · ·P8)
6 S(κ4)← find(4, P9 · · ·P16, P1 · · ·P8)
7 S(κ5)← find(5, P9 · · ·P16, P1 · · ·P8)
8 S(κ6)← find(6, P9 · · ·P16, P1 · · ·P8)
9 S(κ7)← find(7, P9 · · ·P16, P1 · · ·P8)

10 S(κ8)← find(8, P9 · · ·P16, P1 · · ·P8)

11 end
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Analysis : Obtaining collisions in all eight accesses in the third round requires
8(256

C −1) encryptions. Once this is done, deducing each key byte requires 8(256
C −

1) encryptions. Since there are 8 unknown key bytes, a total of 65(256
C − 1)

encryptions is needed to obtain the candidate key set. With a 64−byte cache
line, this attack step should be repeated 4 times to isolate a single key. This
requires 768 encryptions. Similarly with a 32−byte cache line, and 3 iterations
of the attack step, a single key is isolated in 1365 encryptions.

3.3 Determining k3 ⊕ kw1 and k4 ⊕ kw2

To determine candidates for k3 ⊕ kw1, we consider the F functions in the third
and fourth rounds, with P1 · · ·P8 as the differential introducing inputs, and
P9 · · ·P16 as the restoring inputs. The cipher should be ideally put in a 3−round
colliding state before mounting the attack. However, achieving such a state is
more difficult than obtaining a 2−round colliding state. To circumvent this dif-
ficulty, we initially put the cipher in a partial 3−round colliding state using the
following technique, for the third stage of the attack.

We first obtain a 2−round colliding state. The values of P9 · · ·P16 are sub-
sequently ex-ored by small amounts less than the cache line size. Since these
displacements are small, accesses in the second round continue to collide with
the same cache lines, and no hits are lost. These small displacements, however,
would become random changes affecting all outputs of the second round F .
Thus, for suitable values of these displacements, collisions may be established in
particular accesses of our choice in the third round (creating a partial 3−round
colliding state), without losing any hits in the first 2 rounds. The state is thus a
partial colliding state because not all third round accesses are hits. The colliding
accesses are chosen as follows.

Suppose the byte of the key to be determined is ex-ored with a byte of the
differential introducing input (P1 · · ·P8) that accesses table Sβ in the third round
F (see Figure 2). Then both accesses to Sβ must be established as hits. Evidently,
once this state has been obtained, for β = 1,

〈I11
S1〉 = 〈I12

S1〉 = 〈I21
S1〉 = 〈I22

S1〉 = 〈I31
S1〉 = 〈I32

S1〉

while for β �= 1, 〈I31
Sβ〉 and 〈I32

Sβ〉 may or may not be equal to 〈I11
Sβ〉 =

〈I12
Sβ〉 = 〈I21

Sβ〉 = 〈I22
Sβ〉. This does not affect the results of the attack in any

way.
The restoring inputs are controlled following the principle described in section

3.2 using bytes P9 · · ·P16. However, this might lead to ambiguities in the fourth
round memory accesses. For example, a cache hit in I41

S1 can be forced by small
displacements in one or more of P9 · · ·P16. Since these displacements are small,
no collisions will be lost in the second round accesses to S1. However, changing
these bytes may cause hits to be lost in the third round S1 accesses. Thus a
collision in I41

S1 may be a result of the desirable cache hit with I11
S1, I12

S1, I21
S1

and I22
S1, or due to undesirable cache hits with I31

S1 and I32
S1.

Thus, for a table Sβ, a collision in the fourth round is the result of a desirable
cache hit with a probability 1

n+1 , where n is the number of misses in the third
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round accesses to the table. Since 2 accesses are made to each table per round,
this probability is at least 1

3 , and sufficient confidence in the correctness of the
collision is obtained if the test is repeated 3 times.

In the fourth stage of the attack, candidates for k4 ⊕ kw2 are obtained by
considering the F functions in the fourth and fifth rounds, with P9 · · ·P16 as
the differential introducing inputs, and P1 · · ·P8 as the restoring inputs. Ideally,
the cipher should be initially put in at least a partial 4−round colliding state
before mounting the attack on the fourth round. However, such a state cannot
be easily obtained without losing collisions in the accesses of the previous rounds.
Moreover, attempting small displacements in the values of P9 · · ·P16 will entail
a lot more encryptions to obtain a partial 4−round colliding state, as opposed
to a partial 3−round colliding state. Therefore, we proceed to mount the attack
with the cipher in a partial 3−round colliding state as obtained earlier.

Collisions in the fourth round may be established at the expense of hits in the
third round. For a table Sβ, this implies that hits obtained in the fourth round
may either be due to desirable collisions with accesses in the first 2 rounds, or
due to undesirable collisions with any access resulting in a miss in the third
round. That is, for table S1,

〈I11
S1〉 = 〈I12

S1〉 = 〈I21
S1〉 = 〈I22

S1〉

are desirable collisions. Accesses 〈I31
S1〉 and 〈I32

S1〉 may or may not be desirable.
Thus, for a table Sβ, a collision in the fourth round is the result of a desirable
cache hit with a probability 1

m+1 , where m is the number of misses in the third
round accesses to the table.

Similarly, we may obtain hits in the fifth round with the restoring inputs by
small displacements of P9 · · ·P16 at the expense of the third and fourth round
hits. The probability of a correct hit is thus 1

n+1 , where n is the total number
of misses in the third and fourth round accesses. Therefore, the entire method
results in a success with probability 1

(m+1)(n+1) . Since in the worst case, m = 2
and n = 4, this probability is at least 1

(2+1)(4+1) = 1
15 , and the test should be

repeated 15 times on an average, to obtain sufficient confidence in the result.

Analysis : Once a 2−round colliding state has been obtained, we need to enforce
hits in 2 accesses in the third round to get a partial 3−round colliding state. Since
an access to a table may occupy any of 4 cache lines for C = 64 and 8 cache
lines for C = 32, we get the required cache hit with a probability 1

4 on 64 byte
cache lines and 1

8 on 32 byte cache lines after one encryption.
For the third stage of the attack, once a partial 3−round colliding state has

been created, collisions are obtained in the fourth round with a minimum prob-
ability of 1

3 . Thus, an attack in the third stage is successful with a probability
1

3×4 = 1
12 for C = 64 and 1

3×8 = 1
24 for C = 32. Thus for C = 64, 12 encryptions

are required to extract key candidates for one byte of the key. Since the key com-
prises 8 bytes, the expected number of encryptions is 12×8 = 96. This has to be
repeated at-least 8 times to isolate a unique key, making a total requirement of
768 encryptions. Similarly, for C = 32, a total of 1536 encryptions are required.
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For the fourth stage, the attack is successful with a minimum probability 1
15 .

Since we need to obtain a partial 3−round colliding state before mounting the
attack, the minimum probability of success is 1

15×4 = 1
60 for C = 64. Thus,

60 encryptions are required on an average to extract one byte of the key. The
expected number of encryptions for extracting the entire key is 60×8×8 = 3480
when C = 64 and 7680 encryptions are needed when C = 32.

3.4 Obtaining the Secret Key

The third and fourth stages of the attack on the cipher leak the values of k3⊕kw1

and k4 ⊕ kw2 respectively. From the CAMELLIA key schedule for a 128-bit key,
we know that

k3 ⊕ kw1 = (KL ⊕ (KL ≪ 15))L

k4 ⊕ kw2 = (KL ⊕ (KL ≪ 15))R

Thus, from the attack on the first 4 rounds, we can obtain the value C = (KL ⊕
(KL ≪ 15)). This information is sufficient to derive the value of KL, which is
the required secret 128-bit key. Algorithm 5 shows how the candidates for the
secret key can be extracted. Using the algorithm, we get at most 2 candidates
for KL. For the sake of convenience, the 128-bit values have been represented as
arrays of dimension 128.

Algorithm 5. Finding candidates for the secret key KL

Input: C[] = (KL ⊕ (KL ≪ 15))
Output: S(K) : Candidate key set for the secret key KL

1 begin
2 S ← {}
3 K[]← {0}
4 for lsb ∈ {0, 1} do
5 K[0]← lsb
6 j ← 0
7 for i ∈ {0, 1, . . . , 127} do
8 if j ≥ 128 then
9 j ← j%128

10 end
11 K[(j − 15)%128]← K[j] ⊕ C[j]

12 end
13 S ← S ∪ {K}
14 end
15 return S

16 end

4 Practically Mounting the Attack

To test the attack we used a similar setup as in [13] with CAMELLIA’s reference
code1 modified to use 4 tables. The attack consists of two phases, the online
and the offline phase, which are repeated for each step of the attack. The online
phase dealt with obtaining the required power traces from the board. The attack

1 http://info.isl.ntt.co.jp/crypt/eng/camellia/source.html
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targeted the cache of the PowerPC present in the Xilinx FPGA in the SASEBO
board [14]. The PowerPC cache has a 32 byte cache line and a size of 16KB.
During the offline phase, the traces are first analyzed in Matlab to retrieve the
cache access patterns. This is then fed to the analysis program, which guesses
the secret key. For the 32 byte cache line, the number of encryptions required to
be made is 12177.

5 Conclusions and Future Directions

The paper presents a cache trace attack on the 128 bit block cipher CAMEL-
LIA. The attack first finds the keys used in rounds 1 to 4 and then uses the
key scheduling algorithm of CAMELLIA to retrieve the entire secret key. On a
PowerPC processor, having a 32−byte cache line size, this requires monitoring
of around 216 power traces. On a processor using the more standard 64 byte
cache line, the number of power traces required are 211.

A comparison of the proposed attack on CAMELLIA with cache trace attacks
on AES exemplifies the difficulty in attacking Feistel ciphers. As a future work
various cipher structures can be analyzed for their robustness against cache at-
tacks. This analysis would play a pivotal role in constructing a cipher inherently
secure against cache attacks.
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