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Abstract. Our aim in this paper is to study a generalization of the Caginalp phase-
field system based on the theory of type III thermomechanics with two temperatures
for the heat conduction. In particular, we obtain well-posedness results and study the
dissipativity of the associated solution operators. We consider here both regular and sin-
gular nonlinear terms. Furthermore, we endow the equations with two types of boundary
conditions, namely, Dirichlet and Neumann. Finally, we study the spatial behavior of
the solutions in a semi-infinite cylinder, when such solutions exist.

1. Introduction

The Caginalp phase-field system,

(1.1)
∂u

∂t
−∆u+ f(u) = T,

(1.2)
∂T

∂t
−∆T = −

∂u

∂t
,

has been proposed in [5] to model phase transition phenomena, such as melting-solidifica-
tion phenomena. Here, u is the order parameter, T is the relative temperature (defined
as T = T̃ − TE, where T̃ is the absolute temperature and TE is the equilibrium melting
temperature) and f is the derivative of a double-well potential F . Furthermore, here and
below, we set all physical parameters equal to one. This system has been much studied;
we refer the reader to, e.g., [1], [2], [3], [4], [9], [10], [11], [18], [20], [21], [22], [23], [24],
[32], [39] and [45].

These equations can be derived as follows. One introduces the (total Ginzburg-Landau)
free energy

(1.3) Ψ =

∫

Ω

(
1

2
|∇u|2 + F (u)− uT −

1

2
T 2) dx,

where Ω is the domain occupied by the system (we assume here that it is a bounded and
regular domain of Rn, n = 1, 2 or 3, with boundary Γ), and the enthalpy

(1.4) H = u+ T.
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As far as the evolution equation for the order parameter is concerned, one postulates the
relaxation dynamics (with relaxation parameter set equal to one)

(1.5)
∂u

∂t
= −

DΨ

Du
,

where D
Du

denotes a variational derivative with respect to u, which yields (1.1). Then, we
have the energy equation

(1.6)
∂H

∂t
= −divq,

where q is the heat flux. Assuming finally the usual Fourier law for heat conduction,

(1.7) q = −∇T,

we obtain (1.2).
Now, one essential drawback of the Fourier law is that it predicts that thermal signals

propagate at an infinite speed, which violates causality (the so-called paradox of heat
conduction, see [13]). To overcome this drawback, or at least to account for more realistic
features, several alternatives to the Fourier law, based, e.g., on the Maxwell-Cattaneo law
or recent laws from thermomechanics, have been proposed and studied, in the context of
the Caginalp phase-field system, in [29], [30], [33], [34], [35], [36] and [38].
In the late 1960’s, several authors proposed a heat conduction theory based on two

temperatures (see [6], [7] and [8]). More precisely, one now considers the conductive
temperature T and the thermodynamic temperature θ. In particular, for simple materials,
these two temperatures are shown to coincide. However, for non-simple materials, they
differ and are related as follows:

(1.8) θ = T −∆T.

The Caginalp system, based on this two temperatures theory and the usual Fourier
law, was studied in [14].

Our aim in this paper is to study a variant of the Caginalp phase-field system based on
the type III thermomechanics theory (see [25]) with two temperatures recently proposed
in [43] (see also [15]).

In that case, the free energy reads, in terms of the (relative) thermodynamic tempera-
ture θ,

(1.9) Ψ =

∫

Ω

(
1

2
|∇u|2 + F (u)− uθ −

1

2
θ2) dx

and (1.5) yields, in view of (1.8), the following evolution equation for the order parameter:

(1.10)
∂u

∂t
−∆u+ f(u) = T −∆T.

Furthermore, the enthalpy now reads
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(1.11) H = u+ θ = u+ T −∆T,

which yields, owing to (1.6), the energy equation

(1.12)
∂T

∂t
−∆

∂T

∂t
+ divq = −

∂u

∂t
.

Finally, the heat flux is given, in the type III theory with two temperatures, by (see [43])

(1.13) q = −∇α−∇T,

where

(1.14) α(t, x) =

∫ t

0

T (τ, x) dτ + α0(x)

is the conductive thermal displacement. Noting that T = ∂α
∂t
, we finally deduce from

(1.10) and (1.12)-(1.13) the following variant of the Caginalp phase-field system:

(1.15)
∂u

∂t
−∆u+ f(u) =

∂α

∂t
−∆

∂α

∂t
,

(1.16)
∂2α

∂t2
−∆

∂2α

∂t2
−∆

∂α

∂t
−∆α = −

∂u

∂t
.

We can note that we still have an infinite speed of propagation here, since (1.15) is
parabolic; actually, also (1.16) is not hyperbolic and we have not been able to prove
whether or not it exhibits a finite speed of propagation (note however that, as far as the
equation

∂2α

∂t2
−∆

∂α

∂t
−∆α = 0,

known as the strongly damped wave equation, is concerned, one does not have a finite
speed of propagation).

Our aim in this paper is to study the well-posedness and the dissipativity of (1.15)-
(1.16). We consider here two types of boundary conditions, namely, Dirichlet and Neu-
mann. Furthermore, we consider regular nonlinear terms f (a usual choice being the
cubic nonlinear term f(s) = s3 − s), as well as singular nonlinear terms (and, in partic-
ular, the thermodynamically relevant logarithmic nonlinear terms f(s) = k1s+

k2
2
ln 1+s

1−s
,

s ∈ (−1, 1), 0 < k2 < k1).
We are also interested in the study of the spatial behavior of the solutions. Spatial

decay estimates for partial differential equations are related to the Saint-Venant principle
which is both a mathematical and a thermomechanical aspect which has deserved much
attention in the last years (see [26] and the references therein). Such studies describe how
the influence of the perturbations on a part of the boundary is damped for the points which
are far away from the perturbations. Spatial decay estimates for elliptic [16], parabolic



4 A. MIRANVILLE, R. QUINTANILLA

[27], [28], hyperbolic [17] and/or combinations of such [42] have been obtained in the last
years. However, as far as nonlinear equations are concerned, such a knowledge is limited
(see [33], [34], [35], [37] and [38]). What is usual is to consider a semi-infinite cylinder
whose finite end is perturbed and see what happens when the spatial variable goes to
infinity. However, we do not study the existence of solutions to this problem; in fact,
this does not seem to be an easy task (see, e.g., [37]). We thus assume the existence of
solutions and then only study the spatial asymptotic behavior in that case. More precisely,
we obtain a Phragmén-Lindelöf alternative, i.e., either a growth or a decay estimate. An
upper bound on the amplitude term, when the solution decays, is also derived, in terms
of the boundary conditions.

Notation. We denote by ((·, ·)) the usual L2-scalar product, with associated norm ‖ · ‖;
more generally, ‖ · ‖X denotes the norm on the Banach space X.

We set, for v ∈ L1(Ω),

〈v〉 =
1

Vol(Ω)

∫

Ω

v dx

and v = v − 〈v〉.
We further note that

v 7→ (‖v‖2 + 〈v〉2)
1
2

and

v 7→ (‖∇v‖2 + 〈v〉2)
1
2

are norms on L2(Ω) and H1(Ω), respectively, which are equivalent to their usual norms.
Throughout the paper, the same letters c and c′ denote (generally positive) constants

which may vary from line to line. Similarly, the same letter Q denotes (positive) monotone
increasing (with respect to each argument) functions which may vary from line to line.

2. Dirichlet boundary conditions

2.1. Setting of the problem. We consider the following initial and boundary value
problem:

(2.1)
∂u

∂t
−∆u+ f(u) =

∂α

∂t
−∆

∂α

∂t
,

(2.2)
∂2α

∂t2
−∆

∂2α

∂t2
−∆

∂α

∂t
−∆α = −

∂u

∂t
,

(2.3) u = α = 0 on Γ,

(2.4) u|t=0 = u0, α|t=0 = α0,
∂α

∂t
|t=0 = α1.

As far as the nonlinear term f is concerned, we assume that
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(2.5) f ∈ C1(R), f(0) = 0,

(2.6) f ′ ≥ −c0, c0 ≥ 0,

(2.7) f(s)s ≥ c1F (s)− c2 ≥ −c3, c1 > 0, c2, c3 ≥ 0, s ∈ R,

where F (s) =
∫ s

0
f(ξ) dξ. In particular, the usual cubic nonlinear term f(s) = s3 − s

satisfies these assumptions.

2.2. A priori estimates. The estimates derived in this subsection will be formal, but
they can easily be justified within a Galerkin scheme.

We multiply (2.1) by ∂u
∂t

and have, integrating over Ω and by parts,

(2.8)
1

2

d

dt
(‖∇u‖2 + 2

∫

Ω

F (u) dx) + ‖
∂u

∂t
‖2 = ((

∂α

∂t
−∆

∂α

∂t
,
∂u

∂t
)).

We then multiply (2.2) by ∂α
∂t

−∆∂α
∂t

to obtain

(2.9)
1

2

d

dt
(‖∇α‖2+‖∆α‖2+‖

∂α

∂t
−∆

∂α

∂t
‖2)+‖∇

∂α

∂t
‖2+‖∆

∂α

∂t
‖2 = −((

∂α

∂t
−∆

∂α

∂t
,
∂u

∂t
)).

Summing (2.8) and (2.9), we find the differential equality

(2.10)
dE1

dt
+ 2‖

∂u

∂t
‖2 + 2‖∇

∂α

∂t
‖2 + 2‖∆

∂α

∂t
‖2 = 0,

where

(2.11) E1 = ‖∇u‖2 + 2

∫

Ω

F (u) dx+ ‖∇α‖2 + ‖∆α‖2 + ‖
∂α

∂t
−∆

∂α

∂t
‖2

satisfies

(2.12) E1 ≥ c(‖u‖2H1(Ω) + ‖α‖2H2(Ω) + ‖
∂α

∂t
‖2H2(Ω))− c′, c > 0

(note indeed that ‖∂α
∂t

−∆∂α
∂t
‖2 = ‖∂α

∂t
‖2 + 2‖∇∂α

∂t
‖2 + ‖∆∂α

∂t
‖2).

Next, we multiply (2.1) by u and have, owing to (2.7),

(2.13)
d

dt
‖u‖2 + c(‖u‖2H1(Ω) + 2

∫

Ω

F (u) dx) ≤ c′(‖
∂α

∂t
‖2 + ‖∆

∂α

∂t
‖2), c > 0.

Multiplying then (2.1) by −∆u, we obtain, owing to (2.6),

(2.14)
d

dt
‖∇u‖2 + c‖u‖2H2(Ω) ≤ c′(‖∇u‖2 + ‖

∂α

∂t
‖2 + ‖∆

∂α

∂t
‖2), c > 0.
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Summing finally (2.10), δ1 times (2.13) and δ2 times (2.14), where δ1, δ2 > 0 are small
enough, we find a differential inequality of the form

(2.15)
dE2

dt
+ c(‖u‖2H2(Ω) + 2

∫

Ω

F (u) dx+ ‖
∂u

∂t
‖2 + ‖

∂α

∂t
‖2H2(Ω)) ≤ c′, c > 0,

where

(2.16) E2 = E1 + δ1‖u‖
2 + δ2‖∇u‖2

satisfies

(2.17) E2 ≥ c(‖u‖2H1(Ω) + ‖α‖2H2(Ω) + ‖
∂α

∂t
‖2H2(Ω))− c′, c > 0.

In a next step, we multiply (2.2) by −∆α and have

(2.18)
d

dt
(‖∆α‖2 − 2((

∂α

∂t
,∆α)) + 2((∆

∂α

∂t
,∆α))) + ‖∆α‖2

≤ ‖
∂u

∂t
‖2 + 2‖∇

∂α

∂t
‖2 + 2‖∆

∂α

∂t
‖2.

Summing (2.15) and δ3 times (2.18), where δ3 > 0 is small enough, we obtain a differ-
ential inequality of the form

(2.19)
dE3

dt
+ c(E3 + ‖u‖2H2(Ω) + ‖

∂u

∂t
‖2) ≤ c′, c > 0,

where

(2.20) E3 = E2 + δ3(‖∆α‖2 − 2((
∂α

∂t
,∆α)) + 2((∆

∂α

∂t
,∆α)))

satisfies

(2.21) E3 ≥ c(‖u‖2H1(Ω) + ‖α‖2H2(Ω) + ‖
∂α

∂t
‖2H2(Ω))− c′, c > 0.

We now differentiate (2.1) with respect to time to find, owing to (2.2),

(2.22)
∂

∂t

∂u

∂t
−∆

∂u

∂t
+ f ′(u)

∂u

∂t
= −

∂u

∂t
+∆

∂α

∂t
+∆α,

together with the boundary condition

(2.23)
∂u

∂t
= 0 on Γ.

Multiplying (2.22) by ∂u
∂t
, we have, owing to (2.6),
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(2.24)
d

dt
‖
∂u

∂t
‖2 + c‖

∂u

∂t
‖2H1(Ω) ≤ c′(‖

∂u

∂t
‖2 + ‖α‖2H2(Ω) + ‖

∂α

∂t
‖2H2(Ω)), c > 0.

Summing (2.19) and δ4 times (2.24), where δ4 > 0 is small enough, we obtain a differ-
ential inequality of the form

(2.25)
dE4

dt
+ c(E4 + ‖u‖2H2(Ω) + ‖

∂u

∂t
‖2H1(Ω)) ≤ c′, c > 0,

where

(2.26) E4 = E3 + δ4‖
∂u

∂t
‖2

satisfies

(2.27) E4 ≥ c(‖u‖2H1(Ω) + ‖
∂u

∂t
‖2 + ‖α‖2H2(Ω) + ‖

∂α

∂t
‖2H2(Ω))− c′, c > 0.

We finally rewrite (2.1) as an elliptic equation, for t fixed,

(2.28) −∆u+ f(u) =
∂α

∂t
−∆

∂α

∂t
−

∂u

∂t
, u = 0 on Γ.

Multiplying (2.28) by −∆u, we find, owing to (2.6) and a classical elliptic regularity result,

(2.29) ‖u(t)‖2H2(Ω) ≤ cE4(t) + c′, t ≥ 0.

In particular, it follows from (2.25) and Gronwall’s lemma that

(2.30) E4(t) ≤ e−ctQ(‖u0‖H2(Ω), ‖α0‖H2(Ω), ‖α1‖H2(Ω)) + c′, c > 0, t ≥ 0,

where we have used the continuous embedding H2(Ω) ⊂ C(Ω) to deduce that

(2.31) |

∫

Ω

F (u0) dx| ≤ Q(‖u0‖H2(Ω))

and the fact that

∂u

∂t
(0) = ∆u0 − f(u0) + α1 −∆α1,

which yields

(2.32) ‖
∂u

∂t
(0)‖ ≤ Q(‖u0‖H2(Ω), ‖α1‖H2(Ω)).

Combining (2.29) and (2.30), we finally find, in view of (2.27),

(2.33) ‖u(t)‖2H2(Ω) + ‖
∂u

∂t
(t)‖2 + ‖α(t)‖2H2(Ω) + ‖

∂α

∂t
(t)‖2H2(Ω)
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≤ e−ctQ(‖u0‖H2(Ω), ‖α0‖H2(Ω), ‖α1‖H2(Ω)) + c′, c > 0, t ≥ 0.

2.3. The dissipative semigroup. We have the

Theorem 2.1. We assume that (2.5)-(2.7) hold. Then, for every (u0, α0, α1) ∈ (H2(Ω)∩
H1

0 (Ω))
3, (2.1)-(2.4) possesses a unique solution (u, α, ∂α

∂t
) such that

(u, α,
∂α

∂t
) ∈ L∞(R+;H2(Ω) ∩H1

0 (Ω))
3

and

∂u

∂t
∈ L∞(R+;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)), ∀T > 0.

Proof. The proof of existence is based on the a priori estimates derived in the previous
subsection and on, e.g., a standard Galerkin scheme.

Let now (u(1), α(1), ∂α
(1)

∂t
) and (u(2), α(2), ∂α

(2)

∂t
) be two solutions to (2.1)-(2.3) with initial

data (u
(1)
0 , α

(1)
0 , α

(1)
1 ) and (u

(2)
0 , α

(2)
0 , α

(2)
1 ), respectively. We set

(u, α,
∂α

∂t
) = (u(1), α(1),

∂α(1)

∂t
)− (u(2), α(2),

∂α(2)

∂t
)

and

(u0, α0, α1) = (u
(1)
0 , α

(1)
0 , α

(1)
1 )− (u

(2)
0 , α

(2)
0 , α

(2)
1 )

and have

(2.34)
∂u

∂t
−∆u+ f(u(1))− f(u(2)) =

∂α

∂t
−∆

∂α

∂t
,

(2.35)
∂2α

∂t2
−∆

∂2α

∂t2
−∆

∂α

∂t
−∆α = −

∂u

∂t
,

(2.36) u = α = 0 on Γ,

(2.37) u|t=0 = u0, α|t=0 = α0,
∂α

∂t
|t=0 = α1.

Multiplying (2.34) by ∂u
∂t
, we obtain, owing to (2.33) and the continuous embedding

H2(Ω) ⊂ C(Ω),

(2.38)
1

2

d

dt
‖∇u‖2 +

1

2
‖
∂u

∂t
‖2 ≤ ((

∂α

∂t
−∆

∂α

∂t
,
∂u

∂t
)) +Q‖u‖2,

where, here and below,

Q = Q(‖u
(1)
0 ‖H2(Ω), ‖α

(1)
0 ‖H2(Ω), ‖α

(1)
1 ‖H2(Ω), ‖u

(2)
0 ‖H2(Ω), ‖α

(2)
0 ‖H2(Ω), ‖α

(2)
1 ‖H2(Ω)).
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Multiplying then (2.35) by ∂α
∂t

−∆∂α
∂t

(proceeding exactly as in the previous subsection)
and adding the resulting differential equality to (2.38), we find

(2.39)
d

dt
(‖∇u‖2 + ‖∇α‖2 + ‖∆α‖2 + ‖

∂α

∂t
−∆

∂α

∂t
‖2) ≤ Q‖u‖2.

It thus follows from (2.39) and Gronwall’s lemma that

(2.40) ‖u(t)‖2H1(Ω) + ‖α(t)‖2H2(Ω) + ‖
∂α

∂t
(t)‖2H2(Ω)

≤ ceQt(‖u0‖
2
H1(Ω) + ‖α0‖

2
H2(Ω) + ‖α1‖

2
H2(Ω)), t ≥ 0,

hence the uniqueness, as well as the continuity (with respect to the H1(Ω)×H2(Ω)2-norm)
with respect to the initial data.

�

It follows from Theorem 2.1 that we can define the family of solving operators

S(t) : Φ → Φ, (u0, α0, α1) 7→ (u(t), α(t),
∂α

∂t
(t)), t ≥ 0,

where Φ = (H2(Ω) ∩ H1
0 (Ω))

3. Furthermore, this family of solving operators forms a
continuous (for the H1(Ω)×H2(Ω)2-topology) semigroup, i.e., S(0) = Id and S(t+ τ) =
S(t) ◦ S(τ), ∀t, τ ≥ 0. Finally, it follows from (2.33) that S(t) is dissipative in Φ, in
the sense that it possesses a bounded absorbing set B0 ⊂ Φ (i.e., ∀B ⊂ Φ bounded,
∃t0 = t0(B) such that t ≥ t0 implies S(t)B ⊂ B0).

Remark 2.2. The dissipativity is a first step in view of the study of the (temporal) as-
ymptotic behavior of the associated dynamical system. In particular, an important issue
is to prove the existence of finite-dimensional attractors: such objects describe all possi-
ble dynamics of the system; furthermore, the finite-dimensionality means, very roughly
speaking, that, even though the initial phase space Φ has infinite dimension, the reduced
dynamics can be described by a finite number of parameters (we refer the interested reader
to, e.g., [41] and [44] for discussions on this subject). This will be studied elsewhere.

2.4. Singular nonlinear terms. We now assume that f satisfies

(2.41) f ∈ C1(−1, 1), f(0) = 0,

(2.42) lim
s→±1

f(s) = ±∞, lim
s→±1

f ′(s) = +∞.

In particular, these assumptions are satisfied by the thermodynamically relevant logarith-
mic nonlinear terms mentioned in the introduction. Furthermore, it follows from these
properties that

(2.43) f ′ ≥ −c0, c0 ≥ 0,
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(2.44) f(s)s ≥ F (s)− c1 ≥ −c2, c1, c2 ≥ 0, s ∈ (−1, 1),

where, again, F (s) =
∫ s

0
f(ξ) dξ.

We then introduce, for N ∈ N given, the approximated function fN ∈ C1(R) given by

fN(s) =











f(−1 + 1
N
) + f ′(−1 + 1

N
)(s+ 1− 1

N
), s < −1 + 1

N
,

f(s), |s| ≤ 1− 1
N
,

f(1− 1
N
) + f ′(1− 1

N
)(s− 1 + 1

N
), s > 1− 1

N
.

Owing to the properties of f and the above explicit expression of fN , it is not difficult to
prove that, at least for N large enough,

(2.45) f ′

N ≥ −c0,

(2.46) fN(s)s ≥ c3FN(s)− c4 ≥ −c5, c3 > 0, c4, c5 ≥ 0, s ∈ R,

where FN(s) =
∫ s

0
fN(ξ) dξ. Here, all the constants are independent of N . The functions

fN thus satisfy all the assumptions of the previous subsection (uniformly with respect to
N if N is large enough).

We finally consider the following approximated problems:

(2.47)
∂uN

∂t
−∆uN + fN(u

N) =
∂αN

∂t
−∆

∂αN

∂t
,

(2.48)
∂2αN

∂t2
−∆

∂2αN

∂t2
−∆

∂αN

∂t
−∆αN = −

∂uN

∂t
,

(2.49) uN = αN = 0 on Γ,

(2.50) uN |t=0 = u0, αN |t=0 = α0,
∂αN

∂t
|t=0 = α1.

In particular, proceeding as in the previous subsection, we can prove the existence and
uniqueness of the solution (uN , αN , ∂α

N

∂t
) to (2.47)-(2.50) and we have the

Theorem 2.3. We assume that (2.41)-(2.42) hold and that (u0, α0, α1) ∈ (H2(Ω) ∩
H1

0 (Ω))
3, with ‖u0‖L∞(Ω) < 1. Then, (2.47)-(2.50) possesses a unique solution (u, α, ∂α

∂t
)

such that

(u, α,
∂α

∂t
) ∈ L∞(R+;H2(Ω) ∩H1

0 (Ω))
3

and

∂u

∂t
∈ L∞(R+;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)), ∀T > 0.
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Furthermore, −1 < u(t, x) < 1 a.e. (t, x).

Proof. a) Existence:

As mentioned above, (2.47)-(2.50) possesses a unique solution (uN , αN , ∂α
N

∂t
) which

enjoys the same regularity as in Theorem 2.1. Furthermore, since the constants in (2.45)-
(2.46) are independent of N , we can derive exactly the same estimates as in Subsection
2.2 on this solution, uniformly with respect to N . In particular, this yields that, at least
for a subsequence which we do not relabel, there exists a triplet (u, α, ∂α

∂t
) such that, for

every T > 0,

uN → u in L∞(0, T ;H2(Ω)) weak− ⋆ and a.e. (t, x) ∈ (0, T )× Ω,

∂uN

∂t
→

∂u

∂t
in L∞(0, T ;L2(Ω)) weak− ⋆ and in L2(0, T ;H1(Ω)) weak,

αN → α in L∞(0, T ;H2(Ω)) weak− ⋆

and

∂αN

∂t
→

∂α

∂t
in L∞(0, T ;H2(Ω)) weak− ⋆.

The only difficulty, to pass to the limit in the approximated problems (say, within a
proper weak/variational formulation), is to prove that fN(u

N) tends to f(u) in a proper
sense. To do so, we need a uniform (with respect to N) estimate on fN(u

N) in L2((0, T )×
Ω). This can be easily obtained by noting that

fN(u
N) = −

∂uN

∂t
+∆uN +

∂αN

∂t
−∆

∂αN

∂t
,

hence

‖fN(u
N)‖ ≤ c(‖uN‖H2(Ω) + ‖

∂uN

∂t
‖+ ‖

∂αN

∂t
‖H2(Ω)),

where the constant c is independent of N . Actually, we have more and fN(u
N) is bounded

in L∞(0, T ;H1(Ω)).
Noting that, a fortiori, fN(u

N) is bounded, uniformly with respect to N , in L1((0, T )×
Ω), it follows from the explicit expression of fN that

meas(EN,M) ≤ ϕ(
1

N
), N ≤ M,

where

EN,M = {(t, x) ∈ (0, T )× Ω, |uM(t, x)| > 1−
1

N
}

and

ϕ(s) =
c

max(|f(1− s)|, |f(s− 1)|)
,
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the constant c being independent of N and M . We can note indeed that

(2.51)

∫ T

0

∫

Ω

|fM(uM)| dx dt ≥

∫

EN,M

|fM(uM)| dx dt ≥ c′meas(EN,M)
1

ϕ( 1
N
)
,

where the constant c′ is independent of N and M . We can pass to the limit M → +∞
(employing Fatou’s lemma, see (2.51)) and then N → +∞ (noting that lims→0 ϕ(s) = 0)
to find

meas{(t, x) ∈ (0, T )× Ω, |u(t, x)| ≥ 1} = 0,

so that

(2.52) −1 < u(t, x) < 1 a.e. (t, x).

Next, it follows from the above almost everywhere convergence of uN to u, (2.52) and
again the explicit expression of fN that

(2.53) fN(u
N) → f(u) a.e. (t, x) ∈ (0, T )× Ω.

Finally, since fN(u
N) is bounded, uniformly with respect to N , in L2((0, T ) × Ω), it

follows from (2.53) that fN(u
N) → f(u) in L2((0, T )× Ω) weak, which finishes the proof

of the passage to the limit.

b) Uniqueness:

Here, the proof of uniqueness is not as straightforward as in the case of regular nonlinear
terms, since, as we cannot expect a bound on f ′, we cannot proceed as in the proof of
Theorem 2.1.

Instead, we multiply (2.34) by u and have, owing to (2.43),

(2.54)
d

dt
‖u‖2 + c‖u‖2H1(Ω) ≤ c(‖u‖2 + ‖

∂α

∂t
‖2H2(Ω)), c > 0.

Next, we integrate (2.35) between 0 and t to obtain

(2.55)
∂α

∂t
−∆

∂α

∂t
−∆α−∆

∫ t

0

α(τ) dτ = −u.

Here, we have taken, for simplicity, (u0, α0, α1) = (0, 0, 0). Multiplying (2.55) by −∆α,
we find

(2.56)
d

dt
(‖∇α‖2 + ‖∆α‖2 + ‖∆

∫ t

0

α(τ) dτ‖2) + c‖α‖2H2(Ω) ≤ ‖u‖2, c > 0.

Multiplying then (2.55) by −∆∂α
∂t
, we have

(2.57)
d

dt
(‖∆α‖2 + 2((∆

∫ t

0

α(τ) dτ,∆α))) + c‖
∂α

∂t
‖2H2(Ω) ≤ c′(‖u‖2 + ‖α‖2H2(Ω)), c > 0.
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Summing finally δ5 times (2.54), (2.56) and δ6 times (2.57), we obtain a differential
inequality of the form, taking δ5, δ6 > 0 small enough,

(2.58)
dE5

dt
≤ cE5,

where

(2.59) E5 = δ5‖u‖
2 + ‖∇α‖2 + ‖∆α‖2 + ‖∆

∫ t

0

α(τ) dτ‖2

+δ6(‖∆α‖2 + 2((∆

∫ t

0

α(τ) dτ,∆α)))

satisfies

(2.60) E5 ≥ c(‖u‖2 + ‖α‖2H2(Ω)), c > 0.

Gronwall’s lemma, together with (2.60), then yields the uniqueness. We can note that
this would not give a continuity result (with respect to the initial data) for ∂α

∂t
, but such

a continuity would then follow from (2.55).
�

Remark 2.4. Since ‖u0‖L∞(Ω) < 1, then, for N large enough, fN(u0) = f(u0) and
FN(u0) = F (u0). This yields

|

∫

Ω

FN(u0) dx| ≤ Q(‖u0‖H2(Ω)),

where the monotone increasing function Q is independent of N . Now, in the case of
the thermodynamically relevant logarithmic nonlinear terms (see the introduction), F is
bounded on (−1, 1), yielding that also FN is bounded, uniformly with respect to N , on
(−1, 1), since

FN(s) =



























F (−1 + 1
N
) + f(−1 + 1

N
)(s+ 1− 1

N
)

+1
2
f ′(−1 + 1

N
)(s+ 1− 1

N
)2, s < −1 + 1

N
,

F (s), |s| ≤ 1− 1
N
,

F (1− 1
N
) + f(1− 1

N
)(s− 1 + 1

N
)

+1
2
f ′(1− 1

N
)(s− 1 + 1

N
)2, s > 1− 1

N
.

In that case, we can relax the assumptions on u0 and only assume that −1 < u0(x) < 1
a.e. x ∈ Ω.

Remark 2.5. We again assume that ‖u0‖L∞(Ω) < 1. We can prove, for the original
Caginalp system, a strict separation property of the form

(2.61) ‖u(t)‖L∞(Ω) ≤ η, t ∈ [0, T ], η = η(T ) ∈ (0, 1), T > 0.
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Let us assume more regularity on α0 and α1, namely, (α0, α1) ∈ (H3(Ω)∩H1
0 (Ω))

2. Then,
rewriting (2.2) in the (functional) form

(2.62)
d2α

dt2
+ A

d2α

dt2
+ A

dα

dt
+ Aα = −

du

dt
,

where A denotes the minus Laplace operator with Dirichlet boundary conditions, and
multiplying (scalarly) (2.62) by A2 dα

dt
, we have

(2.63)
d

dt
(‖A

3
2α‖2 + ‖A

dα

dt
‖2 + ‖A

3
2
dα

dt
‖2) + ‖A

3
2
dα

dt
‖2 ≤ ‖A

1
2
du

dt
‖2,

which yields that ∂α
∂t

− ∆∂α
∂t

∈ L∞(0, T ;H1(Ω)). Having this, we can deduce a strict
separation property as above, in one and two space dimensions. Indeed, it has been
proved in [31] that, in one and two space dimensions, the (regular) solution to the parabolic
equation

∂u

∂t
−∆u+ f(u) = g, g = g(t, x) ∈ L∞(0, T ;H1(Ω)),

satisfies (2.61). Actually, in one space dimension, this is straightforward, owing to the
maximum/comparison principle and the continuous embedding H1(Ω) ⊂ C(Ω). In two
space dimensions, the proof is more involved and is based on a proper Orlicz embedding
(see also [40]). Finally, in three space dimensions, (2.61) also holds, but provided that
the singular function |f | has a growth of the form

c

(1− s2)r
, r ≥ 5, c > 0,

close to ±1. Unfortunately, this is not satisfied by the thermodynamically relevant log-
arithmic nonlinear terms and, in that case, the strict separation from the pure phases is
an open problem.

3. Neumann boundary conditions

We now consider the following initial and boundary value problem:

(3.1)
∂u

∂t
−∆u+ f(u) =

∂α

∂t
−∆

∂α

∂t
,

(3.2)
∂2α

∂t2
−∆

∂2α

∂t2
−∆

∂α

∂t
−∆α = −

∂u

∂t
,

(3.3)
∂u

∂ν
=

∂α

∂ν
= 0 on Γ,

(3.4) u|t=0 = u0, α|t=0 = α0,
∂α

∂t
|t=0 = α1,
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where ν denotes the unit outer normal, and we assume that f satisfies (2.5)-(2.7) (note
however that the assumption f(0) = 0 is not necessary in that case).

3.1. A priori estimates. We first note that, integrating (3.2) over Ω, we have, in view
of (3.3),

(3.5)
d2〈α〉

dt2
= −

d〈u〉

dt
.

It thus follows from (3.4) and (3.5) that

(3.6)
d〈α〉

dt
= 〈u0 + α1〉 − 〈u〉,

meaning, in particular, that 〈u+ ∂α
∂t
〉 is a conserved quantity.

This constitutes the main difference, when compared with Dirichlet boundary condi-
tions, and obliges us to be more careful in the derivation of the a priori estimates. In
particular, in order to still have dissipativity, we assume from now on that

(3.7) |〈u0 + α1〉| ≤ M, M ≥ 0 given,

hence

(3.8) |〈u+
∂α

∂t
〉(t)| ≤ M, t ≥ 0.

We deduce from (3.2) and (3.5) that

(3.9)
∂2α

∂t2
−∆

∂2α

∂t2
−∆

∂α

∂t
−∆α = −

∂u

∂t
.

Furthermore, we can rewrite, in view of (3.6), (3.1) as

(3.10)
∂u

∂t
−∆u+ f(u) =

∂α

∂t
−∆

∂α

∂t
+ 〈u0 + α1〉 − 〈u〉.

Multiplying (3.10) by ∂u
∂t
, we have

1

2

d

dt
(‖∇u‖2 + 2

∫

Ω

F (u) dx) + ‖
∂u

∂t
‖2

= ((
∂α

∂t
−∆

∂α

∂t
,
∂u

∂t
))− Vol(Ω)〈u〉〈

∂u

∂t
〉+Vol(Ω)〈u0 + α1〉〈

∂u

∂t
〉,

which yields, owing to (3.7),

(3.11)
d

dt
(‖∇u‖2 +Vol(Ω)〈u〉2 + 2

∫

Ω

F (u) dx) + ‖
∂u

∂t
‖2 ≤ 2((

∂α

∂t
−∆

∂α

∂t
,
∂u

∂t
)) + cM .

We then multiply (3.9) by ∂α
∂t

−∆∂α
∂t

to obtain
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(3.12)
d

dt
(‖∇α‖2 + ‖∆α‖2 + ‖

∂α

∂t
−∆

∂α

∂t
‖2) + 2‖∇

∂α

∂t
‖2 + 2‖∆

∂α

∂t
‖2

= −2((
∂α

∂t
−∆

∂α

∂t
,
∂u

∂t
)).

Summing finally (3.11) and (3.12), we find

(3.13)
d

dt
(‖∇u‖2 +Vol(Ω)〈u〉2 + 2

∫

Ω

F (u) dx+ ‖∇α‖2 + ‖∆α‖2 + ‖
∂α

∂t
−∆

∂α

∂t
‖2)

+c(‖
∂u

∂t
‖2 + ‖

∂α

∂t
‖2H2(Ω)) ≤ c′M , c > 0.

Next, multiplying (3.10) by u, we have, proceeding as in Subsection 2.2,

(3.14)
d

dt
‖u‖2 + c(‖∇u‖2 +Vol(Ω)〈u〉2 + 2

∫

Ω

F (u) dx) ≤ c′‖
∂α

∂t
‖2H2(Ω) + c′′M , c > 0.

We now note that, owing to (3.6),

(3.15) 〈
∂α

∂t
〉2 ≤ 2(〈u〉2 +M2)

and, owing to (3.5)-(3.6),

(3.16)
d

dt
〈
∂α

∂t
〉2 = 2〈

∂2α

∂t2
〉(〈u0 + α1〉 − 〈u〉)

≤ c(〈u〉2 + 〈
∂u

∂t
〉2 +M2).

Summing (3.13), δ7 times (3.14), δ8 times (3.15) and δ9 times (3.16), where δ7, δ8, δ9 > 0
are small enough, we obtain a differential inequality of the form

(3.17)
dE6

dt
+ c(‖u‖2H1(Ω) + 2

∫

Ω

F (u) dx+ ‖
∂u

∂t
‖2 + ‖

∂α

∂t
‖2H2(Ω)) ≤ c′M , c > 0,

where E6 satisfies

(3.18) E6 ≥ c(‖u‖2H1(Ω) +

∫

Ω

F (u) dx+ ‖α‖2H2(Ω) + ‖
∂α

∂t
‖2H2(Ω))− c′, c > 0.

Having this, we can proceed as in Subsection 2.2, with minor modifications, and derive
a differential inequality of the form

(3.19)
dE7

dt
+ c(E7 + ‖u‖2H2(Ω) + ‖

∂u

∂t
‖2H1(Ω)) ≤ c′M , c > 0,

where E7 satisfies



PHASE-FIELD SYSTEM 17

(3.20) E7 ≥ c(‖u‖2H1(Ω) +

∫

Ω

F (u) dx+ ‖
∂u

∂t
‖2 + ‖α‖2H2(Ω) + ‖

∂α

∂t
‖2H2(Ω))− c′, c > 0,

together with

(3.21) ‖u(t)‖2H2(Ω) ≤ cE7(t) + c′M , t ≥ 0.

Remark 3.1. Here, we are not able to derive a dissipative estimate on 〈α〉 and, thus, on
α. Indeed, the best that we have is, in view of (3.6),

|〈α(t)〉| ≤ Mt+

∫ t

0

|〈u(ξ)〉| dξ,

which is not dissipative. However, α = α− 〈α〉 is dissipative.

3.2. The dissipative semigroup. We have the

Theorem 3.2. We assume that (2.5)-(2.7) hold. Then, for every (u0, α0, α1) ∈ H2(Ω)3

such that ∂u0

∂ν
= ∂α0

∂ν
= ∂α1

∂ν
= 0 on Γ, (3.1)-(3.4) possesses a unique solution (u, α, ∂α

∂t
)

such that

(u, α,
∂α

∂t
) ∈ L∞(R+;H2(Ω))3,

α ∈ L∞(0, T ;H2(Ω))

and

∂u

∂t
∈ L∞(R+;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

∀T > 0.

The proof of this theorem is similar to that of Theorem 2.1, with minor modifications as
far as the proof of uniqueness is concerned. Now, concerning the proof of the continuous
dependence with respect to the initial data, we again proceed in a same way, assuming,

for simplicity, that 〈u
(1)
0 + α

(1)
0 〉 = 〈u

(2)
0 + α

(2)
0 〉.

Setting then

ΦM = {(v, p, q) ∈ H2(Ω)2,
∂v

∂ν
=

∂p

∂ν
=

∂q

∂ν
= 0 on Γ, 〈v + q〉 = M}, M ≥ 0 given,

we can define the family of solving operators

S(t) : ΦM → ΦM , (u0, α0, α1) 7→ (u(t), α(t),
∂α

∂t
(t)), t ≥ 0.

This family of operators forms a continuous (for the H1(Ω)×H2(Ω)2-topology) semigroup
which is not dissipative. However, setting now

ΦM = {(v, p, q) ∈ ΦM , 〈p〉 = 0}
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and defining

S(t) : ΦM → ΦM , (u0, α0, α1) 7→ (u(t), α(t),
∂α

∂t
(t)), t ≥ 0,

we still have a semigroup (see [12]) and it follows from (3.19)-(3.20) that this semigroup
is dissipative in ΦM .

We can also easily adapt the estimates in Subsection 3.1 (and also in Subsection 2.4)
to singular nonlinear terms (again, with minor changes) and we have the

Theorem 3.3. We assume that (2.41)-(2.42) hold. Then, for every (u0, α0, α1) ∈ H2(Ω)3

such that ∂u0

∂ν
= ∂α0

∂ν
= ∂α1

∂ν
= 0 on Γ and ‖u0‖L∞(Ω) < 1, (3.1)-(3.4) possesses a unique

solution (u, α, ∂α
∂t
) such that

(u, α,
∂α

∂t
) ∈ L∞(R+;H2(Ω))3,

α ∈ L∞(0, T ;H2(Ω))

and

∂u

∂t
∈ L∞(R+;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

∀T > 0. Furthermore, −1 < u(t, x) < 1 a.e. (t, x).

4. Spatial behavior of solutions in a semi-infinite cylinder

4.1. Phragmén-Lindelöf alternative. Our aim in this subsection is to study the spatial
behavior of the solutions to (2.1)-(2.2). More precisely, we study this system in the semi-
infinite cylinder R = (0,+∞)×D, whereD is a two-dimensional bounded domain which is
smooth enough to allow the use of the divergence theorem. We supplement the equations
with the following boundary conditions:

(4.1) u = α = 0 on (0, T )× (0,+∞)× ∂D,

(4.2) u(t, 0, x2, x3) = h(t, x2, x3), α(t, 0, x2, x3) = m(t, x2, x3) on (0, T )× {0} ×D,

where T > 0 is a given final time, and null initial conditions:

(4.3) u|t=0 = α|t=0 =
∂α

∂t
|t=0 = 0 on R.

The nonlinearity of the problem is determined by the function f . As far as this function
is concerned, we assume that there exists a positive constant d such that

(4.4) f(s)s+ ds2 ≥ 0 and F (s) + ds2 ≥ 0.

Here, F is as defined in the previous sections. It is clear that the function f(s) = s3 − s
satisfies these conditions. Actually, any function of the form f(s) = a|s|ks− bs, a, k > 0,
satisfies the assumptions.

Our aim is to obtain an alternative of Phragmén-Lindelöf type, i.e., the solutions de-
crease (resp., grow) in a negative (resp., positive) exponential way with respect to the
spatial variable.



PHASE-FIELD SYSTEM 19

We start our analysis by considering the function

(4.5) Fω(t, z) =

∫ t

0

∫

D(z)

exp(−2ωs) (u,1us + αs(αs,1 + α,1)) da ds,

where D(z) = {x ∈ R, x1 = z} and ω is an arbitrary positive constant to be fixed later;
here, vs =

∂v
∂s

and v,1 =
∂v
∂x1

. We have, owing to the boundary and initial conditions and
the divergence theorem,

(4.6) Fω(t, z + h)− Fω(t, z) =

∫ t

0

∫

R(z,z+h)

exp(−2ωs)W dxds,

where R(z, z + h) = {x ∈ R, z < x1 < z + h} and

W = u,ius,i + u2
s + f(u)us − (αs −△αs)us + αs,iαs,i + α,iαs,i + (△αs +△α)αs.

We thus see that

W =
d

ds

(

1

2
|∇u|2 + F (u) +

1

2
(αs −△αs)

2 +
1

2
|∇α|2 +

1

2
(△α)2

)

+|us|
2+(△αs)

2+|∇αs|
2.

This yields

(4.7) Fω(t, z + h)− Fω(t, z)

=
exp(−2ωt)

2

∫

R(z,z+h)

(

|∇u|2 + 2F (u) + (αs −△αs)
2 + |∇α|2 + (△α)2

)

dx

+

∫ t

0

∫

R(z,z+h)

exp(−2ωs)(|us|
2 + (△αs)

2 + |∇αs|
2

+ ω(|∇u|2 + 2F (u) + (αs −△αs)
2 + |∇α|2 + (△α)2)) dx ds

and a direct differentiation gives

(4.8)
∂Fω(t, z)

∂z
=

exp(−2ωt)

2

∫

D(z)

(

|∇u|2 + 2F (u) + (αs −△αs)
2 + |∇α|2 + (△α)2

)

da

+

∫ t

0

∫

D(z)

exp(−2ωs)(|us|
2 + (△αs)

2 + |∇αs|
2

+ ω(|∇u|2 + 2F (u) + (αs −△αs)
2 + |∇α|2 + (△α)2)) da ds.

We now consider a second functional, namely,

Gω(t, z) =

∫ t

0

∫

D(z)

exp(−2ωs)u,1u da ds.

We find, proceeding as above,

(4.9) Gω(t, z + h)−Gω(t, z) =
exp(−2ωt)

2

∫

R(z,z+h)

|u|2 dx

+

∫ t

0

∫

R(z,z+h)

exp(−2ωs)
(

|∇u|2 + f(u)u− (αs −△αs)u+ ω|u|2
)

dx ds
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and we see that

(4.10)
∂Gω(t, z)

∂z
=

exp(−2ωt)

2

∫

D(z)

|u|2 da

+

∫ t

0

∫

D(z)

exp(−2ωs)
(

|∇u|2 + f(u)u− (αs −△αs)u+ ω|u|2
)

da ds.

Next, we consider a positive constant φ to be fixed later and introduce the function
Hω = Fω + φGω. We have

(4.11)
∂Hω(t, z)

∂z
=

exp(−2ωt)

2

∫

D(z)

(|∇u|2 + 2F (u) + (αs −△αs)
2 + |∇α|2

+ (△α)2 + φ|u|2) dx+

∫ t

0

∫

D(z)

exp(−2ωs)Σφ dx ds,

where

(4.12) Σφ = |us|
2 + (△αs)

2 + |∇αs|
2 + φ(|∇u|2 + f(u)u− (αs −△αs)u)

+ ω(|∇u|2 + 2F (u) + (αs −△αs)
2 + |∇α|2 + (△α)2 + φ|u|2).

We can select a positive constant φ which is large enough to guarantee that

φ|u|2 + 2F (u) ≥ 0

and such that

φf(u)u+ ω(αs −△αs)
2 − φ(αs −△αs)u+ φω|u|2 + 2ωF (u) ≥ C0((αs −△αs)

2 + u2),

where C0 is a positive constant.
It is worth giving an explanation on why we can choose φ and ω satisfying these

conditions. The first one is clear and, as far as the second one is concerned, we can note
that the determinant of the matrix

(4.13)

(

φω − 2ωd− φd φ
2

φ
2

ω

)

reads φω2 − 2ω2d− φωd− φ2/4. We can thus select ω and φ such that the above matrix
is positive definite and both conditions are satisfied. We thus have the existence of a
positive constant C1 such that

Σφ ≥ C1(|us|
2+(△αs)

2+|∇αs|
2+|∇u|2+(αs−△αs)

2+|∇α|2+(△α)2+|u|2+(F (u)+du2)).

The next step consists in obtaining an estimate on |Hω| in terms of the spatial derivative
of Hω. We note that we can find positive constants C2, C3 and C4 such that

|u,1us| ≤ C2Σφ, |αs(αs,1 + α,1)| ≤ C3Σφ and |φu,1u| ≤ C4Σφ.

It then follows that there exists a positive constant C5 = C2 + C3 + C4 such that

(4.14) |Hω(t, z)| ≤ C5
∂Hω(t, z)

∂z
,

for every t and z ≥ 0.
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Inequality (4.14) is classical in the study of spatial estimates (see [16]) and yields a
Phragmén-Lindelöf alternative. If there exists z0 ≥ 0 such that Hω(t, z0) > 0, then the
solution satisfies the estimate

(4.15) Hω(t, z) ≥ Hω(t, z0) exp(C
−1
5 (z − z0)), z ≥ z0.

This estimate gives information in terms of the measure defined in the cylinder. Indeed,
it follows that

(4.16)
exp(−2ωt)

2

∫

R(0,z)

(|∇u|2 + 2F (u) + (αs −△αs)
2 + |∇α|2 + (△α)2 + φ|u|2) dx

+

∫ t

0

∫

R(0,z)

exp(−2ωs)Σφ dx ds

tends to infinity exponentially fast, where R(0, z) = {x ∈ R, x1 ≤ z}. On the contrary,
when Hω(t, z) ≤ 0, for every z ≥ 0, we deduce that the solution decays and we can obtain
an estimate of the form

(4.17) −Hω(t, z) ≤ −Hω(t, 0) exp(−C−1
5 z), z ≥ 0.

This inequality implies that Hω(t, z) tends to zero as z goes to infinity. Furthermore, in
view of (4.17), we see that

(4.18) Eω(t, z) ≤ Eω(t, 0) exp(−C−1
5 z), z ≥ 0,

where

(4.19) Eω(t, z)

=
exp(−2ωt)

2

∫

R(z)

(|∇u|2 + 2F (u) + (αs −△αs)
2 + |∇α|2 + (△α)2 + φ|u|2) dx

+

∫ t

0

∫

R(z)

exp(−2ωs)Σφ dx ds

and R(z) = {x ∈ R, x1 > z}.
Setting finally

(4.20) E(t, z) =
1

2

∫

R(z)

(|∇u|2 + 2F (u) + (αs −△αs)
2 + |∇α|2 + (△α)2 + φ|u|2) dx

+

∫ t

0

∫

R(z)

Σφ dx ds,

we have the

Theorem 4.1. Let (u, α) be a smooth solution to the problem defined by (2.1)-(2.2), the
boundary conditions (4.1)-(4.2) and the initial conditions (4.3). Then, either this solution
satisfies the growth estimate (4.15) or it satisfies the decay estimate

(4.21) E(t, z) ≤ Eω(t, 0) exp(2ωt− C−1
5 z), z ≥ 0,

where the energy Eω is defined in (4.20) and Eω is given by (4.19).
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4.2. The amplitude term. The spatial decay estimate obtained in the previous sub-
section is of limited use unless we have an upper bound on the amplitude term Eω(t, 0)
in terms of the boundary conditions. The aim of this subsection is thus to obtain such
a bound. To do so, we need to impose an extra condition on the nonlinear term. More
precisely, we assume from now on that there exists a positive constant d1 such that the
inequality

(f(s) + d1s)
p ≤ m(F (s) + ds2), p > 1, m ≥ 0,

holds. We can note that the functions of the form f(s) = a|s|ks − d1s, a, k > 0, satisfy
this condition.

We first note that

(4.22) Eω(t, 0) = −

∫ t

0

∫

D

exp(−2ωs) (u,1(gs + φg) + (αs,1 + α,1)ls) da ds,

whenever g and l satisfy the same boundary conditions as u and α, respectively.
We now define the functions

g(s, x) = h(s, x2, x3) exp(−bx1), l(s, x) = m(s, x2, x3) exp(−bx1),

where b is an arbitrary positive constant. Then,

(4.23) Eω(t, 0) =

∫ t

0

∫

R

exp(−2ωs) (u,i(gs,i + φg,i) + (αs,i + α,i)ls,i) dx ds

+

∫ t

0

∫

R

exp(−2ωs)((us + (f(u) + d1u)− d1u

− (αs −△αs))(gs + φg)− (αs −△αs)lss) dx ds

+

∫ t

0

∫

R

exp(−2ωs)(2ω(αs −△αs)− us)ls dx ds+ exp(−2ωt)

∫

R

(αt −△αt)lt dx.

Furthermore,
∫ t

0

∫

R

exp(−2ωs)u,i(gs,i + φg,i) dx ds ≤ ǫ1Eω(t, 0)

+C∗

1

∫ t

0

∫

R

exp(−2ωs)(gs,i + φg,i)(gs,i + φg,i) dx ds,

∫ t

0

∫

R

exp(−2ωs)(αs,i + α,i)ls,i dx ds ≤ ǫ2Eω(t, 0) + C∗

2

∫ t

0

∫

R

exp(−2ωs)ls,ils,i dx ds,

∫ t

0

∫

R

exp(−2ωs)(us − d1u)(gs + φg) dx ds

≤ ǫ3Eω(t, 0) + C∗

3

∫ t

0

∫

R

exp(−2ωs)(gs + φg)2 dx ds,

∫ t

0

∫

R

exp(−2ωs)(f(u) + d1u)(gs + φg) dx ds

≤

(
∫ t

0

∫

R

exp(−2ωs)(f(u) + d1u)
p dx ds

)1/p (∫ t

0

∫

R

exp(−2ωs)(gs + φg)q dx ds

)1/q
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≤

(
∫ t

0

∫

R

exp(−2ωs)m(F (u) + du2) dx ds

)1/p (∫ t

0

∫

R

exp(−2ωs)(gs + φg)q dx ds

)1/q

≤ ǫ4Eω(t, 0) + C∗

4

∫ t

0

∫

R

exp(−2ωs)(gs + φg)q dx ds,

−

∫ t

0

∫

R

exp(−2ωs)(αs −△αs)(gs + φg) dx ds ≤ ǫ5Eω(t, 0)

+C∗

5

∫ t

0

∫

R

exp(−2ωs)(gs + φg)2 dx ds,

−

∫ t

0

∫

R

exp(−2ωs)(αs −△αs)lss dx ds ≤ ǫ6Eω(t, 0) + C∗

6

∫ t

0

∫

R

exp(−2ωs)l2ss dx ds,

∫ t

0

∫

R

exp(−2ωs)(2ω(αs −△αs)− us)ls dx ds ≤ ǫ7Eω(t, 0) +C∗

7

∫ t

0

∫

R

exp(−2ωs)l2s dx ds,

exp(−2ωt)

∫

R

(αs −△αs)ls dx ≤ ǫ8Eω(t, 0) + C∗

8

∫

R

exp(−2ωt)l2t dx.

Here, ǫi, i = 1, ..., 8, are positive constants to be fixed later and C∗

i , i = 1, ..., 8, are
calculable positive constants. Now, we select the ǫi’s such that ǫ1 + ... + ǫ8 = 1/2. We
then obtain

Eω(t, 0)

≤ 2C∗

1

∫ t

0

∫

R

exp(−2ωs)(gs,i + φg,i)(gs,i + φg,i) dx ds+ 2C∗

2

∫ t

0

∫

R

exp(−2ωs)ls,ils,i dx ds

+2(C∗

3 + C∗

5)

∫ t

0

∫

R

exp(−2ωs)(gs + φg)2 dx ds+ 2C∗

4

∫ t

0

∫

R

exp(−2ωs)(gs + φg)q dx ds

+2C∗

6

∫ t

0

∫

R

exp(−2ωs)l2ss dx ds+ 2C∗

7

∫ t

0

∫

R

exp(−2ωs)l2s dx ds

+2C∗

8

∫

R

exp(−2ωt)l2t dx.

Furthermore,
∫ t

0

∫

R

exp(−2ωs)(gs,i + φg,i)(gs,i + φg,i) dx ds

=
1

2b

∫ t

0

∫

D

exp(−2ωs)(hs,α + φh,α)(hs,α + φh,α) da ds

+
b

2

∫ t

0

∫

D

exp(−2ωs)(hs + φh)(hs + φh) da ds,

where, from now on, the index α only takes the values 2 and 3, and
∫ t

0

∫

R

exp(−2ωs)ls,ils,i dx ds =
1

2b

∫ t

0

∫

D

exp(−2ωs)ms,αms,α da ds

+
b

2

∫ t

0

∫

D

exp(−2ωs)m2
s da ds,
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∫ t

0

∫

R

exp(−2ωs)(gs + φg)2 dx ds =
1

2b

∫ t

0

∫

D

exp(−2ωs)(hs + φh)2 da ds,

∫ t

0

∫

R

exp(−2ωs)(gs + φg)q dx ds =
1

qb

∫ t

0

∫

D

exp(−2ωs)(hs + φh)2 da ds,

∫ t

0

∫

R

exp(−2ωs)l2ss dx ds =
1

2b

∫ t

0

∫

D

exp(−2ωs)m2
ss da ds,

∫ t

0

∫

R

exp(−2ωs)l2s dx ds =
1

2b

∫ t

0

∫

D

exp(−2ωs)m2
s da ds,

∫

R

exp(−2ωs)l2t dx =
1

2b

∫

D

exp(−2ωs)m2
t da.

We finally end up with the inequality

Eω(t, 0) ≤ C∗

1(
1

b

∫ t

0

∫

D

exp(−2ωs)(hs,α + φh,α)(hs,α + φh,α) da ds

+b

∫ t

0

∫

D

exp(−2ωs)(hs + φh)(hs + φh) da ds)

+C∗

2(
1

b

∫ t

0

∫

D

exp(−2ωs)ms,αms,α) da ds+ b

∫ t

0

∫

D

exp(−2ωs)m2
s da ds)

+
C∗

3 + C∗

5

b

∫ t

0

∫

D

exp(−2ωs)(hs + φh)2 da ds

+
2C∗

4

qb

∫ t

0

∫

D

exp(−2ωs)(hs + φh)2 da ds+
C∗

6

b

∫ t

0

∫

D

exp(−2ωs)m2
ss da ds

C∗

7

b

∫ t

0

∫

D

exp(−2ωs)m2
s da ds+ C∗

8b

∫

D

exp(−2ωt)m2
t da.

Here, we could optimize the right-hand side of this inequality with respect to the param-
eter b. However, this is not an easy task and we just consider the upper bound obtained
for every given b.
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Derivada Parciales de la Termomecánica“ (MTM2013-42004-P) of the Spanish Ministry
of Economy and Competitiveness.



PHASE-FIELD SYSTEM 25

References

[1] S. Aizicovici, E. Feireisl, Long-time stabilization of solutions to a phase-field model with memory, J.
Evol. Eqns. 1 (2001), 69–84.

[2] S. Aizicovici, E. Feireisl, F. Issard-Roch, Long-time convergence of solutions to a phase-field system,
Math. Methods Appl. Sci. 24 (2001), 277–287.

[3] D. Brochet, X. Chen, D. Hilhorst, Finite dimensional exponential attractors for the phase-field model,
Appl. Anal. 49 (1993), 197–212.

[4] M. Brokate, J. Sprekels, Hysteresis and phase transitions, Springer, New York, 1996.
[5] G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal. 92

(1986), 205–245.
[6] P.J. Chen, M.E. Gurtin, On a theory of heat involving two temperatures, J. Appl. Math. Phys.

(ZAMP) 19 (1968), 614–627.
[7] P.J. Chen, M.E. Gurtin, W.O. Williams, A note on non-simple heat conduction, J. Appl. Math.

Phys. (ZAMP) 19 (1968), 969–970.
[8] P.J. Chen, M.E. Gurtin, W.O. Williams, On the thermodynamics of non-simple materials with two

temperatures, J. Appl. Math. Phys. (ZAMP) 20 (1969), 107–112.
[9] L. Cherfils, A. Miranville, Some results on the asymptotic behavior of the Caginalp system with

singular potentials, Adv. Math. Sci. Appl. 17 (2007), 107–129.
[10] L. Cherfils, A. Miranville, On the Caginalp system with dynamic boundary conditions and singular

potentials, Appl. Math. 54 (2009), 89–115.
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