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Abstract. We present a single calcium ion, coupled to a high-finesse cavity, as

an almost ideal system for the controlled generation of single photons. Photons

from a pump beam are Raman-scattered by the ion into the cavity mode, which

subsequently emits the photon into a well-defined output channel. In contrast with

comparable atomic systems, the ion is localized at a fixed position in the cavity

mode for indefinite times, enabling truly continuous operation of the device. We

have performed numeric calculations to assess the performance of the system and

present the first experimental indication of single-photon emission in our set-up.
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1. Introduction

The completely controlled emission of a single photon with high efficiency, externally triggered

with a high repetition rate, is a goal pursued by a number of groups in atomic and solid-state

physics. These efforts are motivated by a wide range of potential applications. Single photons

provide a basis for secure quantum communication according to the method introduced by

Bennett and Brassard [1], since they cannot be intercepted without irrevocably disturbing their

quantum state. Similarly, optical quantum computation requires single photons as carriers of

quantum information [2, 3]. An important prerequisite of a quantum-logic network [4] is the

bidirectional mapping of quantum states between stationary atomic qubits and flying photonic

qubits. It can be accomplished by reversing the process of single-photon generation, which is

possible if it is based on the coherent interaction of an atom and a single field-mode. Beyond

these practical applications, the pronounced non-classical properties of single-photon states make

them ideal objects for fundamental investigations of quantum theory [5]–[7].

The applications cited above require a single-photon source with high efficiency and duty

cycle and a strong suppression of two-photon emission events. In addition, the dynamics should

be deterministic. The emission of the photon then occurs on demand, in response to a user-

supplied trigger. Most quantum information processing schemes involve interference between

the photons. The single-photon pulses should therefore occupy a well-defined spatio-temporal

mode, with a Fourier-transform-limited spectrum.

A large number of experimental attempts have been made to build an efficient

and deterministic single-photon source. Solid-state systems were realized, including PIN

heterojunctions [8, 9], single-quantum dots [10]–[14] single molecules [15, 16] or single colour

centres in nanocrystals [17, 18]. While producing antibunched light, these systems suffer from a

combination of low efficiency, poorly defined output mode and a large spectral width of the output

pulse. To increase the collection efficiency of single photons from quantum dots, microcavities

have been employed recently [19, 20]. Still, the emission of the photons is not deterministically

controlled. Moreover, it is an irreversible process and therefore cannot be employed to interface

photonic to atomic quantum states. Single-photon states have also been generated with Rydberg

atoms in microwave cavities [21]. In these micromaser experiments, however, the radiation

remains confined to the resonator.

By contrast a single atom, strongly coupled to an optical cavity, can be used to produce

single-photon pulses with high efficiency. The cavity defines an ideal Gaussian output mode

and the bandwidth of the emitted pulse ideally is Fourier-transform-limited. This scheme for

generating single-photon pulses was first proposed by Law and Kimble [22]. Recently, in a

cavity quantum electrodynamics (CQED) implementation using atoms, the emission of up to

seven photons was demonstrated [23]. Longer sequences were precluded by the finite dwell-

time of the atom in the cavity region. Whereas the photon generation in the experiment is

deterministic, a remaining element of randomness is the lack of control over the arrival of atoms

in the cavity mode volume, which can only be determined by post-selection. In addition, the

phase of the emission is randomized by the motion of the atom relative to the cavity mode.

The shortcomings of CQED with non-stationary atoms are avoided by using a single ion as

an emitter. In contrast to atoms, ions can be readily localized in the cavity on a scale far below their

resonance wavelength, as we have shown recently [24]. With ions, efficient and truly continuous

emission of single photons is possible, without suffering from the low extraction efficiency of

solid-state systems or the problems associated with non-stationary atoms in an optical cavity. By
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using a Raman trigger-pulse, the properties of the generated photons can be deterministically

engineered and by reversing the process it is possible to absorb the photon in the system in the

same way.

The level structure of ions as well as the relevant system parameters are different from their

atomic counterparts. In this paper, we present a theoretical model of single-photon generation

with a single ion, providing a realistic description of a calcium ion coupled to a single-cavity

mode. After introducing the system under study in section 2, we derive a master equation

describing all processes relevant for single-photon production in section 3. The following sections

discuss the results obtained from the model regarding the efficiency of single-photon generation

(section 4) and the spectral properties of the photons (section 5). Finally, we give an overview of

the experimental set-up and present first observations of single-photon emission from an ion-trap

cavity–QED system (section 6).

2. Single-ion cavity–QED with calcium

Single trapped ions already have a remarkable history as sources of single photons. Since a single

scatterer cannot emit a second photon immediately after it has been projected to the ground state

in a previous emission process, the second-order correlation function g(2)(τ) vanishes for zero

time-delay τ. The phenomenon is known as photon antibunching and has been observed with

ideal accuracy in resonance fluorescence of single ions [6, 25]. The anti-correlation of photon

detections persists for a time determined by the Rabi frequency of the excitation. However, this

set-up is of limited use for the deterministic delivery of photons. The main obstacle is that an

ion in free space emits radiation into the full solid angle, so that only a small fraction may be

captured and directed to the output port.

To enhance the coupling of the ion to a specific output mode, an optical cavity is needed.

The interaction of a single atomic particle and the electromagnetic field in an optical resonator is

the subject of cavity quantum-electrodynamics [26]. The most important parameter in the system

is the rate of coupling g(r) between atom and field, given by the dipole matrix element µ of the

two-level atomic transition at frequency ω and the mode-distribution f(r) in the cavity:

g(r) =

√

µ2ω

2h̄ǫ0Vcav

f(r). (1)

Here, Vcav =
∫

|f(r)|2 dr is the mode volume of the cavity, which should be small to achieve

strong coupling.

As we have demonstrated previously [24], a single ion can be localized at the position

r of maximum coupling for an indefinite time, so that the spatial variation of g(r) may be

neglected. This is an important advantage over atomic systems, where the randomness of the

atoms’ trajectories leads to large fluctuations in the coupling.

The efficiency of the cavity to deliver the photon to one of its output ports deteriorates in

the presence of damping processes. Damping in the system can occur either by spontaneous

decay of the upper atomic level to modes outside the cavity or by cavity losses. In the latter

case, one should distinguish losses due to the finite transmissivity of the cavity mirrors and

losses due to scattering or absorption in the mirrors. The transmission losses are the quantity

actually being exploited when using the system as a single-photon source, since they result in
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Figure 1. Level scheme of singly ionized 40Ca+. The transitions and decay rates

between the levels (designated as g, e and m), which are relevant for the single-

photon generation scheme described in this paper are indicated.

the emission of the photon to the output channel. Therefore, for high-efficiency single-photon

generation, transmission losses should dominate cavity damping with a negligible contribution

from scattering and absorption. This is a highly restrictive condition for an ion in a cavity. The

reason is that the resonance transitions of ions have wavelengths in the ultraviolet region, where

mirror losses are typically of the order of 10−3. This value is comparable or even larger than the

transmissivities needed for the realization of a CQED-based single-photon source. As a result, a

photon in the cavity mode has only a small probability to escape to the output mode.

For an efficient single-ion photon source, transitions at longer wavelengths are required.

They are available in some alkaline earth ions, in particular calcium and barium. They have

metastable D-states, lying below the excited P-levels. In 40Ca+, the transition 42P1/2 → 32D3/2

has a wavelength λ = 866 nm and thus falls in a region, where ultra-low loss mirror coatings are

available. We have therefore chosen calcium as a suitable candidate for a single-photon source.

A simplified level scheme of 40Ca+ is shown in figure 1, with the two decay rates Ŵg and Ŵm

indicated.

Energy is delivered to the system by means of a pulsed pump laser on the 42S1/2 → 42P1/2

resonance transition, which also serves as a trigger.A single photon is created by Raman scattering

an ultraviolet photon from the pump beam, yielding an infrared photon in the cavity mode. The

process leaves the ion in the state D3/2, which is not coupled to the pump laser. Therefore, no

additional photon is created in the pump cycle.

In the next section, the master equation of the driven system is solved to numerically

investigate the process of single-photon generation.

3. Theoretical model: calcium ion coupled to a cavity mode

Using an atom coupled to an optical cavity to generate single-photon pulses was first proposed

by Law and Kimble [22] and subsequently treated in a more general model by Kuhn et al [27].

In both cases, a scheme of three atomic levels g, e and m in a �-configuration, is considered,

with a classical pulse �(t) driving the transition |g〉 ↔ |e〉 and the cavity field coupled to the
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transition |m〉 ↔ |e〉 with strength g. We take this model as the starting point of our analysis. To

accommodate the need for Doppler cooling of the ion, we include a detuning � = ωpump − ωeg

of the pump-beam and a detuning δ = ωcav − ωem of the cavity from the respective atomic

resonances. The Hamiltonian of the system in a frame of reference rotating at ωpump and ωem

then is

H = h̄δa†a + h̄�|g〉〈g| + h̄(�(t) |e〉〈g| + g |e〉〈m| a + h.c.). (2)

Here, the cavity mode is described by annihilation and creation operators a, a†. For a complete

description of the system dynamics, atomic spontaneous emission into the ground state (at a

rate Ŵg), the metastable state (at a rate Ŵm) and cavity losses (at a rate κ) must be included in the

model. These processes are described by the master equation

∂ρ

∂t
= −

i

h̄
[H, ρ] + κ(2aρa† − a†aρ − ρa†a) +

Ŵg

2
(2|g〉〈e|ρ|e〉〈g| − |e〉〈e|ρ − ρ|e〉〈e|) · · ·

+
Ŵm

2
(2|m〉〈e|ρ|e〉〈m| − |e〉〈e|ρ − ρ|e〉〈e|). (3)

In the two previous studies [22, 27], the coherent coupling rate g was assumed to be equal to or

larger than the decay rates κ, Ŵg and Ŵm. This condition is not fulfilled in the ionic �-scheme we

investigate here. The resonance transitions of ions are in the ultraviolet region and, hence, the

upper P-level has a strong spontaneous decay rate Ŵg to the ground state. Decay on the pump

transition is therefore the fastest rate in the system. In calcium, for example, Ŵg = 2π × 22 MHz,

which is an order of magnitude larger than accessible values for the coupling g. Since spontaneous

decay competes with the emission of radiation into the cavity, the large value of Ŵg seems to

preclude the efficient production of single photons.

However, our calculations show that strong decay on the pump transition has only a

negligible influence on the emission of single photons. The reason is that after a spontaneous

transition back to the ground state, the ion will be re-excited by the pump pulse, until it finally

makes a transition to the metastable state. The occurrence of multiple pump-decay cycles only

slightly degrades the efficiency of single-photon generation.

The only relevant atomic damping process is spontaneous decay to the metastable state,

since it irretrievably removes the ion from the pump cycle, a fact which prohibits the generation

of more than one photon in the cavity. The decay rate on the infrared transition for calcium,

Ŵm = 2π × 1.7 MHz, is small compared with the coherent coupling of the ion to the cavity,

evolving at a rate g2/κ. Efficient single-photon production with calcium ions is therefore possible.

The single-photon pulse profile, i.e. the time-dependent rate of emission from the cavity

is obtained from the solution ρ(t) of the master equation (3) by multiplying the cavity-mode

occupation with the intensity transmission rate 2κt:

P(t) = 2κt Tr{a†aρ(t)}. (4)

The efficiency of single-photon generation, i.e. the probability that a photon actually emerges

from the cavity, is then simply obtained by integrating over the pulse profile:

ηpho = 2κt

∫ ∞

0

Tr{a†aρ(t)} dt. (5)
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Figure 2. Single-photon generation in the three-level model: (a) driving pulse

�(t), (b) evolution of atomic level occupation, (c) single-photon pulse P(t) and

the corresponding infrared fluorescence pulse. The parameters are κ = 0.02Ŵg,

g = 0.1Ŵg, � = δ = −0.15Ŵg, �0 = 0.11Ŵg, w = 500Ŵ−1
g and κt = 0.9κ.

The rate κt only includes transmission through the mirror chosen as the output port. The total

cavity decay rate κ also covers transmission through the other mirror and passive losses. These

additional losses are proportional to the single-photon efficiency

ηabs = (κ/κt − 1)ηpho. (6)

To obtain a high single-photon flux in one direction, the transmissivity of one mirror is made much

larger than the other one. In this way, we define the output of the single-photon source. In our

experiment, we have chosen 180 ppm for the output mirror and 10 ppm for the opposite mirror.

In addition, absorption and scattering losses must be taken into account, which are minimized

to 5 ppm by using highest-grade mirrors [28, 29]. Consequently, the photon in the cavity has a

probability of 90% to be emitted through the output port (κt = 0.9κ), which is the upper limit of

the single-photon generation efficiency of our device.

The determination of the pulse shape P(t) and the efficiency of single-photon emission

requires a numerical solution of the master equation of the system. We start from an atom in the

level |g〉 and an empty cavity. With a Gaussian pump pulse �(t) = �0 exp(−(t − t0)
2/2w2) in

the Hamiltonian (2) and typical system parameters, we obtain the solution presented in figure 2.

According to equation (5), the efficiency is obtained by integrating over the output pulse shape

P(t), which is shown in the lower part of figure 2. In this example, the result is ηpho = 82.1%.

We have investigated the influence of strong spontaneous decay to the ground state by

calculating output pulses for different values of the decay rate Ŵg. In each case, the driving field

amplitude �0 was chosen to maximize the efficiency. As can be seen from figure 3, the pulse

shape is only minimally affected by Ŵg, as long as a suitable pump intensity is used. The inset to

the figure shows that the required �0 is proportional to the decay rate.

The shape of the output pulse is largely determined by the shape of the driving pulse. For

small pump amplitudes, the temporal profile of the single photon coincides with that of the pump

New Journal of Physics 6 (2004) 95 (http://www.njp.org/)
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Figure 4. Pulse shape P(t) for different amplitudes �0 of the Gaussian pump

pulse with width w = 500Ŵ−1
g . The parameters are κ = 0.02Ŵg, g = 0.1Ŵg and

� = δ = −0.15Ŵg. As the pump intensity is increased, the output pulses become

narrower and are emitted earlier with respect to the peak of the pump pulse.

pulse. When the amplitude �0 of the pump field is large or the pulse width w is long, the photon

is emitted from the cavity already during the leading edge of the pump pulse. In this case, the

single-photon pulse is considerably shorter than the pump pulse. However, a lower limit for the

width of the single-photon pulse is given by the inverse damping time of the cavity power, 1/2κ.

Photon pulses for different pump amplitudes are presented in figure 4.
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Figure 5. Scheme of the eight-level model on which we base our numerical

calculations. Pump and cavity field are assumed to be linearly polarized in the

direction of the quantization axis. For clarity, the four possible sponataneous decay

transitions to the ground state are represented by a single arrow. All couplings

and decay rates have to be multiplied by Clebsch–Gordan coefficients.

From the solution of the master equation (3), we also obtain information on processes

competing with single-photon emission. The probability for fluorescence emission on the infrared

transition is calculated from the expectation value of the upper state occupation:

ηfluo = Ŵm

∫ ∞

0

Tr{|e〉〈e|ρ(t)} dt. (7)

The infrared fluorescence pulse is also shown in figure 2. By evaluating equation (7) for the

example, we find that 9% of the pump pulses result in infrared emission. Finally, there is a

chance for the system to remain in the ground state at the end of the pulse:

η0 = lim
t→∞

Tr{|g〉〈g|ρ(t)}. (8)

As can be seen from the evolution of the level occupations shown in figure 2(c), there is a

negligible occupation of the state |S〉 at the end of the pulse (η0 ≈ 0). Since no other loss

processes contribute, we have ηpho + ηabs + ηfluo + η0 = 1.

In our set-up, the pump beam is also used to cool the thermal motion of the ion in the trap.

Therefore, it must be red-detuned with respect to the atomic transition (� < 0) to achieve Doppler

cooling. In agreement with the results in [27], the cavity must be kept at Raman resonance with

the driving field and therefore red-detuned as well.

A more realistic model has to take into account the Zeeman substates of the atomic levels,

bringing their total number to eight. The complete level scheme is shown in figure 5. Since the

excited state has only two sublevels, there is no cycling transition in the system. The coupling
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between ion and cavity field is therefore reduced by a factor of
√

3 with respect to the three-level

model. To avoid optical pumping through the driving field, linear polarization must be used for

the S–P transition. The cavity supports two orthogonally polarized and degenerate TEM00 modes,

either of which can receive the photon. Since the coupling rates for both modes are identical, we

restrict our analysis to only one polarization mode, for simplicity, which we assume to be linear.

In the actual experiment, the photons are unpolarized, but the emission rate is the same as the

one calculated for a single polarization.

The atomic degrees of freedom in the multilevel system are described by operators Aσ ,

Bσ , which are composed of a sum over spin-1/2 operators for the Zeeman levels |S1/2, mg〉,
|P1/2, me〉 and |D3/2, mm〉 with weights corresponding to the Clebsch–Gordan coefficients for

dipole coupling with polarization σ:

Aσ =
∑

mg,me

|S1/2, mg〉〈S1/2, mg; 1σ|P1/2, me〉〈P1/2, me|, σ = 0, ±1,

Bσ =
∑

mm,me

|D3/2, mm〉〈D3/2, mm; 1σ|P1/2, me〉〈P1/2, me|, σ = 0, ±1,

mg = ±1/2, me = ±1/2, mm = ±1/2, ±3/2.

(9)

The Hamiltonian of the eight-level system is then given by

H = h̄δa†a + h̄�
∑

σ=0,±

AσA
†
σ + h̄[�(t)A

†
0 + gaB

†
0 + h.c.]. (10)

The master equation (3) is generalized to the eight-level case correspondingly. Again, the

efficiency of single-photon generation is obtained from ρ(t) according to equation (5). The

infrared fluorescence probability is determined by summing over decay rates for the three possible

polarizations:

ηfluo = Ŵm

∫ ∞

0

Tr

{

∑

σ=0,±

B†
σBσρ(t)

}

dt. (11)

A basis for the Hilbert space of the atom–cavity system is provided by tensor products of

the atomic states and the number states for the cavity mode. In this paper, we use the notation

|Lj, mj, n〉 = |Lj, mj〉 ⊗ |n〉, L = S, P, D (12)

with j specifying the total angular momentum, mj = −j . . . j, the number of the magnetic

sublevel and n the photon number in the cavity mode. Since in the scheme presented here, the

cavity mode cannot contain more than one photon, we truncate the basis of photon states at

n = 2.

An example of a calculation in the eight-level model is given in figure 6. As in figure 2, the

evolution of level occupations, cavity output rate and infrared fluorescence intensity in response

to a pump pulse with optimized amplitude are shown. Corresponding to equation (10), linearly

polarized UV light and a linearly polarized cavity mode are used, so that the coherent driving

only affects levels with magnetic quantum numbers ±1/2. In contrast, the levels |D3/2, ±3/2〉
are populated entirely due to spontaneous transitions. The presence of additional decay channels

reduces the single-photon efficiency with respect to the three-level case. In the following section,

we analyse the issue of efficiency of single-photon generation in more detail.
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Figure 6. Single-photon generation in the eight-level model: (a) driving pulse

�(t); (b) evolution of atomic level occupation: only magnetic Zeeman substates

with mj > 0 are shown, since the evolution is symmetric with respect to the sign

of mj; (c) single-photon pulse P(t) and the corresponding infrared fluorescence

pulse. The parameters are κt = 0.1Ŵg, κ = 0.11Ŵg, g = 0.18Ŵg, �0 = 0.11Ŵg,

� = δ = 0 and w = 2500Ŵ−1
g .

4. Efficiency of single-photon generation with a 40Ca+ ion

The fact that exactly one ion is interacting with the cavity and that the pump field is decoupled

from the ion after a cavity photon is generated guarantees that not more than one photon is

in the cavity mode at any time. Therefore, two photons can never be emitted from the cavity

simultaneously. The essential figure-of-merit of an ion-trap single-photon source is then its

efficiency, given by equation (5). It represents the probability of a single photon being ejected

from the cavity as a result of a trigger pulse. In section 3, two processes have been identified,

which lead to a reduced probability for photon emission: spontaneous decay of the ion to the

metastable state, terminating the pump cycle without generating a photon in the cavity, and the

ion remaining in the ground state at the end of the excitation pulse. We will now analyse in detail

the dependence of these processes on the parameters of an ion-trap CQED system, with the goal

of optimizing the efficiency for single-photon generation.

For a complete description of the experimental situation, we use the eight-level model and

linearly polarized driving field and cavity mode. The parameters that most directly influence

the ion–cavity interaction are the peak Rabi frequency �0 of the driving field and the common

detuning � = δ of ion and cavity from the infrared resonance frequency (in the following we

assume Raman resonance between ion and cavity). The efficiency of single-photon generation

as a function of �0 and � is shown in figure 7. The most striking feature is a sharp drop of the

efficiency towards small values of �0. In this case, the driving field is too weak to efficiently excite

the ion and at the end of the trigger pulse it remains in the ground state with high probability.

For large values of �0 or �, increasingly strong infrared fluorescence is emitted at the expense

of single-photon production. The optimum efficiency is reached at resonance (� = δ = 0) and
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Figure 7. Single-photon efficiency as a function of the peak Rabi frequency �0

of the pump field and the common detuning � = δ of pump and cavity from the

upper level in the case of Raman resonance. The coupling is chosen as g = 0.18Ŵg,

whereas the cavity damping is κ = 0.11Ŵg. The pulse length is w = 500Ŵ−1
g .

for a Rabi frequency roughly twice the effective coherent coupling, taking into account the

Clebsch–Gordan coefficient (�0 ≈ 2g/
√

3). In the calculations reported in the following, we

have used zero detuning and the numerically determined optimum value of �0. As mentioned

above, in the experiment, the pump laser beam has the additional task to cool the ion’s motion

and should therefore be red-detuned (� ≈ −Ŵg/2). As can be seen from figure 7, the resulting

drop in efficiency is only small.

In contrast with detuning and amplitude of the external driving field, the characteristic rates

g, κ, Ŵg and Ŵm are fixed by the hardware of the system. Whereas the atomic decay rates are

entirely determined by the ion species chosen, g and κ can be modified through the length L of

the cavity:

g(L) =

√

3cλ2Ŵm

8πVcav

∼
1

L3/4
, κ(L) =

cT

2L
, (13)

where the volume Vcav was calculated for a TEM00 mode of a Fabry–Pérot cavity and it was

assumed that L is small compared with the radius of curvature of the mirrors. The parameter

T describes the total losses of the cavity field. Figure 8 illustrates the length dependence of the

three rates determining the dynamics of single-photon generation. For a cavity length between

0.1 and 3 mm, g is the largest rate in the system. For shorter values, cavity decay is dominant,

whereas in a longer cavity, spontaneous decay is the main loss mechanism.
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Figure 9. Single-photon efficiency (ηpho) and probability of fluorescence

emission (ηfluo), ground-state occupation (η0) and photon absorption (ηabs) as

a function of cavity length. The parameters g and κ are obtained from figure 8.

The pulse length was w = 2500Ŵ−1
g . At each point, �0 was chosen to optimize

the efficiency.

The system parameters g and κ play a decisive role for the dynamics of single-photon

generation. We have therefore investigated how the variation of these parameters with the cavity

length L influences the efficiency of the process. For each value of L, we have maximized ηpho

by choosing an optimum value of �0. The resulting efficiencies for single-photon generation

and the competing loss processes are shown in figure 9. Owing to the increased coupling g, the
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Figure 10. Single-photon efficiency as a function of the width of the pump

pulse. The three traces have been obtained for different sets of system parameters

corresponding to three values of the cavity length L, determining the parameters

g and κ (cf figure 8).

single-photon efficiency increases with decreasing L. To reach the limit of 90%, imposed by

absorption and scattering losses in the mirror coatings, the cavity length must be reduced to

below 0.1 mm. However, even for values between 1 and 10 mm, the efficiency of single-photon

generation still reaches values between 40 and 60%. A good efficiency even for cavity lengths

above 1 mm is of particular experimental relevance. The reason is that the radio-frequency

field used for trapping the ion is strongly distorted, for a mirror distance in the sub-mm range,

increasing the effort required for localizing the ion with sufficient precision.

In figure 4 it was shown that, within certain limits, the temporal structure of the output pulse

is determined by the shape and amplitude of the pump pulse �(t). The time-scale set by the

pump duration has also important implications for the efficiency of single-photon generation.

This is apparent from figure 10, where the single-photon efficiency is plotted as a function

of the pulse width w. Three sets of parameters are shown, corresponding to different values

of the cavity length. Again, at each point, the amplitude �0 of the pulse was optimized for

efficiency. Evidently, the largest efficiencies are reached only if the pulse width exceeds a certain

L-dependent threshold.

An explanation of this behaviour is provided by the concept of adiabatic population transfer

[30]. This technique has already been applied successfully to the generation of single-photon

pulses from atoms traversing a cavity [27, 31]. It is based on the adiabatic transformation of

eigenstates of atom and field, achieved by changing the intensity of the driving field slowly

compared with characteristic splittings (e.g. due to the ac-Stark effect) of the atomic energy

levels. As a result, the system remains in the same eigenstate throughout the entire evolution.

Particularly relevant is a class of states of the atom–cavity system called dark states, which

include superpositions of ground states and metastable states, but no contribution from the

decaying P-states.
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Figure 11. (a) Occupation of three relevant dressed states. (b) Composition of

the dressed state |D1〉, showing a maximum contribution for a single-photon state

in the cavity at the peak of the pump pulse. (c) Normalized pump pulse and cavity

output. The latter is already terminated before the adiabatic process returns |D1〉
to its initial composition.

The system evolution in the dressed state basis is illustrated in figure 11 for a calcium ion

and a linearly polarized pump pulse. In panel (a), the occupation probability of three relevant

dressed states is displayed as a function of time. At the beginning of the pulse, only the dressed

state |D1〉 is occupied which coincides with |S1/2, 1/2, 0〉. This is evident from panel (b) of

the figure, which shows the composition of dressed state |D1〉 in terms of bare atomic states.

In the course of the driving pulse, |D1〉 acquires a contribution from |D3/2, 1/2, 1〉. While still

residing in the same eigenstate, the system has now a finite probability for a photon in the cavity.

Cavity losses induce a transition of the system to the dressed state |D2〉 = |D3/2, 1/2, 0〉. In

addition, there is a small amount of residual spontaneous scattering to this state, as well as the

adjacent states |D3/2, −1/2, 0〉 and |D3/2, 3/2, 0〉 (not shown in the figure). In panel (c), pump-

and single-photon pulse are displayed for comparison. Evidently, the single-photon emission is

already terminated, when at the trailing edge of the pump pulse, the D-state contribution to |D1〉
drops again. If the photon would still be in the cavity at this time, reabsorption would set in,

lowering the efficiency of single-photon production.

New Journal of Physics 6 (2004) 95 (http://www.njp.org/)

http://www.njp.org/


15 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

10
1

10
2

10
3

10
4

10
-3

10
-2

10
-1 L=1mm

L=2mm

L=4mm

M
a
x
im

u
m

 u
p
p
e
r 

s
ta

te
 o

c
c
u
p
a
ti
o
n

Pulse width w (in units of Γ
g

-1
)

Figure 12. Occupation of the upper state as a function of the width of the pump

pulse. The drop can be attributed to the increasing adiabaticity as the pump pulse

rises less steeply.

The essential feature of adiabatic population transfer, the reduced excitation of decaying

levels, is clearly present in our solutions of the master equation of the system for different pulse

widths. Figure 12 illustrates the reduction of population in the P-state, dropping to negligible

values for longer pulses. It thus supports the interpretation of the increase of single-photon

efficiencies with the pump-pulse width as the result of adiabatic dynamics, induced by the

driving field.

For many applications, a high single-photon output rate may be more important than high

efficiency in a single shot. The emission rate is limited by the duration of each photon pulse

and the time it takes to recycle the ion to the initial state. For example, if a photon pulse with a

FWHM of 10.000Ŵ−1
g is generated, and assuming that it takes roughly twice as long to collect

the entire pulse, the number of photons generated per second is limited to 7000, even at perfect

efficiency. A better strategy to achieve a high single-photon flux is to reduce the pulse length and

simultaneously increase the trigger rate. Even though the efficiency per pump pulse is slightly

reduced (cf figure 10), this loss is overcompensated by the fact that triggering occurs at much

higher frequency. Therefore, an overall increase in output rate results. In figure 13 we have

calculated the output rates under the conditions that were used in figure 10. We have assumed

that the output pulse is extracted in twice the FWHM of the pulse and that it takes 10Ŵ−1
g to

recycle the ion. For our parameters, the pulse length yielding the highest single-photon rates lies

between 10 and 100Ŵ−1
g , depending on the length of the cavity.

A comparison with figure 10 shows that in the range, where the output rate is maximized,

the single-photon generation efficiency is reduced to half its asymptotic value at large times. Our

theoretical analysis shows that a single ion in a cavity can either be used as a highly efficient

emitter of single photons, deterministically triggered one by one, or as a source producing a high

flux of single photons.
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Figure 13. Rates for single-photon generation, based on the results of figure 10.

A pulse duration of twice the FWHM was assumed and a time of 10Ŵ−1
g was

added to accommodate recycling.

5. Single-photon spectra

The photon production efficiency is not the only important parameter characterizing a single-

photon source. Equally relevant is the linewidth and spectral composition of the emitted photon

pulse. Perfect interference of two single-photon pulses, for example, requires them to be

indistinguishable, which can only be achieved if their spectrum is Fourier-transform-limited.

This is a precondition for linear optics quantum computation schemes [3]. One of the great

benefits of using trapped particles in cavities for the generation of single photons is that the

output pulses are not subject to inhomogeneous line broadening and, ideally, should be Fourier-

transform-limited.

To calculate the spectral properties of the photons generated with a calcium ion in a cavity, we

have used the realistic eight-level model of section 3 to determine the spectrum of a single-photon

pulse. Again we make the assumption that the pump and cavity mode are linearly polarized. For

a non-stationary signal, the spectrum is defined via the correlation function of the cavity field:

S(ω) =
1

2π

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2〈a†(t2)a(t1)〉 e−iω(t2−t1). (14)

The correlation function may be evaluated with the help of the quantum regression theorem.

After Fourier transform with respect to the time difference and an integration over the remaining

time coordinate, the spectrum S(ω) is obtained.

Three typical spectra for different pulse lengths are shown in figure 14. The lower trace,

obtained with a short pump pulse, has a linewidth corresponding to the spectral width 2κ of

the cavity. With increasing pulse length, the spectra become narrower, as expected for a Fourier-

transform-limited pulse. The shape of the spectrum is, to a very good approximation, Lorentzian,

whereas the temporal profile is closer to a Gaussian. It is important to verify how close the pulses

come to the transform limit.
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Figure 14. Spectra of single-photon pulses for three different widths of the pump

pulse. The system parameters used are g = 0.18Ŵg, κ = 0.11Ŵg and �0 chosen

to maximize the single-photon efficiency.
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Figure 15. Calculated temporal FWHM and frequency bandwidth of single-

photon pulses. The upper panel shows the time–bandwidth product. The dotted

line indicates the time–bandwidth product of a transform-limited Gaussian pulse,

which is 2 ln(2)/π. The system parameters are the same as in figure 14.

To quantitatively compare the spectral and temporal profile of the pulses generated with our

system, we have determined the FWHM-bandwidth �ω of the spectrum S(ω) from equation (14)

and the FWHM-width �t of the pulse profile P(t) obtained form equation (4). Both quantities are

plotted as a function of pump-pulse width w in figure 15. The time–bandwidth product �t · �ω

of the pulses is shown in the upper panel of the figure. It stays nearly constant over four orders

of magnitude of the pump-pulse width, demonstrating that the single-photon pulses are indeed

transform limited with very good precision. The remaining variation of the time–bandwidth
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product is due to the variation of the pulse shape as w is changed. The numerically determined

results are within a factor of 2 of the value obtained for an ideal Gaussian shape, indicated by

the dotted line in figure 15.

The subnatural linewidth of the single-photon spectrum, with values much smaller than the

atomic decay rate Ŵm, in particular for long pulses, is based on the coherent nature of the Raman

transition, leading to the excitation of a photon in the cavity mode. As shown in figure 12, in

the case of long driving pulses, the maximum upper-state population in the Raman process is

negligible. Therefore, the decay rate of the P-state has no bearing upon the spectral linewidth.

Since the Raman transition connects two stable states, there is no lower bound for the linewidth

other than the Fourier width connected with the finite pulse duration. It is instructive to compare

the cavity output with the light emitted in the process of resonance fluorescence of a two-level

atom in free space. If the excitation is weak, the fluorescent light is mainly due to coherent

scattering and a narrow line is predicted in the spectrum [32, 33]. The effect has recently been

observed with a single ion. In this case, the excitation was continuous, so that an infinitely

narrow spectral line is expected. This narrow line was indeed observed experimentally by using

heterodyne detection of the fluorescent light of a single ion [25]. Since only a single ion was

used in this experiment, the photon statistics of the emitted light showed strong antibunching.

In contrast, the single-photon source described in this paper is much more efficient, since all the

photons are delivered to one well-defined output mode.

6. Experimental realization of cavity emission from a single ion

On the basis of the theoretical analysis presented in the previous sections, we have set up a trap

for a single calcium ion coupled to a high-finesse cavity. The experiment is designed to operate

in a parameter region suitable for the task of efficiently generating single photons.

A single calcium ion is confined in a linear radio-frequency trap. In the radial direction,

a quadrupole potential is generated by four rf-electrodes, driven by a 400V alternating voltage

at a frequency of 12.7 MHz. In this way, harmonic confinement of the ion with an oscillation

frequency ωr/2π ≈ 1.1 MHz is reached. DC potentials applied to additional electrodes along

the trap axis provide axial confinement and allow us to move the ion in and out of the cavity.

Typical trapping lifetimes are of the order of hours, making continuous single-photon emission

for long periods of time possible. The trap is described in more detail in [34].

The cavity mirrors are mounted with their axes perpendicular to the trap axis. By means of

piezo-driven actuators, the distance of the mirrors to the ion and thus the cavity length L can be

adjusted in a range of 0.8–10 mm. The radius of curvature of the mirrors is 10 mm. They taper

to a diameter of 1 mm at the mirror surface, to facilitate laser access to the cavity centre and

integration with the trap electrodes. A cross-section of the trap and the cavity region is shown

in figure 16.
40Ca+ ions are created by photo-ionization of a neutral calcium beam [35, 36] in a loading

region separated from the cavity centre by 25 mm. From there, a single ion is transferred to the

cavity with the help of the dc electrodes. By tight confinement of the ion and laser Doppler

cooling on the 397 nm transition (cf figure 1), we achieve a localization of the ion corresponding

to a rms position spread of 42 nm [24], well in the Lamb–Dicke regime of the transition at 866 nm.

Residual dc fields in the radial direction are carefully compensated with correctional voltages.

Otherwise the ion would be pushed off the nodal line of the trapping field and undergo a driven
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Figure 16. Experimental set-up for the generation of single-photon pulses with

an ion–cavity system. The drawing shows a cross-section through the trap,

perpendicular to the trap axis.

rf motion, resulting in a radial delocalization. After compensation of stray fields, a well-defined

coupling g between ion and cavity field is guaranteed.

Two laser sources are required for the excitation of 40Ca+, as is apparent from figure 1. For

the 42S1/2 → 42P1/2 transition, we use a frequency-doubled Ti : Sapphire laser at a wavelength

of 397 nm. It is injected into the cavity region under an angle of 25◦ with respect to the trap

axis. It has the principal task of providing the pump pulse for triggering single-photon emission.

For this purpose, its intensity is controlled with an acousto-optic modulator. It is also used for

Doppler cooling of the ion in the intervals between photon emissions. On the other transition of

the calcium �-scheme, 42P1/2 → 32D3/2 at 866 nm, the photon is emitted. A laser at 866 nm is

required for pumping the ion back to the ground state after each single-photon pulse and to avoid

population trapping in the metastable D-level during Doppler cooling. In addition, this laser is

needed to verify the correct tuning of the cavity before the experiment. We use an external grating

stabilized diode laser, optically locked to a Cs-stabilized reference cavity to achieve a linewidth

of less than 100 kHz.

We generate single photons by the following procedure: first, the ion is pumped to the

ground state by illuminating it with the 866 nm laser for 0.5 µs. Subsequently, the driving pulse

is injected, with a Gaussian temporal profile of 1 µs width and 300 µW peak intensity. After the

single photon is emitted from the cavity (cf the calculated time profile of the photon pulse in

figure 6), both lasers are switched on for 3 µs of Doppler cooling. This sequence is repeated at

a rate of 100 kHz.

The single-photon pulses emanating from the output mirror in a Gaussian mode are focused

on an avalanche photo-diode with a quantum efficiency specified as 26% at 866 nm. Single-

photon emission critically depends on the cavity being tuned to Raman resonance with the pump

pulse. This is demonstrated in the measurement reported in figure 17. It shows the rate of single-

photon pulses as a function of cavity detuning, which has a pronounced peak at Raman resonance

with the fixed frequency of the pump pulse. The figure is the first indication of single-photon

emission in our system.

Figure 17 clearly shows that the cavity resonance has to stay well within the Raman

resonance width of about 2 MHz for continuous single-photon generation. Although the cavity is

located in a vacuum chamber, a large drift of the resonant frequency was observed. As a counter-

measure, we are presently setting up an active lock of the cavity to a frequency-stabilized diode
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Figure 17. Measurement of the cavity emission as a function of the cavity

detuning. The ion is pumped by pulses at 397 nm. Strong cavity output is observed

at Raman resonance.

laser at 895 nm. Using a far-detuned wavelength is advantageous for distinguishing the generated

single photons from the transmitted photons of the locking beam. By inserting a narrow bandwidth

interference filter in front of the APD, the total detection efficiency at 895 nm is suppressed by

a factor of 10−11 relative to that at 866 nm. This allows us to continuously lock the cavity to

the 895 nm laser without adding background photons to the generated single photons at 866 nm.

The 895 nm diode laser itself is stabilized by optical feedback [37], and is locked to the Cs

D1-line [38]. We estimate the linewidth and long-term stability to be better than 200 kHz. The

frequency of the 895 nm laser is shifted by means of an acousto-optic modulator and is matched

to a resonant mode of the cavity. The cavity mode is chosen so that the 895 nm laser frequency

and the centre frequency of the Raman line in figure 17 are simultaneously resonant with the

cavity. This simple locking scheme keeps the cavity within the Raman resonance for hours.

We will therefore be able to generate continuous trains of single-photon pulses for this period

of time.

7. Conclusion

We have developed a model, realistically describing the interaction between a single 40Ca+

ion and a single mode of an optical cavity. Using the full Zeeman substructure of the atomic

levels and including all relevant decay channels, we have integrated the master equation of the

system and evaluated the time-dependent density matrix to calculate the cavity output as a

function of time. We can therefore accurately predict the properties of the photon pulses emitted

from the cavity.

By analysing the system dynamics in terms of dressed states of the system, we have shown

that photon generation occurs as the result of an adiabatic process and therefore is more efficient

for longer pump pulses. The adiabatic interaction has important implications for many aspects

of the system behaviour. Due to the coherent character of the excitation, the spectral width of

single-photon emission is only limited by the Fourier transform of the photon pulse, fulfilling
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an essential requirement for a single-photon source in a photonic quantum computer. The strong

spontaneous decay to the ground state, which is typical for ion systems, does not deteriorate the

performance of single-photon generation, as long as the strength of the driving field is properly

adjusted.

When the pump parameters are optimized, the maximum efficiency achievable in the system

is determined by the coherent ion-field coupling g, which may be increased by reducing the cavity

length. For a mirror separation of 0.1 mm, 80% efficiency is possible, which is close to the 90%

upper limit set by passive cavity losses. For applications, in which a high single-photon output

rate is required, shorter pump pulses and a higher duty cycle can be used.

Since we can keep an ion localized inside the cavity for many hours, our system has the

capacity of truly continuous single-photon emission. Alternatively, the emission of the photon-

pulse could be triggered on demand, taking advantage of the guaranteed presence of the ion in

the armed state. The deterministic character of the ion–cavity interaction, together with high

efficiency and a Fourier-limited spectrum makes our system an almost ideal source for single-

photon emission.

Finally, we have presented an experimental set-up for a practical realization of an ion trap

single-photon source, with first indications of single-photon emission.
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