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A new empirical expression is developed to calculate the Debye characteristic temperature 
of cubic crystals. The calculated Debye temperatures for 24 cubic crystals are shown to be 
in excellent agreement with other existing computations as well as with the experimental 
results. 

Uma nova expressão empirica é desenvolvida para calcular a temperatura característica de 
Debye de cristais cúbicos. Mostra-se que as temperaturas de Debye, calculadas para 24 
cristais cúbicos, estão em excelente acordo com outros cálculos bem como com os resul- 
tados experimentais. 

Near absolute zero, a solid can be very well represented by means of 
Debye's continuum model. The calculation of OO(D), the Debye charac- 
teristic temperature at absolute zero, is then given in terms of the elastic 
constants of the solid. In the past, severa1 theoretical expressions have 
been developed by Blackman', de Launay2, Hopf-Lechner3, Houston4, 
Bhatia and Tauber5 and by Fedorov6. A11 these methods utilize physical 
properties of the crystal which can be expressed in terms of averages 
involving its elastic constants. Recently, Konti and Varshni7 have re- 
viewed and revised the different methods of calculating O0(D), for 24 cubic 
solids. We have developed a very simple expression to calculate Oo(D) 
under the assumption that cubic solids show polycrystalline behavior 
as well as are well represented by Debye's model at absolute zero. The 
calculated values of Oo(D), for 24 cubic crystals, have been compared 
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with the experimental results as well as with the results of Konti and 
Varshni7. 

2. Theory 

In the Debye model, the expression of 0, (D) is given by 

where h = Planck's constant, k = Boltzmann's constant, N = Avogadro's 
number, V = atomic volume, u, = longituainal sound velocity, u, = trans- 
versal sound velocity. The sound velocities are given by the following 
relations : 

u, = ( K  + p -  ' I 2 ,  (2) 

where p = density of solid, K  = bulk modulus, C; = rigidity modulus. The 
bulk and ridigity moduli are functions of the elastic constants only. 

If a solid exhibits monocrystalline behavior, then it possesses a single value 
for the quantities K and C;. On the other hand, in the case of a solid sho- 
wing polycrystalline behavior, there are two different approaches, one due 
to Reuss8 and the other to Voigt9, to calculate K and C; in terms of the 
elastic constants of the solid. Let us denote these moduli by K R  and C;, , 
when determined by Reuss' method, and Kv and C;, when determined 
by Voigt's method. These quantities are given by the following relations: 

Hilll', in calculating some other properties of crystalline solids, has shown 
that. in practice, the actual values of K and C; lie in between the limits 
predicted by the two theories 

Kv I K I K R ,  (7) 



The equality of K ,  and K ,  automatically makes K  = K R  = K,. Thus, 
we are left with the task of choosing a proper value for C; lying in between 
C;, and G,. Hilllo recommended that the appropriate value of C; should 
be taken either as the arithmetic mean (A.M.) or the geometric mean 
(G.M.) of C;, and C;,. ~ u c k e r "  has shown that both these means give 
identical results for isotropic solids but. foi anisotropic solids, the G.M. 
was found a better choice than the A.M.. Brown12 has utilized Zucker's 
formula to calculate Q,(D) for palladium and also confirmed Zucker's 
hypothesis. 

When we made a comparative study of Qo(D) for severa1 cubic solids, 
using ~ucker's" expression, we found that the calculated Qo(D) was always 
greater in the A.M. approximation than in the G.M. approximation. The 
results predicted by the G.M. approximation were also higher than the 
experimental results. We were thus convinced that to get the calculated 
values for O0(D) closer to the experimental results, we needed the value 
of C; smaller than that predicted by the G.M. approximation. We thus 
thought of another mean averaging procedure, narnely, the harmonic 
mean (H.M.), given by 

C; = 2G, C;, 
C;, + C;, 

With the help of equations (I), (4), (3, (6) and (9), we obtain the following 
empirical expression for Oo(D) 

where 

and 



3. Numerical Computation 

The calculation of Oo(D) was carried out with the help of equation (10), 
for 24 cubic crystalc. The input data with their appropriate sources are 
presented in Table 1 and the calculated Oo(D) are given in Table 2 together 
with the experimental Debye temperature as well as the best calculated 
values for Oo(D) as given by Konti and Varshni7. In order to compare 
our calculations with those of Ref. 7, we have used the same elastic cons- 

Ar O 
Li- 78 
Na 78 
K 4.2 
Rb-l O 
Rb-2 O 
Cu O 
Ag o 
Au O 
AI o 
Diamond 3 0 0  
Si 77 
G e  77 
Pb O 
v o 
Nb 4.2 
Ta O 
Mo o 
W o 
Fe O 
Ni O 
Pd O 
Ir O 
Pt O 
Th O 
-- .. -- 

Source of the elastic 
constants 

Moeller and SquireL3 
Nash and SmithI4 
Diederich and T ~ i v i s o n n o ' ~  
Marquardt and T r i ~ i s o n n o ' ~  
Robert and Meister" 
Gutman and Trivisonno" 
Overton and Gaffney19 
Neighbours and Alerslo 
Neighhours and AlersZ0 
Kamn and Alers2' 
McSkimin and BondZ2 
McSkimin and Andreatch2' 
McSkimin and AndreatchZ4 
Waldorf and Alers" 
AlersZ6 
Carro1I2' 
Featherston and NeighboursZ8 
Featherston and N e i g h b o u ~ s ~ ~  
Featherston and NeighboursZs 
Lord and BeshersZ9 
Alers et a!." 
Rayne" 
MacFarlane et a!.'' 
MacFarlane et a1 '' 
Armstrong et d3' 

--- 

Table 1 - Summary of experimental data used in calculations. (The lattice ~onstant '~-"  and the elastic constants are at the 
temperature indicated in the 2"d column. 

4. Discussion 

a) Comparison with Experimental Results 

Argon: A reasonable agreement between calculated and experimental 
Debye temperature. 

Lithium: The agreement is poor. This is because elastic constants were 
not available at very low temwrature and therefore we have used elas- 
tic constants at 78°K and at that temperature the solid is no m o i - e  

cu bi c. 



Element 6 calculated 6 experimental 0 (Konti and Varshni) 

Cu 345.9 345.6 I 1.0 344.0 
Ag 227.1 226.6 & 1.0 226.2 
Au 161.5 162.4 I 2 161.0 
Pd 276.2 270 275.6 
Ni 504.5 477.4 6.2 475.9 

489.9 +_ 2.0 
Th 165.4 170 163.7 

Ar 91.22 93.3 -1 0.6 91.2 

A1 

Ir 
Pt  
Pb  
Li 
Na 
K 
Diamond 
Si 
Ge  
V 
Nb 
Ta 
Mo 
W 

Rb-2 53.67 - 54.4 
Rb- 1 54.47 55.6 54.5 

Table 2 - Calculated values of Debye temperature in "K. 

Sodium: The calculated result is about 8% lower than the experimental 
one. This is not very much surprising since we have used the value of 
elastic constants at 78"K, the only available experimental elastic constants 
at that temperature. 

Potassium: Very good agreement. 

Rubidium: Both sets of elastic constants give a good agreement with the 
experimental value. 

Copper, Silver and Gold : Excellent agreement. 

Diamond, Silicon, Germanium and Lead: Fair agreement. For diamond, 
the elastic constants are at 300°K; even so the result is good. 



Transition Metals: For these metals the experimental errors in the deter- 
mination of B,(D) are large and thus a critica1 comparison becomes meanin- 
gless. We can group a11 transition f.c.c. and b.c.c. crystals together and 
can say that. except for Molybdenum and Iridium, the calculated %,(D) 
are in fair agreement with the experimental results. 

b) Comparison with Other Theoretical Calculations 

Konti and Varshni7 have recently made an elaborate calculation using 
different theoretical models, and we have chosen the best values of Oo(D) 
from their calculations (see Table 2). A survey of Table 2 shows that our 
calculated values of 8,(D) for a11 the 24 cubic elements lie close to the 
ones obtained by Konti and varshni7. 

5. Conclusion 

The calculated í3,(D) for a11 24 cubic crystals considered here have predic- 
ted results which are as good as those predicted by much more cumber- 
some models like that of Hopf-Lechner3, Houston-Bhatia-Ta~ber~-~ and 
of Federov6. This indicates that cubic solids can be very well represented 
by Debye's model and that they show, to a certain extent, polycrystalline 
behaviour at absolute zero. 
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