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A new empirical expression is developed to calculate the Debye characteristic temperature
of cubic crystals. The calculated Debye temperatures for 24 cubic crystals are shown to be
in excellent agreement with other existing computations as well as with the experimental
results.

Uma nova expressdo empirica é desenvolvida para calcular a temperatura caracteristica de
Debye de cristais clbicos. Mostra-se que as temperaturas de Debye, calculadas para 24
cristais cubicos, estdo em excelente acordo com outros célculos bem como com os resul-
tados experimentais.

1. Introduction

Near absolute zero, a solid can be very wel represented by means o
Debye's continuum model. The calculation o 6,(D), the Debye charac-
teristic temperature at absolute zero, is then given in terms of the elastic
constants o the solid. In the past, several theoretical expressions have
been developed by Blackman!, de Launay?, Hopf-Lechner3, Houston?,
Bhatia and Tauber® and by Fedorov®. All these methods utilize physical
properties of the crystal which can be expressed in terms of averages
involving its elastic constants. Recently, Konti and Varshni’ have re-
viewed and revised the different methods o calculating 64(D), for 24 cubic
solids. We have developed a very simple expression to calculate 8,(D)
under the assumption that cubic solids show polycrystalline behavior
as wdl as are wdl represented by Debye's model at absolute zero. The
calculated values of 0y(D), for 24 cubic crystals, have been compared
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with the experimental results as well as with the results d Konti and
Varshni’.

2. Theory
In the Debye model, the expression of 8,{(D)is given by
_h(ON\PT2 1R
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where h = Planck's constant, k = Boltzmann's constant, N = Avogadro's
number, V = atomic volume, u, = longitudinal sound velocity, 4, = trans-
versal sound velocity. The sound velocities are given by the following
relations:

= (K +4G)!2 p7 172, @)

u, = G2 p=112, (3)

where p = density of solid, K = bulk modulus, ¢, = rigidity modulus. The
bulk and ridigity moduli are functions o the elastic constants only.

If a solid exhibits monocrystalline behavior, then it possessesa single value
for the quantities K and c. On the other hand, in the case of a solid sho-
wing polycrystalline behavior, there are two different approaches, one due
to Reuss® and the other to Voigt®, to calculate K and G in terms of the
elastic constants of the solid. Let us denote these moduli by Kz and G,
when determined by Reuss method, and K,, and G, when determined
by Voigt's method. These quantities are given by the following relations:

Kg =Ky = %(Cu + 2C12)> 4)
Gy = %(Cu _C12 + 3C44)_19 (5)
Gr' =2(C,, - Cp)™ ' + 3G (6)

Hill'°, in calculating some other properties of crystallinesolids, has shown
that. in practice, the actual values of K and C lie in between the limits
predicted by the two theories

K, < K < Ky, (7
Gy <G < Gg. ®)
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The equality of Kz and K, automatically makes K = Kz = K,,. Thus,
we are left with the task of choosing a proper value for ¢ lying in between
G and G, . Hill'® recommended that the appropriate value of C should
be taken either as the arithmetic mean (A.M.) or the geometric mean
(GM.)) of ¢, and Gy. Zucker'' has shown that both these means give
identical results for isotropic solids but. foi anisotropic solids, the G.M.
was found a better choice than the A.M.. Brown!2 has utilized Zucker's
formula to calculate 6,(D) for palladium and also confirmed Zucker's
hypothesis.

When we made a comparative study of 0,(D) for several cubic solids,
using Zucker’s** expression, we found that the calculated 6,(D) was aways
greater in the A.M. approximation than in the G.M. approximation. The
results predicted by the G.M. approximation were aso higher than the
experimental results. We were thus convinced that to get the calculated
values for 64(D) closer to the experimental results, we needed the value
of ¢ smaller than that predicted by the G.M. approximation. We thus
thought of another mean averaging procedure, namely, the harmonic
mean (H.M.), given by

. 26,C
G=—+—R 9
G G )

With the help of equations (1), (4), (5}, (6) and (9), we obtain the following
empirical expression for 64(D)

_ b [ ON B (Cu\P[ 2 1 e
OO(D) = 7(~> - A3/2 + (B + %A)?:/Z‘! ) (10)

AV \p
where )
_10 (¢® +9-20)

A=7 @ ¥ 304-300) 4y

+
B = 9 +t, (12}

and

g =4-3t+ 35 + 38t (13)
S =(Cyi ~CodACyy + Cyy), (14)
t =(Cip Cua)/Casr (15)
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3. Numerical Computation

The calculation of 84(D) was carried out with the help of equation (10),
for 24 cubic crystale. The input data with their appropriate sources are
presented in Table 1 and the calculated 8,(D) are given in Table 2 together
with the experimental Debye temperature as well as the best calculated
values for 6,(D) as given by Konti and Varshni’. In order to compare
our calculations with those of Ref. 7, we have used the same elastic cons-
tants as Konti and Varshni.

Element T a Cy, Cyy Caa Source of the elastic
{°K) (10"%cm) (10'! dyn/cm?) (10! dyn/cm?) (10** dyn/em?) constants

Ar 0 5.3110 0.3732 0.1262 0.1771 Moeller and Squire'®

Li~ 78 3.50 1.481 1.248 1.077 Nash and Smith!*

Na 78 4.2349 0.815 0.679 0.578 Diederich and Trivisonno'®

K 4.2 5.225 0.416 0.34t 0.286 Marquardt and Trivisonno!®

Rb-1 0 5.585 0.316 + 0.017 0.211 + 0.020 0.211 + 0.020 Robert and Meister™*

Rb-2 0 5.585 0.358 0.221 0.221 Gutman and Trivisonno!®

Cu 0 3.6029 17.62 8.177 8.177 Overton and Gaffney'®

Ag 0 4.0691 13.149 5.109 5.109 Neighbours and Alers?®

Au (o] 4.0649 20.163 4.544 4.544 Neighhours and Alers?®

Al 0 4.0328 11.430 3162 3.162 Kamn and Alers?!

Diamond 300 3.5670 107.6 57.58 57.58 McsSkimin and Bond??

S Va4 5.4294 16.772 8.035 8.035 McSkimin and Andreatch??

Ge a4 5.6524 13.11 6.816 6.816 McSkimin and Andreatch?*

Pb 0 4.9146 5.554 1.942 1.942 Waldorf and Alers®®

\ 0 3.0352 23.24 4.595 4.595 Alers®$

Nb 42 3.2961 25.27 3.097 3.097 Carroli?”

Ta 0 3.2979 26.632 8.736 8.736 Featherston and Neighbours?®

Mo 0 3.1470 45.002 12.503 12.503 Featherston and Neighbours?®

W 0 3.1620 53.255 20.495 16.313 Featherston and Neighbours?®

Fe o] 2.8607 237 13.5 11.95 Lord and Beshers?®

Ni 0 3.5160 26.12 15.08 13.17 Alers et al.3®

Pd 0 3.8808 23.41 17.61 712 Rayne?!

Ir 0 3.8336 59.6 252 27.0 MacFarlane et al.*?

Pt 0 3.9160 358 25.36 174 MacFarlane et al 32

Th 0 5.0612 7.79 4.82 5.13 Armstrong et al.®?

Table1 - Summary of experimental data used in calculations. (The lattice constant®*-3* and the elastic constants are at the
temperature indicated in the 2* column.

4. Discussion
a) Comparison with Experimental Results

Argon: A reasonable agreement between calculated and experimental
Debye temperature.

Lithium: The agreement is poor. This is because elastic constants were
not available at very low temperature and therefore we have used elas-
tic constants at 78°K and at that temperature the solid is NO moi-e
cubic.
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Element 6 calculated 6 experimental g (Konti and Varshni)

Cu 3459 3456 + 10 344.0
Ag 27.1 2266 + 1.0 2262
Au 1615 1624 + 2 1610
Pd 276.2 270 2756
Ni 504.5 4774 + 62 4759
4899 1 20
Th 165.4 70 1637
Ar 91.22 933 + 0.6 912
277 % 10
Al 42877 1364 307 4305
Ir 42921 420 429.6
Pt 237.77 2349 + 0.4 2383
Pb 105.17 1067 + 0.5 104.9
Li 31481 344 125 31738
Na 143.00 1525 ¢ 2 1443
K 89.36 90.6 + 1.4 89.1
Diamond 2231.23 2219 + 20 2239.6
S 648.34 645 + 5 648.9
Ge 3735 34 42 373.4
v 397.58 399 399.1
Nb 277.05 277 275.7
Ta 26337 258 2637
Mo 47238 460 4745
W 382.58 390 384.4
Fe-x 47472 3;?:2 i ?jg 4724
Rb-2 5367 _ 544
Rb-1 5447 55.6 545

Table 2 - Calculated values of Debye temperature in °K.

Sodium: The calculated result is about 8% lower than the experimental
one. This is not very much surprising since we have used the value of
elastic constants at 78°K, the only available experimental el astic constants
at that temperature.

Potassium: Very good agreement.

Rubidium: Both sets d elastic constants give a good agreement with the
experimental value.

Copper, Silver and Gold: Excellent agreement.

Diamond, Silicon, Germanium and Lead: Fair agreement. For diamond,
the elastic constants are at 300°K; even so the result is good.
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Transition Metals: For these metals the experimental errors in the deter-
mination of 6,(D) are large and thusa critical comparison becomes meanin-
gless. We can group all transition f.c.c. and b.c.c. crystals together and
can say that. except for Molybdenum and Iridium, the calculated 64(D)
are in fair agreement with the experimental results.

b) Comparison with Other Theoretical Calculations

Konti and Varshni” have recently made an elaborate calculation using
different theoretical models, and we have chosen the best values of 6,(D)
from their calculations (see Table 2). A survey of Table 2 shows that our
calculated values of d4(D) for all the 24 cubic elements lie close to the
ones obtained by Konti and Varshni’.

5. Concluson

The calculated 6,(D) for all 24 cubic crystals considered here have predic-
ted results which are as good as those predicted by much more cumber-
some models like that of Hopf-Lechner®, Houston-Bhatia-Tauber*-* and
of Federov®. This indicates that cubic solids can be very well represented
by Debye's model and that they show, to a certain extent, polycrystalline
behaviour at absolute zero.

The authors thank Dr. R C. C. Leite and Dr. Nelson de Jesus Parada for their interest in
this projegt. The computational facility from the Computer Centre o this University is also
acknowledged.
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