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Abstract: Vaccines have allowed for a significant decrease in COVID-19 risk, and new antiviral
medications can prevent disease progression if given early in the course of the disease. The rapid and
accurate estimation of the risk of severe disease in new patients is needed to prioritize the treatment
of high-risk patients and maximize lives saved. We used electronic health records from 101,039 indi-
viduals infected with SARS-CoV-2, since the beginning of the pandemic and until 30 November 2021,
in a national healthcare organization in Israel to build logistic models estimating the probability of
subsequent hospitalization and death of newly infected patients based on a few major risk factors
(age, sex, body mass index, hemoglobin A1C, kidney function, and the presence of hypertension,
pulmonary disease, and malignancy) and the number of BNT162b2 mRNA vaccine doses received.
The model’s performance was assessed by 10-fold cross-validation: the area under the curve was
0.889 for predicting hospitalization and 0.967 for predicting mortality. A total of 50%, 80%, and
90% of death events could be predicted with respective specificities of 98.6%, 95.2%, and 91.2%.
These models enable the rapid identification of individuals at high risk for hospitalization and death
when infected, and they can be used to prioritize patients to receive scarce medications or booster
vaccination. The calculator is available online.

Keywords: COVID-19; disease severity; calculator; diabetes; obesity; kidney disease

1. Introduction

Since the start of the COVID-19 pandemic, over 500 million individuals have been
infected and over 6 million individuals have died (https://coronavirus.jhu.edu/map.html,
accessed on 24 May 2022). Since late 2020, vaccines have been developed [1,2], and more
recently, new and promising anti-viral medications (Paxlovid and Molnupiravir) have
received FDA approval [3]. Unfortunately, supply of these treatments is currently limited.
Our duty as clinicians is to make sure that the available resources are used fairly and
appropriately to save lives. There is therefore an urgent need to estimate objectively
patients’ risk for severe disease so that patients who need these treatments the most would
receive the scarce medicines or booster vaccine doses which can save their lives [4–6].

For this purpose, we used retrospective data from Leumit Health Services (LHS),
one of the four main health maintenance organizations (HMOs) in Israel, which has over
700,000 members. Israel was one of the first countries to implement a large-scale vaccination
plan (using the Pfizer/BioNTech BNT162b2 vaccine) [7] and to deploy a third vaccine
booster dose. The variations in vaccination uptake [8] provide an opportunity to assess

Microorganisms 2022, 10, 1238. https://doi.org/10.3390/microorganisms10061238 https://www.mdpi.com/journal/microorganisms

https://doi.org/10.3390/microorganisms10061238
https://doi.org/10.3390/microorganisms10061238
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0002-2147-8033
https://orcid.org/0000-0002-7713-423X
https://coronavirus.jhu.edu/map.html
https://doi.org/10.3390/microorganisms10061238
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms10061238?type=check_update&version=2


Microorganisms 2022, 10, 1238 2 of 13

the beneficial effects of different vaccination doses after accounting for patient risk factors.
Among the factors known to affect COVID-19 severity are advanced age [9–12], type
II diabetes [10,13–17], kidney disease [10,17–19], chronic obstructive pulmonary disease
(COPD) [19–23], obesity [10,14,15,24,25], hypertension [26–28], and malignancy [29].

We constructed predictive models that estimate the risks that patients newly infected
with SARS-CoV-2 (as reflected by positive PCR tests) would require hospitalization during
the disease course and die from COVID-19. The predictions are based on patient age, sex,
the clinical factors mentioned above, and vaccination status at the time of infection (0, 1, 2,
or 3 doses). Importantly, all the included factors were part of patients’ medical records and
measured in routine laboratory testing. To keep the models simple and interpretable, and
to allow for deployment in any health provider, we used multivariable logistic regression
models based on the most essential risk factors. Regression coefficients and odds ratios
(OR) for each factor are provided, together with a formula to obtain risk estimates for any
newly infected individual. These risk estimates allowed us to identify patients at high
risk who would benefit from antiviral medications given early in the course of the disease.
A web-based calculator is provided, and the approach to run or adapt the models is fully
described. The calculator is in Supplementary Materials.

2. Methods
2.1. Study Subjects and Study Design

This is a population study performed on Leumit Health Services (LHS), a national
healthcare provider in Israel, which provides services to around 700,000 members through-
out the country. LHS uses centrally managed electronic health records (EHRs), which
are continuously updated regarding subjects’ demographics, medical diagnoses, medical
encounters, hospitalizations, and laboratory tests. All LHS members have similar com-
prehensive health insurance and similar access to healthcare services, as determined by
Israel’s ministry of health for the four national healthcare providers.

The study is based on members of LHS of age ≥ 5 (eligible for vaccination) who had
at least one positive PCR test for SARS-CoV-2 between April 2020 and 30 November 2021.
Patients’ data were extracted from the LHS central data warehouse on 3 January 2022.
For each COVID-19 episode, the date of the first positive PCR test was taken as the index
date. The number of vaccine doses received were calculated at the index date. Diagnosis
and laboratory data were queried as known 15 days before the index date. The following
factors were included in the analysis: sex, age, Body Mass Index (BMI) as a categorical
variable (<18.5; 18.5–25; 25–30; 30–35; and ≥35), hemoglobin A1C range (<6.5; 6.5–8; 8–10;
and ≥10), and last glomerular filtration rate (GFR) as an estimate of kidney function as
a categorical variable (categories: ≥90; 60–89; 45–59; 30–44; and <30). The presence of
comorbidity conditions was assessed by the presence of an active chronic diagnosis at this
date. Chronic diagnoses, coded according to the International Classification of Diseases 9th
revision (ICD-9), are regularly added, updated, or ended by the treating physician at each
encounter. The validity of chronic diagnoses in the registry has been previously examined
and confirmed as high [30–32].

To keep the models as simple as possible, we deliberately limited the models to the
conditions that we identified as having the most significant effect on disease severity:
hypertension, chronic obstructive pulmonary disease (COPD), and malignancy (solid or
hematologic). Individuals who had a pregnancy diagnosis up to 210 days before the PCR
test were excluded as hospitalization would often pertain to pregnancy surveillance or
delivery and not reflect disease severity.

2.2. Ethics Statement

The study protocol was approved by the statutory clinical research committee of
Leumit Health Services and the Shamir Medical Center Institutional Review Board (129-2-
LEU). Informed consent was waived because this is a large-scale retrospective study and
all data were deidentified.
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2.3. SARS-CoV-2 Testing by Real-Time RT-PCR

Nasopharyngeal swabs were taken and examined for SARS-CoV-2 by real-time RT-
PCR performed with internal positive and negative controls, according to World Health
Organization guidelines, using the TaqPath™ COVID-19 Combo Kit (Thermo Fisher Scien-
tific, Waltham, MA, USA) and COBAS SARS-CoV-2 6800/8800 (Roche Diagnostics, Basel,
Switzerland) assays.

2.4. Statistical Analyses

Standard descriptive statistics were used to present the demographic characteristics
of individuals included in the study cohort. Statistical analyses were done with R version
4.0.4 (R Foundation for Statistical Computing). Multivariable logistic regression models
were fitted using the “glm” procedure with age as a continuous variable, sex as a binary
variable, and number of vaccine doses, BMI category, hemoglobin A1C range, and GFR
estimate [33] as categorical variables, and the presence of hypertension, pulmonary disease,
or malignancy as binary variables. Receiver operating characteristic (ROC) curves were
used to assess the model’s performance [34] using 10-fold cross-validation. A two-sided
p < 0.05 was considered statistically significant. Missing values, which appeared only
in BMI, kidney function, and hemoglobin A1C variables, were treated by two different
approaches. We used k-nearest-neighbors imputation to replace missing values and also
performed an alternative analysis in which the missing values were treated as separate
“missing” categories. We display here the regression coefficients obtained after imputation.
Both methods resulted in very similar classifier performance.

3. Results
3.1. Factors Associated with Hospitalization of SARS-CoV-2-Positive Individuals

A total of 101,039 COVID-19 episodes were included based on a positive test for SARS-
CoV-2 obtained between 1 April 1 2020 and 30 November 2021. Of that total, 393 (0.4%)
resulted in patient death during hospitalization or within 30 days of contracting the disease,
and 1752 (1.7%) required patient hospitalization for COVID-19 that did not end in patient
death. Table 1(A) shows the baseline characteristics of individuals included in the cohort
according to their outcomes. Table 1(B) displays the distribution of categorical variables
after imputation of missing values. Generally, the hospitalized patients who died of the
disease were older, had a greater proportion of males, had higher BMIs and hemoglobin
A1C values, and were more likely to be affected with hypertension, pulmonary disease,
malignancy, and impaired kidney function.

Table 1. (A) Demographic and clinical characteristics of the study population. (B) Clinical character-
istics of the study population after missing variables imputation.

(A)

Not
Hospitalized

Hospitalized
(Not Deceased) Deceased

N (%) 98,894 (97.9%) 1752 (1.7%) 393 (0.4%)

Vaccines doses

0 82,261 (83.2%) 1405 (80.2%) 295 (75.1%)
1 4732 (4.8%) 138 (7.9%) 32 (8.1%)
2 10,436 (10.6%) 176 (10.0%) 61 (15.5%)
3 1465 (1.5%) 33 (1.9%) 5 (1.3%)

Sex Female 48,565 (49.1%) 798 (45.5%) 169 (43.0%)

Age Mean (SD) 29.44 (19.17) 58.44 (19.03) 75.27 (13.06)
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Table 1. Cont.

(A)

Not
Hospitalized

Hospitalized
(Not Deceased) Deceased

Age category

5–11 19,603 (19.8%) 19 (1.1%) 0 (0.0%)
12–17 15,999 (16.2%) 30 (1.7%) 0 (0.0%)
18–39 34,374 (34.8%) 245 (14.0%) 6 (1.5%)
40–59 20,361 (20.6%) 561 (32.0%) 44 (11.2%)
≥60 8557 (8.7%) 897 (51.2%) 343 (87.3%)

Comorbidities
Hypertension 9321 (9.4%) 880 (50.2%) 301 (76.6%)

Pulmonary disease 1592 (1.6%) 167 (9.5%) 74 (18.8%)
Malignancy 2258 (2.3%) 202 (11.5%) 83 (21.1%)

BMI category

Underweight <18.5 22,506 (22.8%) 44 (2.5%) 10 (2.5%)
Normal 18.5–25 32,373 (32.7%) 283 (16.2%) 83 (21.1%)

Overweight 25–30 21,396 (21.6%) 566 (32.3%) 126 (32.1%)
Obese I 30–35 10,763 (10.9%) 444 (25.3%) 85 (21.6%)

Obese II+ ≥35 5493 (5.6%) 372 (21.2%) 72 (18.3%)
*missing* 6363 (6.4%) 43 (2.5%) 17 (4.3%)

Kidney
function GFR

category

G1 (normal) ≥90 64,097 (64.8%) 850 (48.5%) 95 (24.2%)
G2 60–89 12,622 (12.8%) 596 (34.0%) 142 (36.1%)

G3a 45–59 840 (0.8%) 140 (8.0%) 68 (17.3%)
G3b 30–44 263 (0.3%) 74 (4.2%) 46 (11.7%)

G4/G5 <30 151 (0.2%) 45 (2.6%) 37 (9.4%)
*missing* 20,921 (21.2%) 47 (2.7%) 5 (1.3%)

Hemoglobin
A1C

range

<6.5 38,743 (92.2%) 1106 (72.2%) 268 (70.7%)
[6.5, 8.0] 2129 (5.1%) 253 (16.5%) 70 (18.5%)
[8.0, 10.0] 815 (1.9%) 115 (7.5%) 31 (8.2%)
≥10.0 328 (0.8%) 58 (3.8%) 10 (2.6%)

*missing* 56,879 (57.5%) 220 (12.6%) 14 (3.6%)

(B)

Not
Hospitalized

Hospitalized
(Not Deceased) Deceased

BMI category

Underweight <18.5 25,090 (25.4%) 47 (2.7%) 10 (2.5%)
Normal 18.5–25 34,615 (35.0%) 294 (16.8%) 85 (21.6%)

Overweight 25–30 22,687 (22.9%) 593 (33.8%) 139 (35.4%)
Obese I 30–35 11,006 (11.1%) 446 (25.5%) 87 (22.1%)

Obese II+ ≥35 5496 (5.6%) 372 (21.2%) 72 (18.3%)

Kidney
function GFR

category

G1 (normal) ≥90 84,503 (85.4%) 887 (50.6%) 90 (22.9%)
G2 60–89 13,124 (13.3%) 590 (33.7%) 144 (36.6%)

G3a 45–59 860 (0.9%) 141 (8.0%) 71 (18.1%)
G3b 30–44 256 (0.3%) 87 (5.0%) 47 (12.0%)

G4/G5 <30 151 (0.2%) 47 (2.7%) 41 (10.4%)

Hemoglobin
A1C

range

<6.5 95,481 (96.5%) 1322 (75.5%) 282 (71.8%)
[6.5, 8.0] 2266 (2.3%) 257 (14.7%) 70 (17.8%)
[8.0, 10.0] 819 (0.8%) 115 (6.6%) 31 (7.9%)
≥10.0 328 (0.3%) 58 (3.3%) 10 (2.5%)

We built multivariable logistic regression models to predict both the hospitalization
and mortality outcomes. The odds ratios from multivariable regression models reflect the
extent to which each risk factor affects the outcome after adjustment for the others.

Table 2 displays the model for hospitalization risk based on the comparison of
2145 episodes that resulted either in hospitalization or death vs. 98,894 infections that did
not necessitate hospitalization. For each variable, the regression coefficient with the corre-
sponding odds ratio, 95% confidence interval, and p-values are displayed. The footnote
explains how to calculate the outcome probability for any given patient data.
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Table 2. Logistic regression model for hospitalization risk.

Odds
Ratio *

95%
Confidence

Interval
p βi (Coeffi-

cient)

β0 (Intercept) 0.001 0.0000 −6.754369

Age Continuous in years 1.061 [1.057–1.064] 0.0000 0.058834

Sex
Male 1.000 reference 0

Female 0.657 [0.598–0.722] 0.0000 −0.420262

Vaccine doses

0 1.000 reference 0

1 0.823 [0.694–0.976] 0.0248 −0.195301

2 0.602 [0.521–0.697] 0.0000 −0.506982

3 0.339 [0.241–0.476] 0.0000 −1.082553

BMI category

Underweight <18.5 0.937 [0.697–1.260] 0.6674 −0.064998

Normal 18.5–25 1.000 reference 0

Overweight 25–30 1.324 [1.158–1.513] 0.0000 0.280302

Obese I 30–35 1.664 [1.441–1.922] 0.0000 0.509396

Obese II+ ≥35 2.932 [2.514–3.419] 0.0000 1.075528

Kidney
function

GFR category

G1 (Normal) ≥90 1.000 reference 0

G2 60–89 1.058 [0.947–1.183] 0.3197 0.056446

G3a 45–59 1.568 [1.296–1.898] 0.0000 0.450065

G3b 30–44 2.774 [2.164–3.555] 0.0000 1.020266

G4/G5 <30 4.000 [2.952–5.420] 0.0000 1.386290

Hemoglobin
A1C

%

<6.5 1.000 reference 0

[6.5, 8.0] 1.454 [1.263–1.673] 0.0000 0.374131

[8.0, 10.0] 1.908 [1.559–2.334] 0.0000 0.645939

≥10.0 3.048 [2.284–4.068] 0.0000 1.114620

Comorbidities

Hypertension 1.270 [1.130–1.428] 0.0001 0.239212

Pulmonary disease 1.331 [1.134–1.563] 0.0005 0.286110

Malignancy 1.197 [1.030–1.390] 0.0188 0.179418
* Odds ratio is defined as exp (coefficient). The coefficients in the last column are the βi to be used to calculate
the odds ratio using the following formula: odds ratio = exp (β0 + x1 β1 + x2 β2 + x3 β3 + x4 β4 + . . . ). The
probability of an event can be obtained from the odds ratio using the formula: p = (odds ratio)/(1 + odds ratio).

We must emphasize a few key findings arising from the multivariable regression
analysis. First, increased age is significantly associated with the risk of hospitalization: each
year of age increased the odds for hospitalization by a multiplicative factor of 1.061, which
means that compared to an individual aged 20 with similar other risk factors, a patient aged
60 is 10 times more likely to be hospitalized, and a patient aged 80 is 34 times more likely
to be hospitalized. Being female reduced the odds for hospitalization by 34%. Obesity
increased risk in a gradual manner (OR = 1.324 for a BMI of between 25 and 30, OR = 1.664
for a BMI of between 30–35, and OR = 2.932 for a BMI of over 35, compared to the reference
category of a normal BMI, p < 0.001 for all). Diabetes mellitus, as reflected by the most
recent hemoglobin A1C values, is independently associated with increased risk in a gradual
manner (OR = 1.454 for an A1C of between 6.5 and 8%, OR = 1.908 for an A1C of between
8 and 10%, and OR = 3.048 for an A1C of above 10% compared to the reference category
of an A1C of below 6.5%, p < 0.001 for all). Impaired kidney function is also associated
with increased risk in a gradual manner (OR = 1.568 for a GFR of between 45 and 59,
OR = 2.774 for a GFR of between 30 and 44, and OR = 4.000 for a GFR of below 30 compared
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to the reference category of a GFR of above 90, p < 0.001 for all). Hospitalization risk
significantly increased with hypertension (OR = 1.270, 95% CI [1.130–1.428]), pulmonary
disease (OR = 1.331, 95% CI [1.134–1.563]), and cancer (OR = 1.197, 95% CI [1.030–1.390]).

As expected, as compared to unvaccinated patients, being vaccinated significantly
decreased the hospitalization risk (OR = 0.602, 95% CI [0.521–0.697] for two vaccine doses
and OR = 0.339, 95% CI [0.241–0.476] for three vaccine doses, p < 0.001 for both categories),
even for the relatively small group of single-vaccination individuals (OR = 0.823, 95% CI
[0.694–0.976], p = 0.025).

The ROC shows the diagnostic ability of a classifier as its discrimination threshold is
varied. We performed a 10-fold cross validation and calculated the ROC to estimate the
performance of our model (Figure 1). The performance of the hospitalization risk model
was remarkably accurate, with an area under the curve (AUC) of 0.889. The model was
able to predict 50%, 80%, and 90% of hospitalizations, with respective specificities of 95.3%,
82.2%, and 70.2%.
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Figure 1. Receiver operating curve for the hospitalization risk model. The ROC shows the sensitivity
and the specificity of the hospitalization model as its discrimination threshold is varied. With a
threshold of 8.71% for risk, 50% of the COVID-19 episodes necessitating hospitalization can be
identified (sensitivity = 50%), and specificity is 95.3% (false positive rate = 4.7%); with a risk threshold
of 2.39%, sensitivity is 80% and specificity is 82.2% (false positive rate = 7.8%); and with a risk
threshold of 1.14%, sensitivity is 90% and specificity is 70.2% (false positive rate = 30.8%).
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3.2. Factors Associated with Mortality for SARS-CoV-2-Positive Individuals

Table 3 displays the model for mortality risk. It is based on the comparison of 393 fatal
cases of COVID-19 compared to 101,039 disease episodes that did not end in patient death.
The smaller size of the outcome group limits the power of the model; nevertheless, a few
factors are associated with a large statistically significant effect, and advanced age is even
more strikingly associated with increased mortality risk. Each year of age increased the
odds for death by a factor of 1.105. Compared to an individual aged 20 with similar other
risk factors, a patient aged 60 is 54 times more likely to die of the disease, and a patient
aged 80 is 393 times more likely to die. Being female is also associated with a reduced risk
of death, reducing this risk by about half.

Table 3. Logistic regression model for mortality risk.

Odds
Ratio *

95%
Confidence

Interval
p βi (Coeffi-

cient)

β0 (Intercept) 0.000 0.0000 –11.227376

Age Continuous in years 1.105 [1.095–1.115] 0.0000 0.099573

Sex
Male 1.000 reference 0

Female 0.500 [0.401–0.625] 0.0000 –0.692446

Vaccine doses

0 1.000 reference 0

1 0.921 [0.627–1.354] 0.6771 –0.081842

2 0.936 [0.698–1.254] 0.6561 –0.066541

3 0.223 [0.091–0.551] 0.0011 –1.498783

BMI category

Underweight <18.5 2.179 [1.056–4.496] 0.0350 0.778997

Normal 18.5–25 1.000 reference 0

Overweight 25–30 0.979 [0.733–1.307] 0.8866 −0.021027

Obese I 30–35 1.085 [0.785–1.500] 0.6196 0.081961

Obese II+ ≥35 1.963 [1.383–2.786] 0.0002 0.674479

Kidney
function

GFR category

G1 (Normal) ≥90 1.000 reference 0

G2 60–89 1.283 [0.965–1.705] 0.0861 0.249162

G3a 45–59 2.000 [1.390–2.878] 0.0002 0.693180

G3b 30–44 3.097 [2.035–4.715] 0.0000 1.130578

G4/G5 <30 6.888 [4.389–10.810] 0.0000 1.929831

Hemoglobin
A1C

%

<6.5 1.000 reference 0

[6.5, 8.0] 1.137 [0.851–1.518] 0.3842 0.128408

[8.0, 10.0] 1.479 [0.983–2.226] 0.0602 0.391618

≥10.0 1.782 [0.905–3.510] 0.0948 0.577767

Comorbidities

Hypertension 1.348 [1.011–1.797] 0.0421 0.298497

Pulmonary disease 1.475 [1.113–1.956] 0.0069 0.388824

Malignancy 1.138 [0.868–1.491] 0.3489 0.129199
* Odds ratio is defined as exp (coefficient). The coefficients in the last column are the βi to be used to calculate
the odds ratio, using the following formula: odds ratio = exp (β0 + x1 β1 + x2 β2 + x3 β3 + x4 β4 + . . . ). The
probability of an event can be obtained from the odds ratio using the formula: p = (odds ratio)/(1 + odds ratio).

Being extremely obese and underweight both increased the risk of death (OR = 1.963
for a BMI of above 35 and OR = 2.179 for a BMI of below 18.5, compared to a normal
BMI), while other BMI categories were not significantly associated with death. Impaired
kidney function was also associated with an augmented mortality risk in a gradual manner



Microorganisms 2022, 10, 1238 8 of 13

(OR = 2.000 for a GFR of between 45 and 59, OR = 3.097 for a GFR of between 30 and 44, and
OR = 6.888 for a GFR of below 30 compared to the reference category of a GFR of above 90,
p < 0.001 for all). Diabetes mellitus, as reflected by the last hemoglobin A1C, also increased
mortality risk in a gradual manner, although more moderately than for hospitalization. The
other comorbidity coefficients are, overall, similar to those for hospitalization, although the
smaller outcome group allowed us to detect a statistical significance only for hypertension
and pulmonary disease. Vaccination with a booster dose significantly decreased mortality
risk by 78% (OR = 0.223, 95% CI [0.091–0.551], p = 0.001).

We performed a 10-fold cross validation and plotted the ROC to estimate the per-
formance of the mortality risk model (Figure 2). The model was very accurate, with an
AUC of 0.967, and was able to predict 50%, 80%, and 90% of death events, with respective
specificities of 98.6%, 95.2%, and 91.2%.
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Figure 2. Receiver operating curve for mortality risk model. The ROC shows the sensitivity and the
specificity of the mortality model as its discrimination threshold is varied. With a threshold of 5.42%
for risk, 50% of the COVID-19 episodes ending in patient death can be identified (sensitivity = 50%),
and specificity is 98.6% (false positive rate = 1.4%); with a risk threshold of 1.32%, sensitivity is 80%
and specificity is 95.2% (false positive rate =‘4.8%); and with a risk threshold of 0.57%, sensitivity is
90% and specificity is 91.2% (false positive rate = 8.8%).
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3.3. Risk Calculators

Tables 2 and 3 provide all the coefficients, as well as the formula that is used to
calculate the absolute risk of a given individual, using the regression models described
above. Basically, the coefficients are to be multiplied by the corresponding variables and
summed to obtain the natural logarithm of the odds ratio. After exponentiation, the odds
ratio can be converted to a probability by dividing it by its value plus one. This calculator
is available online and can be used to calculate hospitalization and mortality probabilities
for any given individual.

4. Discussion

This study developed models that can estimate the risks of subsequent hospitalization
and death for any individual newly infected with SARS-CoV-2 using health records from
a large healthcare provider in Israel. On 30 December 2021, the first batch of Pfizer’s
Paxlovid anti-COVID-19 medication arrived in Israel. We were immediately faced with
the practical question: which COVID-19 patients should be prioritized to receive Paxlovid?
These models are being used to answer this question rapidly and fairly by providing
estimates of the hospitalization and mortality risks for each newly infected patient using
information extracted from electronic medical records—notably, the patient’s age, sex,
number of vaccine doses received so far; baseline BMI, Hemoglobin A1C, and estimated
glomerular filtration ranges; and the presence of hypertension, immune deficiency, and/or
pulmonary disease diagnoses. These calculated risk estimates are remarkably accurate and
help identify which patients are at high risk of severe and potentially lethal disease and
should, therefore, be prioritized for early antiviral treatment.

Our study capitalizes on the centrally managed, comprehensive electronic health
records maintained in our health organization that are continuously updated with hos-
pitalization and death from COVID-19; the early adoption of a homogenous vaccination
program in Israel, and of the booster dose; and the relatively large number of individuals
that have tested positive for COVID-19. We deliberately opted for model simplicity by
limiting the number of input variables to recognized clinical factors associated with dis-
ease severity that are documented in most health organizations. We intentionally did not
include country-specific demographic variables to generate a model that is generalizable to
other populations. Even with these limited inputs, the resulting AUCs are highly accurate,
achieving 0.889 for hospitalization and 0.967 for mortality. The better AUC performance
of the model for mortality risk likely reflects that death is mostly determined by the pa-
tient’s health status, while the decision to hospitalize a patient is additionally impacted
by the availability of family or social supports at home and the patient’s own preferences,
which are not accounted for in our model. Importantly, these mortality and hospitalization
risk estimates can be given as soon as the disease is diagnosed, allowing us to identify
which patients are most at risk for a severe outcome so that they can be given treatment
early in the infection. The models can also prioritize which populations to vaccinate or
to urge to receive booster doses to maximize lives saved and reduce the load on hospital-
ization facilities. Several attempts have already been made to build predictive models for
COVID-19 severity, notably [4,9,19,35–38]. Among the five models cited in the preceding
sentence, only the models of Iannou and colleagues [4] and of Experton and colleagues [27]
predict at least one of risk of hospitalization or risk of death in a newly infected individual.
However, these two models achieve much lower AUCs than our models and do not take
vaccination into account. Furthermore, both models use more than 10 variables, some of
which are non-clinical variables that are specific to the United States. Thus, there is still
an unmet need for simple and internationally applicable models, which are analogous
to CURB-65 [39], and could allow the instant triage of new patients using few essential
parameters, including vaccination status. This approach allowed us to produce models
with remarkably high accuracy.

Our study also provides further large-scale confirmation of recently published studies
that showed that a third booster vaccine provides a sharp and almost immediate increase
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in protection [35,36]. The risk reduction from each additional vaccine dose rigorously and
quantitively substantiates the public health message that the primary benefits of current
COVID-19 vaccinations are protecting against death and severe disease, and protection
against any infection is a secondary goal [40]. Since vaccination has also been shown to
substantially decrease the risk for symptomatic infection, its overall cumulative effect on
hospitalization and death are even greater than the odds ratio reported here.

Importantly, in contrast to what we and others found for the infection risk [30], we
did not observe that time elapsed since vaccination significantly increased hospitalization
and mortality risks. For these outcomes, the protective effect of vaccination was largely
determined by the cumulative number of vaccine doses received. This may indicate that
the immune system response elicited by mRNA vaccine injection has a more lasting effect
on hospitalization and mortality risk than on the risk of symptomatic infection following
exposure to the virus.

Our study has several limitations. First, it is based on a population which was
vaccinated almost exclusively with the Pfizer/Biotech BNT162b2 vaccine, with the first
two doses spaced by 21 days. It is uncertain how the estimated effect of vaccination under
these conditions would apply to populations vaccinated using different vaccines or using a
different vaccination schedule. Moreover, factors specific to our health organization may
have affected the results, such as the level of education, ease of access to care, ethnicity,
criteria for hospital admission, and treatment decisions that influence mortality. Evolving
patient management policies could have a confounding effect on the number of vaccine
doses at different times. In addition, the data on which our models rely were collected
mostly before the Omicron variant of SARS-CoV-2 emerged. Initial reports suggest that
infections with the Omicron variant may be less severe [41,42], and so hospitalization and
death risks for Omicron may be lower than those calculated by our models. Nevertheless,
as long as Omicron is affected by the same risk factors as previous variants, the ranking
of patients by risk is expected to remain similar. In our health organization, we use these
models as tools to identify new COVID-19 patients who are most at risk for severe disease
and could therefore benefit from the new antiviral treatments. We continuously monitor
the hospitalization and mortality outcomes of COVID-19 infected individuals, and if we
identify a different effect of risk factors specific to new viral variants, we will update our
models accordingly. Additional studies on different populations would help to ascertain
the validity of our models in different settings. To enable such validation studies, we
provide the full model formulas and encourage their use.

In conclusion, the models described here, available online as a calculator, allow for the
identification of individuals most at risk for severe disease or death if infected by using very
few essential parameters and vaccination status. This approach can guide public health
decisions to optimally allocate vaccines and scarce medicines to maximize lives saved [5].

Supplementary Materials: Calculator: https://covidest.web.app/, updated on 31 January 2022.
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