
A calculus for team automata?

Maurice H. ter Beek1, Fabio Gadducci2, and Dirk Janssens3

1 Istituto di Scienza e Tecnologie dell’Informazione, CNR
via G. Moruzzi 1, 56124 Pisa, Italy
maurice.terbeek@isti.cnr.it

2 Dipartimento di Informatica, Università di Pisa
via Buonarroti 2, 56125 Pisa, Italy

gadducci@di.unipi.it
3 Department of Mathematics and Computer Science, University of Antwerp

Middelheimlaan 1, 2020 Antwerpen, Belgium
dirk.janssens@ua.ac.be

Abstract. Team automata are a formalism for the component-based
specification of reactive, distributed systems. Their main feature is a
flexible technique for specifying coordination patterns among distributed
systems, extending classical I/O automata. Furthermore, for some of
these patterns, the language recognised by a team automaton can be
specified in terms of the languages recognised by its components.

The present paper introduces a process calculus tailored over team au-
tomata. Each automaton is thus described by a process, in such a way
that its associated (fragment of a) labelled transition system is bisim-
ilar to the original automaton. Furthermore, the mapping is proved to
be denotational, since the operators on processes are in a bijective cor-
respondence with a chosen family of coordination patterns, and that
correspondence is preserved by the mapping.

The paper thus extends to team automata some classical results on I/O
automata and their representation by process calculi. Moreover, besides
providing a language for expressing team automata and their composi-
tion, we widen the family of coordination patterns for which an equa-
tional characterisation of the language associated to a composite automa-
ton can be provided. The latter result is obtained by providing a set of
axioms, in ACP-style, for capturing bisimilarity in our calculus.

Keywords: Compositional specification, process calculi, team automata.

1 Introduction

Team automata have originally been introduced in the context of Computer
Supported Cooperative Work (CSCW for short) to formalise the conceptual and
architectural levels of groupware systems [2, 9, 12]. As shown in [4], they repre-
sent an extension of classical I/O automata [13, 14], and since their introduction
? Work partly supported by the EU projects HPRN-CT-2002-00275 SegraVis (Syn-

tactic and Semantic Integration of Visual Modelling Techniques) and IST-3-016004-
IP-09 Sensoria (Software Engineering for Service-Oriented Overlay Computers).

they have proved their usefulness also in various application fields [1, 5]. Team
automata form a mathematical framework to capture notions like communica-
tion, coordination and cooperation in reactive, distributed systems. The model
allows one to separately specify the components of a system, to describe their
interactions and to reuse the system as a component of a higher-level team au-
tomaton, thus supporting a compositional approach to system design. Such an
approach benefits from stepwise development: An abstract high-level specifica-
tion of a large, complex design is decomposed into a more concrete low-level
specification by step-by-step refinement. To guarantee correct decompositions it
is important that the chosen model is compositional, i.e., a specification of a
large system can be obtained from specifications of its components [11].

In this paper we introduce a calculus for specifying team automata, similar
in spirit to the calculi that have been defined for (probabilistic) I/O automata [8,
17, 18]. The main idea underlying process algebras like the acp framework [6],
Hoare’s csp [10] and Milner’s ccs [15] is the use of basic processes and a set
of fundamental operators to inductively construct more complex processes. Our
calculus for team automata is essentially an enrichment of csp, and its obser-
vational semantics is axiomatised by some suitably adapted operators from the
acp framework. Each automaton is described by a process, in such a way that its
associated (fragment of a) labelled transition system is bisimilar to the original
automaton. Furthermore, the mapping is proved to be denotational, since the
operators on processes are in a bijective correspondence with a chosen family of
coordination patterns, and that correspondence is preserved by the mapping.

One of our results is thus the extension to team automata of some classical
results on I/O automata and their representation by process calculi. Another
result concerns the compositionality of team automata. In [1, 3] it was shown
that certain team automata that are defined by a coordination pattern guarantee
compositionality, in the sense that their languages can be obtained from the
languages of their constituting automata. Furthermore, it was claimed that one
specific other type of team automata does not. Besides proving the latter claim,
we will use our calculus for team automata to show how to obtain the language of
such a specific type of team automaton defined by a coordination pattern directly
from its components. Thus, a compositionality result does exist, even if the
manipulation of the languages of the components does not suffice. By providing
a set of axioms, in ACP-style, to capture bisimilarity in our calculus, we enlarge
the family of coordination patterns for which an equational characterisation of
the language associated to a team automaton can be provided.

The paper is organised as follows. Section 2 introduces team automata. The
syntax and the operational semantics of our calculus for team automata, as well
as a finitary equational theory for bisimulation, are introduced in Section 3.
Section 4 presents an encoding from processes to automata, and back, which
preserves the bisimulation equivalence, while Section 5 offers a characterisation,
via a suitable axiomatisation, for language equivalence, thus partly solving (since
the encoding preserves the parallel operators on automata) our modularity is-
sues. Finally, Section 6 concludes the paper, hinting at possible future work.

2 Team automata

A team automaton consists of component automata — ordinary automata with-
out final states and with a distinction of their sets of actions into input, output
and internal actions — combined in a coordinated way such that they can per-
form shared actions. During each clock tick the components within a team can
simultaneously participate in one instantaneous action, i.e., synchronise on this
action, or remain idle. Component automata can thus be combined in a loose
or more tight fashion, depending on which actions are to be synchronised and
when.

We now fix some notations and terminology used in this article, after which
we introduce team automata. However, we slightly adapt the usual definition of
team automata [2]. First, we assume each automaton to have a unique initial
state. This is of course not a real limitation, but it will ease some of the construc-
tions below. Second, we discard the usual distinction between input, output and
internal actions in component and team automata. In [8, 17, 18] the distinction
of the set of actions of I/O automata into input, output and internal actions is
taken into account. For team automata, however, this distinction is much less
important since — contrary to I/O automata — team automata need not be in-
put enabling and synchronisations between output actions may occur. Hence in
team automata the consideration of input and output actions does not have any
syntactic significance. As a result, taking input and output actions into account
thus would not affect our calculus. On the other hand, it would not be difficult
to extend our calculus in order to deal with internal actions.

For convenience we sometimes denote the set {1, . . . , n} by [n]; thus [0] = ∅.
The (cartesian) product of sets Vi, with i ∈ [n], is denoted either by

∏
i∈[n] Vi

or by V1 × · · · × Vn. For j ∈ [n], projj :
∏
i∈[n] Vi → Vj is defined by

projj((a1, . . . , an)) = aj . The set difference of sets V and W is denoted by
V \W . For a finite set V , its cardinality is denoted by #V . The empty word (a
sequence of symbols) is denoted by λ.

Let Γ and Σ be sets of symbols. The morphism presΓ,Σ : Γ ∗ → Σ∗, defined
by presΓ,Σ(a) = a if a ∈ Σ and presΓ,Σ(a) = λ otherwise, preserves the symbols
from Σ and erases all other symbols. We discard Γ when no confusion can arise.

Let f : A→ A′ and g : B → B′ be functions. Then f × g : A×B → A′×B′
is defined as (f × g)(a, b) = (f(a), g(b)). We use f [2] as shorthand for f × f .

Definition 1. A labelled transition system (lts for short) is a triple A =
(Q,Σ, δ), with a set Q of states, a set Σ of actions (satisfying Q ∩ Σ = ∅)
and a set δ ⊆ Q×Σ ×Q of labelled transitions.

The set δa of a-transitions of A is defined as δa = { (q, q′) | (q, a, q′) ∈ δ } and
an a-transition (q, a, q′) ∈ δ may also be written as q a−→ q′. Action a is said to
be enabled in A at state q ∈ Q, denoted by a enA q, if there exists q′ ∈ Q such
that (q, q′) ∈ δa. An a-transition (q, q) ∈ δa is called a loop (on a).

Definition 2. A (component) automaton is a rooted lts, i.e., a quadruple C =
(Q,Σ, δ, q0), where (Q,Σ, δ) is an lts and q0 ∈ Q is the initial state.

The set C(C) of computations of C is defined as C(C) = { q0a1q1a2 · · · anqn |
n ≥ 0 and (qi−1, ai, qi) ∈ δ for all i ∈ [n] }.

The language L(C) of C is defined as L(C) = presΣ(C(C)).

For the sequel we let S = { Ci | i ∈ [n] } be an arbitrary but fixed set of
component automata, with n ≥ 0 and each Ci specified as Ci = (Qi, Σi, δi, q0i),
and we let Σ =

⋃
i∈[n]Σi.

A team automaton over S has the cartesian product of the state spaces of
its components as its state space and its actions are those of its components. Its
transition relation, however, is based on but not fixed by those of its components:
The transition relation of a team automaton over S is defined by choosing certain
synchronisations of actions of its components, while excluding others.

Definition 3. Let a ∈ Σ. The set ∆a(S) of synchronisations of a is defined as
∆a(S) = { (q, q′) ∈

∏
i∈[n]Qi ×

∏
i∈[n]Qi | [∃ j ∈ [n] : projj

[2](q, q′) ∈ δj,a] ∧
[∀ i ∈ [n] : [proji

[2](q, q′) ∈ δi,a] ∨ [proji(q) = proji(q′)]] }.

The set ∆a(S) thus contains all possible combinations of a-transitions of the
components constituting S, with all non-participating components remaining
idle. It is explicitly required that in every synchronisation at least one component
participates. The state change of a team automaton over S is thus defined by
the local state changes of the components constituting S that participate in the
action of the team being executed. Hence, when defining a team automaton over
S, a specific subset of ∆a(S) must be chosen for each action a. This defines a
certain kind of communication between the components constituting the team.

Definition 4. A team automaton over S is a quadruple T = (Q,Σ, δ, q0), with
Q =

∏
i∈[n]Qi, Σ =

⋃
i∈[n]Σi, δ ⊆ Q×Σ×Q such that δa = { (q, q′) | (q, a, q′) ∈

δ } ⊆ ∆a(S) for all a ∈ Σ and q0 =
∏
i∈[n] q0i.

In [2] several strategies for choosing the synchronisations of a team automa-
ton were defined, each leading to a uniquely defined team automaton. These
strategies fix the synchronisations of a team by defining — per action a — cer-
tain conditions on the a-transitions to be chosen from ∆a(S), thus determining a
unique subset of ∆a(S) as the set of a-transitions of the team. Once such subsets
have been chosen for all actions, the team automaton they define is unique.

Definition 5. Let Ra(S) ⊆ ∆a(S) for all a ∈ Σ and let RΣ = {Ra(S) | a ∈
Σ }. Then T = (Q,Σ, δ, q0) is the RΣ-team automaton over S if δa = Ra(S)
for all a ∈ Σ.

In this notation we usually discard Σ when no confusion can arise. The
subsets mentioned above are based on those actions of T that are free, ai or
si. An action a is free in T if none of its a-transitions is brought about by a
synchronisation of a by two or more components from S, a is action-indispensable
(ai for short) in T if all its a-transitions are brought about by a synchronisation
of all components from S sharing a and a is state-indispensable (si for short) in T
if all its a-transitions are brought about by a synchronisation of all components
from S in which a is currently enabled.

Definition 6. Let a ∈ Σ. Then the set

– Rno
a (S) is defined as Rno

a (S) = ∆a(S);
– Rfree

a (S) is defined as Rfree
a (S) = { (q, q′) ∈ ∆a(S) | #{ i ∈ [n] | a ∈ Σi ∧

proji
[2](q, q′) ∈ δi,a } = 1 };

– Rai
a (S) is defined as Rai

a (S) = { (q, q′) ∈ ∆a(S) | ∀ i ∈ [n] : [a ∈ Σi ⇒
proji

[2](q, q′) ∈ δi,a] };
– Rsi

a (S) is defined as Rsi
a (S) = { (q, q′) ∈ ∆a(S) | ∀ i ∈ [n] : [[a ∈ Σi ∧

a enAi proji(q)]⇒ proji
[2](q, q′) ∈ δi,a] }.

Each of these subsets of ∆a(S) thus defines, for a given action a ∈ Σ, all
transitions from ∆a(S) that obey to a certain type of synchronisation. In the
case of no constraints, this means that all a-transitions are allowed since nothing
is required, and thus no transition is forbidden. In the other three cases, all and
only those a-transitions are included that respect the specified property of a.

Before presenting an example to illustrate the notions defined so far, we define
shorthand notations for three specific types of team automata that we will use
in the sequel. Let n = 2, i.e., we consider S = {C1, C2}, and let Γ ⊆ Σ. Then

– C1 ‖f C2 defines the Rfree
Σ -team automaton over S;

– C1 ‖aiΓ C2 defines the Rno
Σ\Γ ∪R

ai
Γ -team automaton over S;

– C1 ‖siΓ C2 defines the Rno
Σ\Γ ∪R

si
Γ -team automaton over S.

Example 1. Consider component automata C1 = ({p, p′}, {b}, {(p, b, p′)}, p) and
C2 = ({q, q′}, {a, b}, {(q, b, q), (q, a, q′)}, q). They are depicted in Figure 1.

// p
b // p′ // q

b

�� a // q′

Fig. 1. The component automata C1 (left) and C2 (right).

In Figure 2 we have depicted C1 ‖f C2, C1 ‖ai{b} C2 and C1 ‖si{b} C2. Note that
C1 ‖f C2 is different from the Rno

{a,b}-team automaton over {C1, C2}.

A team automaton over S is said to satisfy compositionality if its behaviour
can be described in terms of that of its constituting component automata: There
exists a language-theoretic operation such that when it is applied to the lan-
guages of the component automata in S, the language of a particular team over
S results. In [1, 3] it was shown that the construction of team automata ac-
cording to certain types of synchronisation, e.g., the ones leading to Rfree - and
Rai -team automata, guarantee compositionality. In [1] it is moreover claimed
that a similar result for the case of Rsi -team automata “seems impossible due
to the simple fact that the behaviour of component automata is stripped from
all state information”. Here we prove this statement.

// (p,q)

b

�� a // (p,q′)
b // (p′,q′) (p′,q)

aoo

b

��

// (p,q)
a //

b
//

(p,q′)

(p′,q)
a // (p′,q′)

// (p,q)
a //

b
//

(p,q′)
b

(p′,q)

a //

b

EE
(p′,q′)

Fig. 2. Clockwise from top, the automata C1 ‖f C2, C1 ‖si{b} C2 and C1 ‖ai{b} C2.

Proposition 1. Let C1 and C2 be two component automata. Then there exists
no language-theoretic operation ||| such that L(C1 ‖siΣ C2) = L(C1) ||| L(C2).

The proof is by counterexample. Let us consider the team automata in Figure 3.
Now, we have that L(D2) = L(D3), while L(D1 ‖siΣ D2) = L(D1 ‖siΣ D3) ∪ {abc}.

// p
a // q

b // r

// p
a // q

b

��c||
r s

// p
a //

a //

q
b

��
r

c // s

Fig. 3. Clockwise from top, the automata D1, D2 and D3

In Section 5 the calculus for team automata that we are about to introduce
does provide a way to obtain the language of an Rsi -team automaton directly
from its components, i.e., without actually constructing the automaton.

3 A CSP-like process calculus

In this section we introduce a simple process calculus, essentially an enrichment
of Hoare’s csp [10], and then present the associated operational semantics.

3.1 Syntax and operational semantics

We assume countable sets of actions A, ranged over by a, b, . . ., and agent vari-
ables X, ranged over by x, y, . . ., with ℘f (A) — the finite subsets of A — ranged
over by L. Terms are built from actions and variables according to the syntax

M ::= nil | a.x | a.P | M +M | recx.M

P ::= Mc | P ‖ P | P ‖L P | P ‖eL P

As usual, a variable x is free if it does not occure inside the scope of a recx
operator. The set of (sequential) agents is ranged over by M,N, . . . , and for
its subsets of closed agents the subscript c is added. The set of processes is
denoted by P and ranged over by P,Q, . . . , and a process is finite if it contains
no occurrence of a recursion operator.

The constant nil represents the terminated process. The action prefix a.P
can perform an atomic action a and then evolve to P . Summation + denotes
non-deterministic choice: P + Q behaves either as P or as Q, the choice being
triggered by the execution of an action. The intended meaning of the recursion
operator recx.M is the process defined by the equation x = M , with the further
restriction implicitly ensured by the syntax, namely, that only closed terms are
inserted into a process context: This assumption corresponds to what are usually
called size-bounded processes, and it is formalised by Proposition 2 below.

There are three different notions of parallel composition. Basically, P ‖L Q
means that processes P and Q must evolve synchronously with respect to each
action a ∈ L, while they may evolve independently of each other with respect to
actions a 6∈ L, i.e., the actions in L are synchronised according to the ai type of
synchronisation. Similarly for its eager version: Also in P ‖eL Q both processes
must synchronise on the actions in L, but now a process may in any case evolve
with any action which is not offered at the moment by the other process, i.e., the
actions in L are synchronised according to the si type of synchronisation. Finally,
in P ‖ Q each of the two processes may only evolve independently of each other,
but a further restriction is imposed in the case that one of the processes may
loop: In order to faithfully mimic the free type of synchronisation for all actions,
a process may independently evolve with an action a only if the other process
cannot evolve with a loop on a. However peculiar this condition may seem at
first, it is a direct consequence of the fact that in team automata no explicit
information on loops is provided, i.e., in general one cannot distinguish whether
or not a component with a loop on a in its current local state participates in the
synchronisation of the team on a. In [2] this led to the adoption of the maximal
interpretation of the components’ participation. That is, given a team transition
(q, a, q′) it is thus assumed that the jth component participates in this transition
by executing (projj(q), a,projj(q′)) whenever proj[2](q, q′) ∈ δj,a. Otherwise, no
transition takes place in the jth component.

The operational semantics of this calculus is described by the lts T =
(P, A,→), where →⊆ P × A × P is defined in the so-called sos style [16] as
the least relation that satisfies the set of axioms and inference rules of Table 1.
In Table 1 we have omitted the symmetric rules for the choice operator and for
the three parallel composition operators. Moreover, given a process P ∈ P, the
predicates Loop(P) and En(P) are defined as

– Loop(P) = { a ∈ A | P a−→ P } and
– En(P) = { a ∈ A | ∃Q ∈ P : P a−→ Q }.

Finally, the semantics of a process P ∈ P, denoted by LTS (P), is defined as the
rooted lts LTS (P) = (P, A,→, P).

act :
−

a.P
a−→ P

rec :
M [recx.M/x]

a−→ N

recx.M
a−→ N

sum :
M

a−→M ′

M +N
a−→M ′

par :
P

a−→ P ′

P ‖ Q a−→ P ′ ‖ Q
a 6∈ Loop(Q)

parL :
P

a−→ P ′, Q
a−→ Q′

P ‖L Q
a−→ P ′ ‖L Q′

a ∈ L para :
P

a−→ P ′

P ‖L Q
a−→ P ′ ‖L Q

a 6∈ L

pareL :
P

a−→ P ′, Q
a−→ Q′

P ‖eL Q
a−→ P ′ ‖eL Q′

a ∈ L parea :
P

a−→ P ′

P ‖eL Q
a−→ P ′ ‖eL Q

a 6∈ L ∩ En(Q)

Table 1. The operational semantics for P.

Example 2. Consider the simple sequential agents M = b.nil and N = recx(b.x+
a.nil): Their associated rooted lts’s are depicted in Figure 4.

// M
b // nil // N

b

�� a // nil

Fig. 4. LTS(M = b.nil) (left) and LTS(N = recx(b.x+ a.nil)) (right).

Let L = {b}. Hence, no constraints are imposed on a. Then the lts’s cor-
responding to the application of the three parallel composition operators to M
and N are depicted in Figure 5.

Note that nil acts as the identity for both ‖ and ‖eL, while it is a sort of anni-
hilator for ‖L. Indeed, the next section focuses on an equational presentation
for bisimulation equivalence, equating those processes exhibiting the same (non-
deterministic) behaviour. The result below states a property of our operational
semantics, making precise the previous remark on size-bounded processes.

Proposition 2. Let P be a process. Then the rooted lts LTS (P) is finite.

In other terms, there is no syntactical explosion of a process, during its
evolution, because only closed terms may be inserted into a parallel operator.

M‖N

b

�� a // M‖nil
b // nil‖nil M‖{b}N

a //

b
//

M‖{b}nil

nil‖{b}N
a // nil‖{b}nil

M‖e{b}N
a //

b
//

M‖e{b}nil b

nil‖e{b}N

a //

b

FF
nil‖e{b}nil

Fig. 5. Clockwise from top, the lts’s for M ‖ N , M ‖{b} N and M ‖e{b} N .

3.2 Axioms for bisimulation

The aim of this section is to introduce a finite equational theory for bisimulation,
which will later form the basis for the characterisation of the language associated
to a process (hence, to an automaton). First we define the notion of bisimulation.

Definition 7. Let T = (Q,Σ, δ) be an lts. A relation R ⊆ Q ×Q is a bisimu-
lation if it is symmetric and for each (p, q) ∈ R and a ∈ Σ holds that

– whenever p a−→ p′, then q
a−→ q′ for some q′ ∈ Q such that (p′, q′) ∈ R.

Two states q, q′ ∈ Q are said to be bisimilar, denoted by q ' q′, if there exists
a bisimulation R such that (q, q′) ∈ R. Two rooted lts’s T1 = (Q1, Σ1, δ1, q1) and
T2 = (Q2, Σ2, δ2, q2) are bisimilar if q1 ' q2.

Our starting point for a finite equational theory for bisimulation is the solu-
tion routinely adopted in the acp framework [6], i.e., the use of suitable auxiliary
operators (usually 6 and |) to split the parallel composition operator (‖) into its
possible behaviours: either an asynchronous evolution (6) or a forced synchroni-
sation (|). For our calculus this leads to the axioms of Tables 2 and 3, where an
equation with occurrences of (e) is intended to hold both in case each occurrence
is replaced by e and in case each occurrence is simply removed.

Proposition 3. Let P , Q be finite processes. Then P and Q bisimilar iff they
are equated by the axioms of Tables 2 and 3.

Note that the equations can be oriented from left to right, so that they ac-
tually induce a rewriting system, modulo the so-called ACI (associativity, com-
mutativity and identity) axioms for the choice operator. So, two finite processes
are bisimilar if they have the same normal form. Concerning recursive processes,
we offer some preliminary considerations in the following sections.

P + P = P P +Q = Q+ P

(P +Q) +R = P + (Q+R) P + nil = P

P ‖ Q = P 6 Q+Q 6 P (P +Q) 6 R = P 6 R+Q 6 R

nil 6 P = nil a.P 6 Q =

{
a.(P ‖ Q) if a 6∈ Loop(Q)
nil otherwise

Table 2. Axioms for choice and asynchronous parallel composition.

P ‖(e)L Q = P 6
(e)
L Q+Q 6

(e)
L P + P |(e)L Q (P +Q) |(e)L R = P |(e)L R+Q |(e)L R

R |(e)L (P +Q) = R |(e)L P +R |(e)L Q nil |(e)L P = nil = P |(e)L nil

(P +Q) 6
(e)
L R = P 6

(e)
L R+Q 6

(e)
L R nil 6

(e)
L P = nil

a.P |(e)L b.Q = nil a.P |(e)L a.Q =

{
a.(P ‖(e)L Q) if a ∈ L
nil otherwise

a.P 6L Q =

{
a.(P ‖L Q) if a 6∈ L
nil otherwise

a.P 6eL Q =

{
a.(P ‖eL Q) if a 6∈ L ∩ En(Q)
nil otherwise

Table 3. Axioms for (eager) synchronous parallel composition.

4 From processes to automata, and back

The aim of this section is to present an encoding from processes to automata,
such that the bisimulation equivalence is preserved. To this end, we now ex-
tend the usual definition of automata by assigning a specific set of states to be
considered as entry points for the recursion operator.

Definition 8. Let X be a set of state variables. Then an automaton over X is
a pair 〈A, f〉, where A = (Q,Σ, δ, q0) is an automaton and f : X → Q is an
injective (but not necessarily total) function.

So, for the rest of this section we assume that for each automaton a set of
its states is uniquely labelled by an element in X. This extension allows the
definition of a few operations on automata, mimicking process composition.

Definition 9. Let 〈A, f〉 be an automaton over XA. Then a·A is the automaton
over XA obtained by creating a new initial state and adding an a-transition from
this new initial state to the original initial state of A.

Next, let 〈B, g〉 an automaton over XB. Then A + B is the automaton over
XA ∪ XB obtained by first taking the disjoint union of A and B and then coa-
lescing the roots and those states labelled by the same variable.

Finally, let x ∈ XA. Then A ↑x is the automaton over XA \ {x} obtained by
coalescing the root with the state labelled by x (if it exists).

It is now possible to define our encoding from processes to automata. For the
sake of simplicity, we assume all the variables that are used in the occurrences
of the recursion operator to be different.

Definition 10. Let P be a process and let X be a set of variables (not including
those occurring bound in P). Then the automaton JP KX is defined by

– JnilKX = 〈Anil,∅〉, where Anil = ({nil},∅,∅, nil);
– JxKX = 〈Ax, f〉, where Ax = ({q0},∅,∅, q0) and f(x) = q0;
– Ja.P KX = a · JP KX ;
– JM +NKX = JMKX + JNKX ;
– Jrecx.MKX = JMKX∪{x} ↑x;
– JP ‖ QKX = JP K∅ ‖f JQK∅;
– JP ‖L QKX = JP K∅ ‖aiL JQK∅;
– JP ‖eL QKX = JP K∅ ‖siL JQK∅.

We let JP K stand for JP K∅. Now, please note that the fragment of the lts
LTS (P) associated to a process P actually defines an automaton, with the reach-
able processes as its states and its labelled transitions defined accordingly.

Proposition 4. Let P be a process. Then LTS (P) and JP K are bisimilar au-
tomata.

The proof is given by coinductive arguments, exhibiting a suitable bisimu-
lation between the two lts’s. In this case, we relate each process P to JP KX for
any set X of variables containing those occurring free in P .

Clearly, also the inverse path can be followed, namely, obtaining a process
out of an automaton.

Definition 11. Let 〈A, f〉 be an automaton A = (Q,Σ, δ, q0) over XA. Then the
algorithm obtained by repeatedly applying the three steps below inductively defines
an essentially unique — up to the choice of variables — process Exp(〈A, f〉).

– If q0 has no outgoing transitions, then

Exp(〈A, f〉) =
{
x if f(x) = q0, for some x ∈ XA, and
nil otherwise;

– If q0 has n ≥ 0 outgoing transitions (q0, ai, qi) and no incoming ones, then

Exp(〈A, f〉) =
∑

i∈{1,...,n}

ai.Exp(〈Ai, f〉)

for automata Ai = (Q \ {q0}, Σ, δ \ { (q0, a, q) | a ∈ Σ, q ∈ Q }, qi) over XA;

– If q0 has n ≥ 0 outgoing transitions (q0, ai, qi) and some incoming ones, then

Exp(〈A, f〉) = recx.

 ∑
i∈{1,...,n}

ai.Exp(〈Ai, g〉)

for a new variable x, automata Ai = (Q,Σ, δ\{ (q0, a, q) | a ∈ Σ, q ∈ Q }, qi)
over XA ∪ {x} and function g extending f such that g(x) = q0.

Note that we have implicitly used the fact that the operator + is commutative
and associative, up to bisimulation (see the equations in Table 2). Note also
that the second rule is actually not needed: we added it just to associate a finite
process to an acyclic automaton.

Proposition 5. Let 〈A, f〉 be an automaton over XA and let Exp(〈A, f〉) be its
(essentially unique) process. Then A is bisimilar to LTS (Exp(〈A, f〉)).

Once more, the proof is by coinductive arguments, by associating to the root
of A the state Exp(〈A, f〉), and to each state qi all the processes Exp(〈Ai, g〉)
arising during the translation, and such that qi is the root of Ai.

It is noteworthy that the encoding of Definition 11 can further be proved to
be compositional, up to bisimulation, with respect to the automata operators of
parallel compositions.

Example 3. Consider the automata C1 = ({p, p′}, {b}, {(p, b, p′)}, {p}) and C2 =
({q, q′}, {a, b}, {(q, b, q), (q, a, q′)}, {q}) from Example 1 as automata over XC1
and XC2 , respectively.

By Definition 11, Exp(〈C1, f1〉) = b.Exp(〈C′1, f1〉), with C′1 = ({p′}, {b},∅, p′),
and Exp(〈C′1, f1〉) = nil; thus Exp(〈C1, f1〉) = b.nil. Moreover, C1 trivially is bisim-
ilar to LTS (b.nil).

By Definition 11, Exp(〈C2, f2〉) = recx.(b.x + a.Exp(〈C′2, f ′2〉)), with C′2 =
({p, p′}, {a, b},∅, p′) and f ′2(x) = p, and Exp(〈C′2, f ′2〉) = nil; thus Exp(〈C2, f2〉) =
recx.(b.x+ a.nil). Finally, C2 trivially is bisimilar to LTS (recx.(b.x+ a.nil)).

5 Equations for (finite) languages

Let us consider again the equational presentation for bisimulation offered in
the previous section. In particular, note how the normal form associated to a
finite process intuitively corresponds to a regular expression, obtained using
as alphabet the set of actions of the calculus as well as composition and non-
deterministic choice. The aim of this section is to transform this view into an
equational presentation for the language of a team automaton.

The correspondence between regular expressions and languages is a staple of
theoretical computer science, and we do not repeat it here. We simply denote in
the following by LP the language associated to the normal form of a process P .
Moreover, we denote by L̂ the prefix-closed extension of a language L over Σ,
namely

L̂ = {α ∈ Σ∗ | ∃β ∈ Σ∗ : αβ ∈ L}.

Proposition 6. Let P be a finite process. Then the language of JP K coincides
with L̂P .

The previous result suggests the use of our calculus also for deriving the
language associated to an automaton. This is not surprising, since bisimulation
is finer than language equivalence: the language of an automaton corresponds
to the set of paths originating from its root, hence, to the set of sequences of
transitions of the associated process (and vice versa).

Furthermore, the above characterisation suggests the use of equational laws
in order to distill a normal form that is simpler than the original automaton.

Proposition 7. Let P , Q be finite processes. Then the languages of JP K and
JQK coincide iff the normal forms of P and Q are equated by using the ACI
axioms of + (see Table 2) and the axiom

a.P + a.Q = a.(P +Q).

Once more, note how the equation can be interpreted as a left to right rewrit-
ing rule, obtaining for each process a further reduced normal form. It is important
to realise that this axiom could not be simply added to the set of equations in
Tables 2 and 3, since critical pairs would arise because it is not compatible with
the distributivity of eager parallel composition.

Example 4. Let us consider the automata D1, D2 and D3 used for providing the
counterexample concerning Proposition 1, as shown in Figure 3. If we ignore
the above axiom, then clearly their associated processes D1, D2 and D3 have
the normal forms a.b.nil, a.b.nil + a.c.nil and a.(b.nil + c.nil), respectively. But
if the axiom had been added to the set of equations in Tables 2 and 3, then
clearly D2 would be equated to D3 and thus D1 ‖siΣ D2 would have the same
normal form as D1 ‖siΣ D3, which is not the case. Instead, the normal form for
a.b.nil ‖siΣ a.b.nil+a.c.nil is a.b.nil+a.b.c.nil+a.c.b.nil, reduced to a.(b.c.nil+c.b.nil);
while the normal form for a.b.nil ‖siΣ a.(b.nil + c.nil) is a.b.nil + a.c.b.nil, reduced
to a.(b.nil + c.b.nil). The associated languages are easily derived.

The situation so far is good for finite processes, i.e., equivalently, for acyclic
automata. In order to prove the language-theoretic equivalence of two team
automata, it is sufficient to consider the associated processes, and then analyse
their normal forms. It is interesting that the mapping to processes preserves the
operators of parallel composition on automata, up to bisimulation, so that the
procedure for obtaining the normal form becomes modular.

5.1 Tackling recursive processes

The situation is less satisfactory for recursive processes. This is far from sur-
prising, since in general no finite set (or schemata) of axioms is available for
bisimulation equivalence on calculi containing parallel composition operators.

We could define a set of axioms completely characterising what are usually
called basic process algebras: In our case, the subset of sequential processes con-
taining only the constant nil, prefixing, sum and recursion (see, e.g., [7] for a
recent survey in ACP-style). For the full calculus, either conditional axioms are
considered or processes are described by a set of suitable equations, admitting a
unique solution. We follow the following path, by stating the result below.

Proposition 8. Let P be a process, containing free only the variable x. Then
the equation x = P admits a unique solution, up to bisimulation.

A solution for an equation x = P is a process Q that is bisimilar to P [Q/x].
Similar results are standard in most process calculi for so-called guarded choice
processes, i.e., such that each occurrence of a sum operator is inside prefixing.
Our result is thus more restricted, since processes such as recx.(a.x ‖ b.nil) are
explicitly forbidden. This is not restrictive for our aims, since it is enough to
model team automata, and it is a consequence of the semantics of eager parallel
composition, in particular its negative premises in the inference rules describing
its behaviour.

The proposition above tells us that, despite the lack of a complete axiomati-
sation, a recursive process is characterised by a regular expression, and thus it
can be used for a modular description of the language associated to the process.

6 Conclusion

We have introduced a process calculus for modelling team automata, extending
some classical results on I/O automata. As a side result we widened the family of
team automata that guarantees a degree of compositionality by providing a way
to obtain the language of a (finite) Rsi -team automaton from its components.
Even though this language cannot be obtained through a direct manipulation of
the languages of its components, the resulting degree of compositionality favours
the use of team automata in component-based system design.

Future work in this direction should lead to compositionality results for other
types of team automata, thus widening the family of team automata that guar-
antee a degree of compositionality even further. A first step in this direction
could be to extend our calculus with parallel composition operators that mimic
the various peer-to-peer and master-slave types of synchronisation for team au-
tomata as introduced in [2], as well as mixtures of the synchronisations defined
for team automata. As a matter of fact, [1, 3] contain compositionality results not
only for Rfree - and Rai -team automata, but also for team automata constructed
according to a mixture of the free and ai synchronisations. It is important to
recall, however, that the various peer-to-peer and master-slave types of synchro-
nisation make use of the distinction of the set of actions of team automata into
input, output and internal actions. This means that in order to tackle the above
issues, our calculus should first be extended to take this distinction into account.

Finally, in order to be really useful in practical applications of team automata,
it would be worthwhile to study the complexity of the algorithms introduced in

this paper, e.g., what is the cost of obtaining the language of a team automaton
via its translation into processes. Furthermore, it would be worhwhile to check
thoroughly the possible axioms of the full calculus, and explicitly derive the
regular expression associated to a recursive process, as well as the expressiveness
of the operators of our calculus, particularly the eager synchronisation.

References

1. M.H. ter Beek. Team Automata — A Formal Approach to the Modeling of Collab-
oration Between System Components. PhD thesis, Leiden Institute of Advanced
Computer Science, Leiden University, 2003.

2. M.H. ter Beek, C.A. Ellis, J. Kleijn, and G. Rozenberg. Synchronizations in Team
Automata for Groupware Systems. Computer Supported Cooperative Work — The
Journal of Collaborative Computing, 12(1):21–69, 2003.

3. M.H. ter Beek and J. Kleijn. Team Automata Satisfying Compositionality. In
K. Araki, S. Gnesi, and D. Mandrioli, editors, Proceedings of FME 2003: Formal
Methods — the 12th International Symposium of Formal Methods Europe, Pisa,
Italy, volume 2805 of Lecture Notes in Computer Science, pages 381–400. Springer-
Verlag, Berlin, 2003.

4. M.H. ter Beek and J. Kleijn. Modularity for Teams of I/O Automata. Information
Processing Letters, 95(5):487–495, 2005.

5. M.H. ter Beek, G. Lenzini, and M. Petrocchi. Team Automata for Security –
A Survey –. In R. Focardi and G. Zavattaro, editors, Proceedings of the 2nd
International Workshop on Security Issues in Coordination Models, Languages, and
Systems (SecCo’04), London, UK, volume 128 of Electronic Notes in Theoretical
Computer Science, pages 105–119. Elsevier Science Publishers, Amsterdam, 2005.

6. J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Control, 60(1–3):109–137, 1984.

7. J.A. Bergstra and A. Ponse. Non-regular Iterators in Process Algebra. Theoretical
Computer Science, 269:203–229, 2001.

8. R. De Nicola and R. Segala. A Process Algebraic View of Input/Output Automata.
Theoretical Computer Science, 138(2):391–423, 1995.

9. C.A. Ellis. Team Automata for Groupware Systems. In S.C. Hayne and W. Prinz,
editors, Proceedings of the International ACM SIGGROUP Conference on Support-
ing Group Work: The Integration Challenge (GROUP’97), Phoenix, AZ, U.S.A.,
pages 415–424. ACM Press, New York, 1997.

10. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
11. B. Jonsson. Compositional Specification and Verification of Distributed Systems.

ACM Transactions on Programming Languages and Systems, 16(2):259–303, 1994.
12. J. Kleijn. Team Automata for CSCW – A Survey –. In H. Ehrig, W. Reisig,

G. Rozenberg, and H. Weber, editors, Petri Net Technology for Communication-
Based Systems — Advances in Petri Nets, volume 2472 of Lecture Notes in Com-
puter Science, pages 295–320. Springer-Verlag, Berlin, 2003.

13. N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo,
California, 1996.

14. N.A. Lynch and M.R. Tuttle. An Introduction to Input/Output Automata. CWI
Quarterly, 2(3):219–246, 1989.

15. R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1980.

16. G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Computer Science Department, Aarhus University, 1981.

17. E.W. Stark, R. Cleaveland, and S.A. Smolka. A Process-Algebraic Language for
Probabilistic I/O Automata. In R.M. Amadio and D. Lugiez, editors, Proceedings
of the 14th International Conference on Concurrency Theory (CONCUR’03), Mar-
seille, France, volume 2761 of Lecture Notes in Computer Science, pages 189–203.
Springer-Verlag, Berlin, 2003.

18. F.W. Vaandrager. On the relationship between process algebra and input/output
automata (extended abstract). In A.R. Meyer, editor, Proceedings of the 6th Annual
Symposium on Logic in Computer Science (LICS’91), Amsterdam, The Nether-
lands, pages 387–398. IEEE Computer Society Press, New York, 1991.

