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Abstract. The paper presents the Calculus of Looping Sequences (QitShke to describe micro-
biological systems and their evolution. The terms of theulak are constructed by basic constituent
elements and operators of sequencing, looping, containamehparallel composition. The looping
operator allows tying up the ends of a sequence, thus cegeatiircular sequence which can repre-
sent a membrane. We show that a membrane calculus receoplggad can be encoded into CLS.
We use our calculus to model interactions among bacteridaaotriophage viruses, and to reason
on their properties.

1. Introduction

In the last few years a notable research effort has been devoteuirtallpdescribe biological processes
by using means originally developed by computer scientists to model systemtemiciing compo-
nents. This permits simulation of system behaviour and verification of greperAmong the many
formalisms that have been applied to biology there are Petri Nets [11],idH@8lystems [1], and the
mw-calculus [14, 7]. Moreover, some new formalisms have been progosgekscribe biomolecular and
membrane interactions [2, 4, 5, 6, 8, 13].

In this paper we present a new calculus suitable to describe microbiolgggtains and their evolu-
tion. The terms of our calculus are constructed by starting from basititwam elements and compos-
ing them by means of operators of sequencing, looping, containmeneaakdepcomposition. Looping
allows tying up the ends of a sequence, thus creating a circular segofetiee constituent elements.
We assume that the elements of a circular sequence can rotate, and thigesdtieaterminology of
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looping sequence. A looping sequence can represent a membranes arwhthinment operator allows
representing that some element is inside the membrane.

Viewing membranes as sequences of elements allows representing interattlose elements, and
thus describing real biological phenomena. This cannot be desciybeadduli that consider membranes
as atomic objects, as in [5].

A set of congruence rules allows considering as equivalent termsréhaitanded to represent the
same biological system. The evolution of a system is described by a setriteraules to be applied to
terms. We show that reachability of a term is decidable for monotonic rewtés.ru

As an application, we model interactions among bacteria and bacterioplragesy and bacteria
sporulation. We represent bacteria and viruses as terms, and givefarserite rules for describing
how bacteriophages parasitize bacteria, and how bacteria prodwres spd spores germinate.

Finally, we encode Cardelli's phago/exo/pino calculus (PEP Calculusints] CLS and prove the
correctness of the encoding.

2. Calculus of Looping Sequences

In this section we introduce our Calculus of Looping Sequences (CL&pdAume a sétof elementary
constituents:, b, ¢, . . ., and a neutral term

Definition 2.1. (Terms)
A TermT of CLS is given by the following grammar:

Tiwo=a | ¢ | T-T | (D" | TIT | TIT
whereq is a generic element &. We denote witi” the (infinite) set of terms.

AtermT may be either an elementéhor a concatenation of ternis - 7> (a sequence), or a looping
(T)* or a combination of terms by means of the containment operigdod the parallel operatdr. A
term(7)" is a closed circular sequence of the elements constitutingTerfiermT; | T» represents the
containment of tern in the term7}, while termT | T represents terri} in parallel with termT5.

If we have the | operator together with a looping, as (i} )” | T, we have that the terri, is really
inside the closed circular sequen@ )’ represents, otherwise theoperator reduces to theoperator
for non-looping (open) terms.

Brackets can be used to indicate the order of application of the operataiteim. We assume the
- operator to have the highest precedence and thgerator to have the precedence over thperator.
Thereforel’ | Ty | T stands for(T} | T») | T. Moreover, we assumé to be right—associative, therefore
with 71 | T» | T we denote the terf | (T | 7).

Example 2.1. In Figure 1 we give a visual representation of some examples of CLS terRgure 1.a
we represent the terifu - b - ¢) ”, in Figure 1.b we represent the tefifc - d - )" - a - b)", in Figure 1.c
we represent the terf{(c- d- )" | h)-a-b)" | f - g.

Concatenation can represent a physical link between elements, whillel@enposition represents

juxtaposition of separated elements. When we have the parallel compositiwo of more terms in a
sequence, only one may actually be linked to elements of the sequence.sifecathat this element
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Figure 1. Examples of CLS terms Figure 2. A real situation

is the first in the parallel composition, while the others are considered clase For example, the
terma - (b|d) - c represents a sequenge b - ¢ with the element! near the sequence in proximity of
b. Analogously, when we have that a term is contained in the parallel composititwo terms, the
term may be contained only in one of the two, and again we assume that this istherfn. Finally,
a looping of a parallel composition of terms is intended as the looping of onéirghterm, in parallel
with the other terms. These assumptions allow us to define a structural eangrrelation on terms of
the calculus as follows.

Definition 2.2. (Structural Congruence)
The structural congruence is the least congruence relation on terms satisfying associativity_atnd
_-_, and the following axioms:

A2. (TV|T) | T = (T | T)| Ty 3. (T|T)" = (T)" |1y
AL T|TV | =T || T A5 (T | To) | T5 =Ty | (T | Ts)
46. (T1-Ty)" = (Th-T)" A7 a|T=a|T A8 (1-To)|T=(Ty - T)|T
A9. TNe=T|e=T Al10. T-e=e-T=T All. (E)LEG

Axioms Al, A2 and A3 state that if we apply either sequential composition, tonént or looping
to a parallel composition of terms, these operators act upon the first tetime pfrallel composition.
This means that the first element of the parallel composition plays the spaeiaiscussed before and
it cannot be commuted in a series of parallel compositions. This is said by @&dom

We remark that assigning a special role to an element of a parallel compasitiohunusual. For
instance, in [9, 10] the last element in a series of parallel compositions énapdicial role of giving the
result of the computation of the whole series. Thus, it cannot be commuted.

Axiom A5 says that putting a term inside a term which already contains a tesmifgén the term
containing the parallel composition of the terms inside.

Axiom A6 says that terms in a looping can rotate and axioms A7 and A8 say teahaannot stay
inside a term which is not a looping term, and, in this case, the containmewitopsrequivalent to the
parallel composition.

Finally, axioms A9, A10 and A11 describe the neutral role ahd (e)L with respect to the operators
of the calculus. We remark that in axiom A9 the neutral teri® placed on the right hand side of the
| operator otherwise could be inserted at the left hand of a series of parallel compositions afirgtits
term would lose its privileged role.
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Remark 2.1. We haveT | (T1 | T2) =T | (12| T1).

Proof:
A A
The equivalence of the two terms can be derived as folldiv$ (7} | 73) (59) (T |e) | (T1 | T) (55)
(A4) (45) (49)
Tl |T) = Tl(e|T2|T) = (T]e) [ (Ta|Th) = T (T2 Th), O

The remark shows that the first element of a series of parallel compositiorise commuted when
the whole series is contained inside another term. As a consequence whatgeto have unrestricted
commutativity of a parallel composition at the top level of a term, he can insetetheinto the term
(e)L by using the containment operator. In this way we forbid the first elemensefies of parallel com-
positions to commute only when the whole series is an element of a sequenumar8teommutativity
holds otherwise.

Consider the model of a real situation in which a membrane that is part ofeamo#gmbrane breaks,
and its content is released in the environment. This situation is depicted in FAgureThe smaller
membrane (depicted with a thick line) is part of the larger one (depicted withtatilhe), namely, it is
part of the sequence representing that membrane (in the picture it is shedhere to it). If the smaller
membrane breaks and opens, we have as a result of the procesdyomeotbrane, and the content of
the smaller one (the black circle) is freed. The definition of axioms Al, A2%id such that the content
of the smaller membrane is freed outside the resulting membrane (as is showaria Eig). Formally,
the initial situation in Figure 2.a corresponds to the téf - ... - b)~ |a)-c- ... - ¢)* in which the
large membrane is represented by a loopingarfid the smaller one by a looping#énd the content by
a. Breaking the smaller membrane means removing the looping operator of tiensegp® elements,
thus obtaining the termi(b-...-b|a) - c-...-c)*. By applying congruence A8, we obtain the term
((b-...-bla)-c-...-c)*, and then, applying congruence A1, we obtain the tdrm. .-b-c-...-c|a)".
Finally, applying congruence A3, we obtain the teffm...-b-c-...-c)” | a, which represents the final
situation in Figure 2.b. Situations in which the content of the smaller membrane asedl@nside the
bigger one should be explicitly described by using rewrite rules (defindgkifollowing).

The situation described above is generalized by the next proposition to tepnesenting: mem-
branes where theth membrane is element of tie— 1)-th membrane.

Proposition 2.1. Consider a term consisting of a nesting of looping terms:

T=(((((.. (((a1----an) " | T3) -bir - -bin,)

whereT; may be any term and eadHl’; can also be absent. The term obtained by removing ffaime
looping operator of the sequence at ik level

((((( (((a1 Ceet CL,,L)JTL‘) . bil St bi’rbi)

is structurally congruent to:

b ) b bany) T bar e biny ) T

L L

) TR) b bo,) T i biny) | T

(((((((a1 anbﬂ b1n7)L)LJT2)b21 bgnz)LJTl)bll blnl)LJTQ)‘T‘,

Proof:
By structural induction and by applying the structural congrueace O
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Now, we define rewrite rules, which can be used to describe the evoldtinnes, and we give a
transition relation as a semantics for rule applications.

We assume a sé&f of term variablesX, Y, Z, . ... Aninstantiationis a partial functiorv : V' — 7.
With 7y, we denote the set of CLS terms which may also contain variablésand, giveril” € 7y, with
To we denote the term obtained by replacing each occurrence of eachleafisc V' appearing irl’
with the corresponding term(X). With ¥ we denote the set of all the possible instantiations. Finally,
givenT € Ty, with Var(T) we denote the set of variables Thand with Var,(T) we denote the
multiset of variables iff". For example, ifl = a - X | (Y)¥ | X, we have thaVar(T) = {X, Y} and
Vary(T) ={X, X, Y}.

Given a terml’ € 7y, we denote withsize(7") the number of constituent elements syntactically
occurring inT. For example, ifl’ = (a - b)* | c we havesize(T) = 3, and if T = a - a| X we have
size(T) = 2. Moreover, we define a functiarec : 7 x 7 — N such thabee(T”, T') returns the number
of the termsI” syntactically occurring in the terf.

Definition 2.3. (Rewrite Rules)
A rewrite rule is a triple(T, 77, %) such thatl’, 77 € Ty, Var(T') C Var(T), ¥’ C ¥ and, for all
o€ X, Var(T) € Dom(o). We denote withR the infinite set of all the possible rewrite rules.

A rewrite rule(T,7",) states that a ground terfffir, obtained by instantiating variables Thby
an instantiation functiom € X', can be transformed into the ground tefffv (note that we assume
Var(T') € Var(T)). Arule can be applied to all the terms which can be obtained by instantiating the
variables inT" with any of the instantiations i&’. For instance, i&2’ = {0 € X|occ(a,o0(X)) = 0},
thenarulgb- X -b,c- X - ¢,%') can be applied té - ¢ - b (obtainingc - ¢ - ¢) and tob - ¢ - ¢ - b (obtaining
c-c-c-c),butnottob-a-b.

In what follows, we shall often write a rewrite rule @&— 7’ [C] instead of(T,T",>' = {0 €
¥ | Co}), whereC is a condition, and we shall omit’ whenY’ = ¥ and writeT — T". For instance,
withb- X -b — ¢- X ¢ [oce(a, X) = 0] we denotdb- X -b,c- X -¢, ¥ = {0 € X|occ(a, (X)) = 0}).

We define the transition relation between terms, based on the applicationritdéneues. We assume
that the relation is closed under structural congruence and underjheagipn of the operators.

Definition 2.4. (Reaction Semantics)
Given a set of rewrite ruleR C R, thereaction semanticef the CLS is the transition system given by

the least relatior- on terms closed undet, _| _, _|_, _-_, (_)L and satisfying the following inference

rule:
(T, 7".¥)eR oce¥

To —-To
Given a set of rewrite ruleR and two ternil’, 7" € 7, we say thafl” is reachablefrom 7' (denoted
T —* T) iff there existT}, ..., T, € Tst.T - T, — ... - T, — T,
Now we introduce a particular class of rewrite rules.

Definition 2.5. (Monotonic Rewrite Rules)
Arewrite rule(T,T",%') € R is monotonidff Vary (T) = Vary (T') andsize(T") > size(T).

Intuitively, a rewrite rule is monotonic if the number of constituent elements ofeire we obtain
applying the rule is greater than or equal the number of constituent elenfenésioitial term.
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The bacterium Step 1: Duplication Step 2: Prespol

@

Step 3: Coat Step 4: Release

Figure 3. The Sporulation Process

Proposition 2.2. Given a finite set of monotonic rewrite rul&and a CLS ternT” € 7, it is decidable
whether a term¥” € 7 is reachable froni".

Proof:
Based on the fact that terms obtained by applying a monotonic rewrite rulstancural congruence
axiom have a size greater than or equal to the size of the source terms. O

3. An Application

In this section we show how CLS can be used to describe some aspectggbrbaduction of bacteria
and of bacteriophage viruses. For the sake of our study we can assan@bacterium consists of a
cellular membrane containing its DNA. In particular, as regards bacteniadegtion, we consider the
sporulation mechanism, which allows producing inactive and very resfstans, called spores. A spore

can germinate and then produce a new bacterium.
Schematically, the sporulation process (shown in Fig. 3) proceeds asdollo

1. the DNA inside the bacterium is duplicated (duplication);
2. inside the bacterium a new membrane is formed containing the copy of thgjprigpore);
3. around the prespore a second layer is formed (coat);

4. eventually, the spore passes through the bacterium membrane antekextree spore (release).

For the sake of clarity, before giving the rules for the process, lettusdnce some denotations for
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terms which occur very often:

PRESPORE := (m-....m)" | DNA4,

n

SPORE; == (¢-...-c)" | PRESPORE ~ SPORE, := (d-...-d)" | PRESPORE
N—_—— N——
Now, the rewrite rules for describing the steps of the process are theiiogjo

St (m-....m)" | (DNA,|X) — (m-...-m)" |(DNA,|DNA,|X)  [oce(DNA,, X) = 0]

n n

S2. (m-...-m)" | (DNA,|DNA,|X) — (m-...-m)" | (DNA,| PRESPORE|X)

S3. (m-....m)" | (X|PRESPORE|Y) — (m-...-m)"|(X|SPORE,|Y)

n n

S4. (m-...-m)"|(X|SPORE,|Y) — (SPORE;-m-...-m)" |(X|Y)
S5. (SPORE;-m-....m)"|X — ((m-...-m)" | X)|SPORE,
N—— N——
$6. SPORE, — d-...-d|(m-...-m)" | DNA4,
N—_—— N—_———

n
D) n

Rule S1 describes DNA duplication inside a bacterium (step 1 of the pjodéssbacterium mem-
brane is represented by a loopingrefmembrane elements (with n fixed); DN A, represents the
bacterium DNA and the term variablg represents any other element inside the bacterium membrane.
The condition thalD N A, does not appear in the terfhmeans that a sporulation process must terminate
before starting a second one (no more than one copy of DNA inside theriome at one time).

Rule S2 models the forming of a prespore (step 2). Conventionally, wenasthat the number of
membrane elements of a presporé is

Rule S3 models the forming of the spore coat (step 3), wheepresents the elements of the outer
coat. The double layer of the spore is represented by two looping term@)side the other, by the term:

(¢o0)" 1 (@ .m)" | DN 4y).

SIE]
0[S

Rules S4 and S5 model the exiting of the spore from the bacterium (step 4)firkt phase (rule
S4) the spore adheres to the bacterium membrane, becoming one elemeantonfpihg representing
it. Note that the spore is represented in the rule as first element of the lodyihiy can be shifted to
any position by using the congruence rules. In a second phase (ulkeS§pore becomes free. In this
phase, in order to distinguish a free spore from a spore inside the inatténe outer coat of the spore
changes its elements frosto d.

A free spore may germinate by loosing its coat, which becomes an open memnéndrby growing
to a normal size oh membrane elements (rule S6).

Bacteriophage viruses (or phages) exploit the enzymes of the bactedagdlicating their DNA. In
particular, they behave according to the following pattern (depicted in &igjur
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Step 3: Replication Step 4: Maturation Step 5: Release

Figure 4. The Bacteriophage Replication Process

the phage joins with the bacterium membrane (adsorption);
the phage releases its DNA inside the bacterium (penetration);
the DNA of the phage replicates itself using bacterium enzymes (repligation

each copy of the phage DNA forms a hew phage inside the bacterium @w@en(onaturation);

o B~ W bdPE

when the number of new phages inside the bacterium reaches a ceirtadem the membrane
breaks and the new phages become free (release).

As before, we introduce a denotation for a term which occurs quite often:

VIRUS := (v-...-v)" | DNA,
k

The rewrite rules for describing the steps of the process are the following

V1. VIRUS|(m-....m)"|X — (VIRUS-m-....m)"|X
—— N——

V2. (VIRUS-m-...~m)LJX — (m-...-m)LJ(X|DNA,U)|v-...-v
—_— — T

V3. (m-....m)"|(X|DNA,) — (m-...-m)"|(X|DNA,|DNA,) [occ(DNA,, X) < max]

Vi, (m-....m)"|(X|DNA,) — (m-....m)"|(X|VIRUS)  [oce(DNA,,X) > maz — s|

—_———
V5. (m~...-m)LJX — m-....m|X [oce(VIRUS, X) > max — s]
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Rule V1 describes the joining of phage with the bacterium membrane (step & pfdbess). The
phage membrane is represented by a looping ofembrane elements (with & fixed); DN A, rep-
resents the phage DNA. The application of the rule causes the phagectmdeart of the bacterium
membrane. Namely, the looping representing the phage becomes an eletherboping representing
the bacterium membrane.

We remark that the situation described, in which the phage joins the membraoetétitering it,
cannot be described by membrane calculi as [5, 13].

Rule V2 models the releasing of phage DNA inside the bacterium. The phagerarentizcomes a
free open membrane (step 2).

Rule V3 describes the replication of phage DNA inside the bacterium (stefy&assume that the
replication happens only if the occurrencedWV A, inside the bacterium are less than a numhbet:.

Rule V4 describes the formation of a membrane around a phage DNA insidadtexium (step 4).

Rule V5 models the breaking of the bacterium membrane when the number géspheside it
reaches a value close enoughrtaz (the distance is less then a valsie> 0). The bacterium mem-
brane becomes a free open membrane, and everything contained imaibl@ &) is released (step 5).

Note that we have assumed that bacteria and phages cannot die a deétinal In particular, bac-
teria can die only if parasitized by viruses, and viruses die only when laiog their DNA inside the
bacterium.

We remark that congruence rules have the same number of constituenhtlémihe left- and in
the right-hand side, and that the rewrite rules are monotonic. Hencepppdgtiion 2.2, given an initial
configuration of the system we can prove the reachability of a particula:. dtore general properties
of the microbiological system we are considering, can be proved by ncbdeking.

Example 3.1. Assumemar = 2 ands = 0, namely that no replication cDN A, can occur in a
bacterium already containing two or more copie®d¥ A,,, and that the bacterium membrane can break
when at least two viruses are inside. Consider the initial configuration ichvthere is one bacterium
and three phages. This is represented by the term:

((m-....m)" | DNA,)|VIRUS |VIRUS|VIRUS.

n

We can prove that, in a possible evolution, we can reach the configuration:

(m-...-m)" | (DNA|DNA,DNA,DNA,DNA) v ... -v|v-...cu|p-...-v.
The configuration represents a situation in which the bacterium containsibenwof copies of virus
DNA greater thammaz.
Actually, the steps to reach the configuration are the following: one virestathe bacterium and
its DNA is replicated inside the bacterium membrane (by application of rules 2l1and V3, in the
order). Then the other two phages infect the bacterium (rule V1) ardliai@ their DNA in it (rule V2).

4. Encoding Brane Calculi

In the previous section we have remarked that CLS can model situationk edninot be described by
other membrane calculi. In this section, we recall the definition of the phagpier (PEP) calculus,
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Syntax
PQ,R... == | PoP | P | o(P) Systems
O, Typy... = 0 ‘ olo ‘ lo ‘ a.c Branes
a,b,c,... 5= ¢n | b (o) | en | et | ©(0) Actions

Structural Congruence
The least congruence relatiensatisfying the following axioms
PoQ=QoP Po(QoR)=(PoQ)oR Poo=P
lo=o np='p P = PolP 0o =0
olr=rlo  ol(rlp)= (oIl  ol0=0

0=0 o =lo lo =ollo

Reaction Semantics
The least relation containing the following axioms, closed wriP , o(|_|) and=
(Phago) ¢n.oloo(P) o éy (p)-7I7(Q) — TImo(p(oloo(P)) o Q)
(ex0) &;.7|70(ln-0lo0(P)) 0 Q) — P o aloo|r|mo(Q)

(pino) @ (p).aloo(P) — aloo(p( o) o P)

Figure 5. The phago/exo/pino (PEP) calculus: syntax ancdegos

which is the simplest of Brane Calculi [5], and we give a sound and comgheteding of it into CLS.

4.1. The PEP Calculus

The syntax and the semantics of the PEP calculus is summarized in Figurens dier systems. Sys-
tems consist of composition of systems,with unit ¢. Replication! is used to model the notion of
“multitude” of systems. Systems can be membrane containing systgj#%,. Membranes can be a
parallel compositions |’ with unit 0, or replication of membranes, or action prefixing.

Actions are:phagocytosisdenotedp,,, incorporates one external membrane into another by “engulf-
ing” it; exocytosisdenoted by, is the reverse procegsinocytosisdenoted bys, engulfs zero external
membranes. Phagocytosis and exocytosis have co-actions that aredhtelnteract with, indicated by
the symbol-. Pinocytosis does not have a co-action. Figure 6 gives a pictoriaseptation of the three
actions.

We consider a structural congruence relatiothat describes associativity, commutativity, replica-



R. Barbuti et al. / A Calculus of Looping Sequences for Modelling Mictobioal Systems 31

@, (p)-Tt 11,
P
e e )

Q

& 11, 11, ©(p). olog olo,

p

€,-01G exo i

@b alo, pino
Q Q

Figure 6. Pictorial representation of phagocytosis, etasig and pinocytosis

tion and unit elements of operators on systems and membranes. We dena®&itthe infinite set of
Systems, and witlisranes the infinite set of membranes in the PEP calculus. Moreover, we denote with
N the (possibly infinite) set of namesused as subscripts of Actions.

4.2. Encoding of the PEP Calculus

We define an encoding of a system of the PEP calculus into a CLS term. Gbéieg of a system results
in a pair of a CLS sequence and a set of elementary constituents.

Operators and actions of the encoded system are translated into elemr@sefjuence. The en-
codings of the operands and of the action parameters follow the encaditihgscorresponding operators
and actions in the sequence, and are delimited by elements acting as sepdaiaéoset of elementary
constituents given by the encoding contains all these separators.

The elementary constituentt is used in the sequence as a program counter: during the evolution of
the term it preceeds every element which encodes a currently activa.actio

Definition 4.1. (Encoding)

The encoding of a systetR of the PEP calculus into the CLS is the tefiine 7 such that, for some
(finite) £ C &, it holds{{P]} = (T, E), where{:]} : PEP — T x P(&) is given by the following
recursive definition:

{lol} = (act - 0,2)
{{P1 o P} = (act - circ- a- P{{¢/act} - a- Py{¢/act},{a} U Ey U E>)
where{P]} = (P/,E;),E1 N Ey = @ anda € €\ (E1 U Es)
{!P]} = (act - bangS - P'{¢/act}, E) where{[P}} = (P, E)
{lo(P)]} = (act - brane - a - o’{¢/act} - a - P'{¢/act},{a} U Ep U E,)
where{ P} = (P, Ep), [0] = (¢, E,),
acé\(EpNE;)andEpNE, = O
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where[-] : Branes — T x P(&) is given by the following recursive definition:
[0] = (act - 0,2)

[o1|o2] = (act - par - a - o1 {¢/act} - a - o5{¢/act} - a, E1 U By U {a})
Where[[ai]] = (O‘;,Ei), EiNEy=@anda € € \ (El U Eg)

[lo] = (act - bangB - a - o'{¢/act} - a, E U {a})
where[o] = (¢/,E)anda € £\ E

[pn-c] = (act-¢-n-a-o'{¢/act} - a, EU{a})
where[o] = (o/,E)anda € £\ E

[0 (p).o] = (act - ¢t -n-a-p{¢fact} -a-o'{¢/act} -a, E,UE,U {a})
where[p] = (¢', E,),[c] = (¢, E,;) anda € €\ (E, U E,)

len-o] = (act-c-n-a-o'{¢act}-a, EU{a})
where[o] = (¢/,E)anda € £\ E

[ey.o] = (act -t -n-a-o'{¢/act} - a, EU{a})
where[o] = (o', E)anda € £\ E

[@(p).c] = (act-®-a- p'{¢/act} - a-o'{/act} - a,E, U E, U{a})
where[p] = (¢', E,),[o] = (¢, E,;) anda € €\ (E, U E,)

In Figure 7 we give the rewrite rules which are applicable to encodedmsgstad membranes. We
denote withe, y, z, . . . variables which can be instantiated only to single elementary constituensijtand w
z,y, z, ... variables which can be instantiated to (possibly empty) sequences of eleyrantatituents.

Rules are conceptually of two kinds. Rules from rule (par) to rule (se&yange elementary CLS
sequences encoding PEP systems and membranes, into CLS terms (cortifi@i§ operators) and
simplifying them accordingly to structural congruence on PEP terms. Wetelevith Ry this set of
rules. Rules from rule (phago) to rule (bangB) correspond to PEPrg&maln particular, rules (phago),
(exo) and (pino) correspond to phagocytosis, exocytosis and pgosisyrespectively, and rules (bangS)
and (bangB) correspond to structural congruence for the replicagierator.

We remark that by applying rules iR, to the encoding of a PEP systefhwe obtain a terni” in
which each membrane systdff?’|) in P is represented by a looping sequenc@'jrand each occurrence
of o in P is represented by an occurrence|ah 7.

Example 4.1. Let us consider the PEP systé(d) whereP = ¢,,( < |) o ¢, (0)( < |). According to the
semantics of the calculus the system may evolve as follows:

I(P) = U(P)odu(o)ogy(0)(o) — (P)o0(0(0(c))oo) = UP)
By applying the encoding to the system we obtain the following t&étm

act - bangS - circ-e-brane-b-¢-n-a-0-a-b-0-¢-brane-d-¢+-n-c-0-¢-0-¢c-d-0
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(act-par-x'g-x-z-x-{ﬁ)LJX — (act-ﬂ-act-Z-E)LJX (par)

act-circ-x-y-x-z +— act-ylact-z (circ)

act -brane -x-y-x -z — (act-j])LJact-E (brane)

z-wlact-0 — z-w (x'{E)LJact-O — (x-fﬁ)L (sc1,2)

act - bangS -0 — act-0 (act~0)L — act-0 (sc3,4)
L L

(act-0-z-w)" ] X +— (z-w) ]X (scb)

(act-bangB-O-@)LJX — (act-O-@)LJX (sc6)

(act-qﬁL-xn~m-§-x-5-x-1ﬂ)LJX\(act~¢-mn-x'-§'~m’-§4)LJY

— (act-Z-@)" | (X | (act-9)" | (act -7 -Z)" | Y) (phago)

(act et ap -z Goa )" (X | (act - 2y -2’ F 2’ ) ]Y)

— Y|(act-§-Z-act-§-7)" | X (ex0)
(act-@-w-ﬂ-x-?-x-@)LJX — (act-?-@)LJ(XHact-ﬂ)L) (pino)
act - bangS - T — act-bangS - T |act-T (bangs)

(act'bangB-:zrg‘x'fﬁ)LJX — (act-bangB'x'§~x-act‘g'ﬂ7)LJX (bangb)

Figure 7. Reuwrite rules associated with the encoding of tt alculus

which may evolve as follows:

T — Tlact-circ-e-brane-b-¢-n-a-0-a-b-0-e

“brane-d-¢T-n-c-0-¢c-0-¢-d-0 (bangS)
— T|act-brane-b-¢p-n-a-0-a-b-0

|act -brane -d-¢* -n-c-0-¢c-0-c-d (circ)
= T|(act-¢-n-a-0-a)LJact-O

(act-d)J"n'c-O-c'O-c)LJact-O 2 x (brane)
— T (act‘O)LJ (act‘O\(act-O)LJ (act'O)LJact‘O) (phago)

= T
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Now we introduce a normal form for CLS terms which will be used to provectiteectness of the
encoding. This normal form can be obtained by applying rulé8 inas long as possible.

Proposition 4.1. (Normal Form)
AssumeR, as the set of rules that can be applied to terms. Given a CLSTettirere exists a unique
CLS term (modulo structural congruence), dendtgg such thatl’ —* (T') and(T’) /.

Proof:

The term(T') is reachable after a finite number of rule applications as all rul&jmeduce the number
of elementary constituents in the term. Moreover, it is easy to see that, bitidafof the rules ink,,
(T') is unique. 0

We prove now the correctness of the encoding in terms of soundnessmapdeteness. For the sake
of simplicity, let us denote witH[ P} and o] the terms obtained by the application of the encoding to
systemP and to membrane, respectively. Moreover, we denote with* the reflexive and transitive
closure of— for both CLS and PEP semantics.

Theorem 4.1. (Soundness)
Given a systen® of the PEP calculus:

P — P = 3T.3P". st.{P} —* T,(T) = ({P"]}) andP" = P’ .

Proof:

We show first that structurally congruent PEP systems without replicat®eracoded into CLS terms
whose normal forms are structurally congruent. As regards replicatmahow that given two congruent
PEP systems the encoding of one can be transformed into the encodingotti¢indy applications of
arule inR . Therefore, the prove can be done by induction on the structurevaithout considering
structural congruence. O

Theorem 4.2. (Completeness)
Given a systen® of the PEP calculus:

{P]} =*T = 3P’ st.(T) = ({{P']}) and eitherP = P' or P —* P’ .

Proof:
By induction on the number of steps{P]} — T 0

5. Conclusions

The paper presents a new calculus suitable to describe microbiologitainsyand their evolution. We
use the calculus to model interactions among bacteria and bacteriophaggsygnd to reason on their
properties, and we give an encoding of one of Cardelli’s Brane Caitoliours.

We remark that systems composed by parts delimited by membranes and wblog@m®wmay be
described by rewrite rules have been considered by authors intenegtegbosing new models of com-
puting inspired by biological systems (natural computing). See e.g. [12].

We believe that a further step of our work should be the introduction in tleelloa of concepts of
time and probability, which have been considered in other formalisms andkawveshown to be crucial
for describing biological systems [2, 3].
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