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Abstract 

Several prominent researchers in the problem gambling field have recently called for high-quality 

replications of existing gambling studies. This call should be extended to the entire field of 

addiction research: there is a need to focus on ensuring that the understanding of addiction and 

related phenomena gained through the extant literature is robust and replicable. This article 

discusses two important questions addictions researchers should consider before proceeding with 

replication studies: [1] which studies should we attempt to replicate? And: [2] how should we 

interpret the findings of a replication study in relation to the original study? In answering these 

questions, a focus is placed on experimental research, though the discussion may still serve as a 

useful introduction to the topic of replications for addictions researchers using any methodology. 

 

Introduction 

Perhaps more than ever, scientists are spending their time replicating existing studies in 

addition to conducting research that is novel or exploratory. The most well-known examples of 

this include the Open Science Collaboration’s (2015) replication of 100 psychological studies and 

Camerer and colleagues’ (2018) replication of 21 social science experiments published in Nature 

and Science. The failure to replicate many of the original findings in these projects has generated 

concerns regarding the reproducibility of scientific research and highlighted the importance of 

undertaking replication studies. In the addictions field, there has been little direct recognition of 

this importance until recently when, in a series editorials published in International Gambling 

Studies, the journal’s Editors (Blaszczynski & Gainsbury, 2019) and others in the field (LaPlante, 

2019; Wohl et al., 2019) called for good quality replications of existing gambling research. This call 

should be extended to the entire field of addiction studies: there is a need to focus on ensuring 

that the understanding of addiction and related phenomena gained through the existing literature 

is robust and replicable. The aim of this article is to discuss two important questions addictions 
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researchers should consider before proceeding on this replication crusade: [1] which studies should 

we attempt to replicate? And: [2] how should we interpret the findings of replication research?1 In 

answering these questions, a focus is placed on experimental research, though the discussion may 

still serve as a useful introduction to the topic of replications for addictions researchers using any 

methodology.  

Which studies should we replicate? 

Addictions researchers, like all others, are unavoidably constrained by their available resources 

and therefore prioritising studies for replication attempts is desirable (Coles et al., 2018). 

Intuitively, we might consider the studies that have greatly influenced our thinking about 

addiction2 as most worth replicating. This approach is logical and consistent with Makel and 

colleagues’  (2012) cautiously proposed heuristic of replicating all studies that have received ≥100 

citations to prevent flawed or fraudulent findings from going unchallenged for extended periods 

of time. Isager (2018) has found replication authors are often motivated by different types of 

impact, including theoretical, academic, and societal forms. Within the addictions field, 

theoretically impactful studies requiring replication, for example, might include those investigating 

nascent developments such as network theories of addictive disorders (e.g., Rhemtulla et al., 2016). 

The identification of so called “bridge symptoms” and symptoms with high “centrality” (see Fried 

et al., 2017) by such studies may help us better understand the relationship between addiction and 

comorbid psychopathologies and identify target symptoms for intervention.  

A priority for addictions researchers considering replications may be clinical impact. Studies 

evaluating novel interventions or screening procedures, for example, should be candidates for 

replication whenever the original studies observe promising findings. This would streamline the 

testing process whilst still ensuring the efficacy of the procedures before their implementation in 

 
1 A focus is placed on answering these questions and not “how to replicate?” as this question has received 
significant attention in recent discussions (e.g., Wohl et al., 2019; Zwaan et al., 2018). 
2 I use “addiction” here as shorthand for all addiction-related phenomena of interest, including harms, interventions, 
associated cognitions and so on.  
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clinical practice. In context of intervention research, direct—as opposed to conceptual—

replications (see Nosek & Errington, 2017 for an overview of this distinction) should be prioritised 

to ensure the reliability of the original finding under the same protocol for administration 

(Lilienfeld, 2018). In reality, however the process of evaluating a novel intervention or screening 

method does not always follow such clearly demarcated and linear phases in which a first study can 

be easily identified. In such cases, researchers may wish to first undertake meta-analysis of the 

existing research to obtain an understanding of the effect, before then—if the line of enquiry 

appears promising and/or conflicting findings are observed—considering which of the available 

studies is the most plausible and desirable (based on methodological rigour) to replicate, thereby 

further contributing to the estimate of the effect. 

Isager (2019) provides a simple formula that can be used to quantify replication value (RV): 

RV = !"#$%&
%'((')'($&!'*

. This, Isager suggests, could be operationalised in any number of different 

ways to suit the needs of researchers within a given field; for example, as: RV = %!&$&!'*+
+$"#,-	+!/-

.  

Addictions researchers could optimise this formula in several ways to increase its value in 

identifying and comparing the studies most worth replicating. First, if using the operationalisation 

above, using a more liberal citation count—such as that provided by Google Scholar—which 

includes an article’s mentions in blogs and websites may be desirable if wishing to detect articles 

with the widest impact. Second, if considering societal influence, researchers could attempt to 

further quantify this by investigating the number of times an article is referred to on social media 

platforms3. For example, adding an indicator of societal impact in this way raises the RV of the 

now famous Rat Park study (Alexander et al., 1978) from 001
234	(*)

 = 2.42, to 

001	7	242	("-*&!'*+	'*	89!&&-(	&	;'<8<)-4)
234	(*)	

	= 3.14. The original Rat Park study and follow ups by 

 
3 This could be more formally achieved using the Altmetric service: https://www.altmetric.com. 
4 The exact details of these calculations are shared on Open Science Framework: 
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Alexander and colleagues (for an overview of this research line, see: Gage & Sumnall, 2019) 

showed reduced opiate consumption in rats living in enriched environments compared to those in 

standard environments. Subsequent research supports the value of environmental enrichment for 

addiction recovery (e.g., Imperio et al., 2018; Pooriamehr et al., 2017), though the only direct 

replication of the Rat Park experiment by an external researcher did not support the original 

findings (Petrie, 1996). Thus, despite subsequent replications lowering the RV of the study as the 

total participant number has increased, the widespread attention the study still receives online and 

in media cannot be ignored when considering its RV. However, whether societal impact (and any 

other form) can be accurately quantified remains uncertain and sound scientific and clinical 

judgment should also be used to determine RV.  

While we should aim to replicate impactful addiction studies such as the Rat Park experiments, 

we should also be cautious to not exclude studies reporting null findings from those deemed 

worthy of replication that have—as a result of their negative findings—been less influential and 

received fewer citations (see Fanelli, 2010). Discussions of reproducibility to date have mostly 

focused on the concerning number of false positives or Type-I errors that are potentially published 

in the addiction (Wohl et al., 2019) and scientific literature more broadly (Simmons et al., 2011). 

These concerns are certainly legitimate (see Ioannidis, 2005) and underpin the need to replicate 

statistically significant, impactful findings in the addictions field to determine whether they 

represent false positives. Yet convincing evidence also exists to suggest a considerable number of 

published articles (~66.7% in psychology) contain at least one Type-II error (Hartgerink et al., 

2017). This is unsurprising: in exploratory research where the chances of the null and alternative 

hypothesis being supported by the data are equally likely, false negatives are statistically more 

probable (by a ratio of 4:1)5 than false positives when the conventional level of 80% statistical 

power is achieved and alpha (a) is set at 0.05. Even if we assume a true effect exists, there is still 

 
5 Assuming 50% power (the typical level achieved in psychological studies) and the same a, the rate of false negatives 
to false positives is 10:1! Calculations: false negatives: 1-power [b] x 50; false positives: a x 50. 



 6 

a 36% probability that one or more non-significant results will be observed in any two studies 

where power = 80% and a = .056. Mixed results should be expected (Lakens & Etz, 2017). 

It logically follows that there may exist a proportion of addiction-related studies which have 

asked important or influential research questions that report false negatives. Thus, it may be 

appropriate to ask: which studies had the potential to greatly influence our thinking about addiction, 

regardless of outcome? This distinction is only likely to become more pertinent given the 

increasing acceptance of publishing null findings—preliminary evidence indicates that 60.5% of 

preregistered and registered report studies are reporting null results, compared with ~5-20% of 

traditional studies (Allen & Mehler, 2019).  

Finally, although the emphasis of this discussion has been placed on considering a study’s 

(potential) impact when determining its RV, several other selection criteria can be used. For 

example, there may be concerns regarding the suitability or rigour of the original study’s 

methodology (Isager, 2018; Mackey, 2012), or the existing evidence for an effect in a given line of 

research may be weak (for a details on how to calculate the relevant evidence for an effect using 

Bayes factors, see Field et al., 2019). Nonetheless, these concerns may be insufficient to motivate 

replication efforts if the research question(s) under study have limited scope to influence our 

understanding of addiction. Plausibility is also likely to substantially influence decisions regarding 

replication, with larger and more complex studies potentially being excluded based on 

implausibility alone. In such cases, addictions researchers could overcome the limitations of any 

single research teams by considering multi-lab collaborations, as has been done for replications of 

classic effects in psychology (Klein et al., 2014). 

 

 

 
6 Calculation: (100- [.80 x .80 x 100]). The probabilty of null effects can be easily calculated for different scenarios 
using the Shiny app provided by Lakens & Etz, 2017: http://shiny.ieis.tue.nl/mixed_results_likelihood/ 
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How should we interpret the findings of a replication study? 

Once we decide which addiction-related studies to replicate, it is important to clearly define 

what criteria will be used to determine the extent to which the findings of the replication 

corroborate those of the original study before commencing data analysis7. Four broad approaches 

available to addiction researchers for determining this are discussed below8. However, before 

considering which of these approaches to use, researchers may wish gage their confidence in the 

original outcomes—which may also influence the decision as to whether to replicate. For example, 

was the study preregistered and are data and materials shared (increasing confidence that results 

were not selectively reported or p-hacked)? Are the statistical procedures used clearly reported? 

Are outcomes reported accurately according to automated screening tools such as statcheck 

(Nuijten et al., 2016) and the GRIM test (Brown & Heathers, 2016)? Where data are shared, can 

the findings be independently reanalysed and reproduced? Asking these questions before choosing 

to replicate may prevent wasting time when the original finding(s) cannot be relied upon for 

comparison or when reanalysis suggests no effect exists (Nuijten et al., 2018). 

Approach 1: p-values in NHST 

The criterion for “successful” replication most consistent with common statistical thinking 

would be p < a when using traditional Null Hypothesis Significance Testing (NHST). That is, the 

data are surprising if the null hypothesis is true—that no difference between groups or association 

exists. Using p-values from traditional NHST to determine replication success is appealing as this 

is likely to be the approach used by the authors of the original study to interpret their findings, yet 

this approach has several limitations.  

 
7 Coles et al. (2018) recommend doing this in a pre-registered format in collaboration with the authors of the original 
study, wherever possible.  
8 As an extensive review of all approaches is beyond the scope of this article, the interested reader is referred to an 
annotated list of relevant articles and resources shared on this project’s Open Science Framework (OSF) page: 
https://osf.io/5r7a9/. 
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First, as referred to above, p-values can be an unreliable indicator of outcome—particularly 

in the low powered studies typical of psychological research. Cumming (2008, 2014) has 

convincingly demonstrated this through statistical simulations of replication scenarios. Cumming 

shows that if we have with two populations whose normally distributed scores on an outcome 

differ by 10 points on average and we randomly sample 32 participants from each group 25 times, 

the resulting ps range from <.001 to .76 (12 of 25 are significant at p < 0.05), despite the SD being 

held at 20 for all randomly selected subsamples (Cumming, 2008). In these simulations, the 32 

participants per group provides 52% power to detect the known population effect size of d = 0.5, 

which is consistent with the average level of power achieved in psychological studies historically 

(Fraley & Vazire, 2014). Thus, if we were to use p < 0.05 as the criterion for replication success in 

a typical addiction study where a true population effect size of exists, we would only expect ~50% 

of studies to replicate the original finding9. 

Second, p-values are not comparable. A p of 0.03 in both an original and replication study do 

not represent similar findings in terms of the magnitude of the effect studied (Sullivan & Feinn, 

2012). Indeed, in large samples one could find an effect size one tenth the magnitude of an original 

study and still find a similar p. Whilst we would be reluctant to label this finding as corroborating 

the original, using p-values as our only method of inference could permit such a conclusion.  

Third, and following on from the previous point, if we find a p less than our specified a (and 

are confident that this is not a Type-I error), this tells us little other than an effect is greater than 

0 (Murphy et al., 2014). This is evident when samples are large enough to reach statistical 

significance despite negligible effects (e.g., d = 0.001; see Kramer et al., 2014). The limited value 

of p in this sense is problematic for evaluating replication outcomes as researchers are often 

interested in whether the magnitude of the effect is (approximately) replicable.  

 
9 Cumming (2008) has further calculated that only 12% of the variance in replication ps can be explained by the original 
value, with only smaller ps (i.e., p < .001) providing useful predictive information about future replications. 
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Approach 2: Effect sizes and their confidence intervals 

A common way to overcome some of the aforementioned limitations of p-values is to report 

effect sizes and their confidence intervals alongside, or in place of, NHST outcomes. Effect sizes 

inform us of the magnitude of an effect and therefore convey practical information in an intuitive 

format (Cumming, 2014; Sullivan & Feinn, 2012), particularly when unstandardized versions are 

reported (Pek & Flora, 2018). By providing an indication of where a study’s finding exists along a 

scale of possible outcomes, effect sizes avoid a dichotomous approach to thinking about study 

outcomes in which an effect is either true or false depending on whether a value crosses a 

threshold, as with p-values (Cumming & Fidler, 2009). In relation to replication, this allows us to 

determine the degree to which findings from a replication study mirror the original (Camerer et al., 

2018; Piper et al., 2019) by calculating point and interval estimates for the difference. Effect sizes 

can also be compared in a significance testing paradigm using the Q-statistic used to study the 

heterogeneity of effect sizes in meta-analyses, although this approach may lack statistical power to 

detect meaningful levels of heterogeneity if comparing small numbers of effects (see Hedges & 

Schauer, 2019). 

Effect sizes can also be combined meta-analytically to provide an estimate of the true effect 

based on the outcomes from both the replication(s) and the original study/studies (Cumming, 

2008); although, a consideration of the study quality, as discussed above, should inform how meta-

analytic techniques are used and interpreted. If using meta-analysis in this context, addiction 

researchers can choose between the fixed-effects model, which assumes the same common effect 

underlies all studies in the meta-analysis, or the random-effects model, which assumes each study’s 

effect size is just one from a normal distribution of effect sizes. The choice between these models 

should be influenced by the specific context and aims of the meta-analysis. For example, while the 

random effects models is generally preferred (Borenstein et al., 2010), the fixed-effects model may 

be preferred if combining the results from only one original and one replication study as two 
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studies is insufficient for accurately estimating the variance of effect sizes in random-effects meta-

analysis (van Aert & van Assen, 2018). 

Confidence intervals for effect sizes and other parameters such a means, medians, 

probabilities (denoted by q) provide additional information by illustrating the margin of error for 

the parameter (q) estimate, offering a range of plausible values based on the observed data (Cumming 

& Fidler, 2009). Put simply, 95% confidence intervals will, on average and over time, contain the 

true population value of q 95% of the time (Morey et al., 2016)10. Accordingly, seeing whether a 

replication study’s q fits within the confidence interval boundaries of the original study can be and 

is used as indicator of replication success (see Camerer et al., 2018; Open Science Collaboration, 

2015). However, in replications terms, confidence intervals are not indicators that 95% of future 

qs will fall within the original interval boundaries11. Cumming and Maillardet, (2006) have 

calculated that 95% confidence intervals predict future qs with approximately 83.4% accuracy; 

although the predictive value of any individual parameter estimate and its confidence interval will 

depend on how well it reflects the true population value (which increases with sample size and 

reliable measurement).  

While using effect sizes and their confidence intervals to interpret replication outcomes may 

be more informative than p-values, there are some important considerations and limitations 

associated with their use in this context. First, effect sizes in the existing literature appear to be 

inflated estimates. Camerer et al. (2018) found successful replication studies (as determined by p < 

.05) produced effect sizes 74.5% the size of the original, whilst the Open Science Collaboration 

(2015) found the average effect size across 99 replications (successful & unsuccessful) was half 

(48.9%) that of the originals. Publication and reporting biases are thought to explain the inflation 

 
10 See Morey et al. (2016) for an important discussion of the fallacies that surround confidence intervals. 
11 This is because the original parameter estimate and its confidence intervals may be a poor indication of the true 
population value, particularly if the sample size(s) studied were small.  



 11 

of effect sizes (Open Science Collaboration, 2015), and thus it may be wise to anticipate smaller 

effects in replication studies. Researchers should also consider how these biases could lead to over-

estimating effects in meta-analysis (see Kvarven et al., 2019).  

It is also important to consider how sampling variation, contextual factors (e.g., 

experimenters, location, date), measurement error, and hidden moderators may have influenced 

the effect size of a study (Kenny & Judd, 2019; Stanley & Spence, 2014); as well as how these 

factors and deviations from the original design may influence a replication’s effect size. There is 

increasing recognition that heterogeneity of effect sizes in the published literature is not only large, 

but larger than would be expected with sampling variation alone (Kenny & Judd, 2019; Stanley et 

al., 2018); particularly when larger and more consistent effects are studied (Klein et al., 2018). 

Based on simulated research scenarios, Kenny and Judd (2019) have found when heterogeneity of 

effect sizes exists, multiple smaller N studies (N = 100 x 5) may produce more precise estimates 

(i.e., narrower CIs) of an effect than one large N study (N = 500) even when only moderate power 

(69%) is achieved; though the importance of achieving sufficient sample sizes in replications 

should not be downplayed (Maxwell et al., 2015; Piper et al., 2019). Nonetheless, addiction 

researchers planning replications may want to consider the possibility of running multiple, multi-

site studies to provide the most precise estimate of an effect and thereby test the robustness of the 

effect to minor variations in protocol and setting. Indeed, evidence of significant heterogeneity in 

effects has led to concerns regarding the utility of any single replication study (Kenny & Judd, 

2019; Maxwell et al., 2015) and the proposal that researchers conducting replications should not 

be focused on verifying an existing finding, but rather on contributing to the overall estimation of the 

true underlying effect (Stanley & Spence, 2014). Thus, from this perspective the terms “successful” 

and “unsuccessful” replication are misleading (Gelman, 2018).  

One approach to accounting for some of the heterogeneity in study outcomes when 

interpreting replication findings is to use the prediction interval method propounded by Patil et al. 

(2016). Prediction intervals have similar, although not identical, properties to confidence 
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intervals—given the original q, a prediction interval can be calculated that is such that 95% of 

exact replications will produce qs that fall within the interval boundaries. Calculations for 

prediction intervals incorporate variation in both the original study and replication. For example, 

for prediction intervals around r, the following equation is used: rorig ± z0.975 "
2

*!"#$=0
+ 2

*"%&=0
 

(additional information & calculations are provided by Patil and colleagues, 2016). Using 

prediction intervals to determine whether a replication’s findings are consistent with the original 

can overcome the criticism of using confidence intervals for this purpose, namely that they do not 

account for sampling error (Kenny & Judd, 2019). A similar approach, also involving the 

calculations of “prediction intervals” (but using different calculations that estimate the variance of 

the sampling distribution for the original study), is offered by Spence and Stanley (2016). The 

authors suggest that these intervals can be used to see if the difference between an original study 

and replication study’s outcomes is consistent with what would be expected due to sampling error 

alone. They provide open source software and R code for calculating prediction intervals for 

means, correlations, and Cohen’s d. 

Approach 3: Combining p-values and effect sizes  

Significance testing may be more useful for interpreting replication outcomes when used in 

reference to a specific effect size. This approach encompasses several different methods including 

small telescopes, minimum effects testing, and equivalence testing. Each of these involve, in 

varying ways, testing against a Smallest Effect Size of Interest (SESOI), thereby overcoming some 

of the earlier-mentioned limitations of p-values in the traditional NHST context. Testing against a 

SESOI may always be preferential over testing against an effect of zero (i.e., H0 in traditional 

NHST) as any effect under study is highly unlikely to be exactly zero given random variation. The 

corollary of this is that one can theoretically always find support for H1 with sufficiently large 

sample sizes (Murphy et al., 2014), rendering significant outcomes in such circumstances 

uninformative. Thus, testing against a SESOI better enables falsifiability. 
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Figure 1. Different approaches to statistical testing: A) Traditional NHST, B) Small telescopes, C) Minimal 
effects testing, and D) Equivalence testing12. DL and DU are lower and upper equivalence boundaries, 

respectively. 

Small telescopes: Proposed by Simonsohn (2015), the small telescopes approach labels a 

replication as a failure if it rejects an effect that the original study was 33% powered to detect (d33%). 

For example, if a study has a sample size of 50 participants for a paired-sample t-test, it has 33% 

power (or roughly a 1:2 chance) to detect an effect of d33% = 0.22 (for R code that can be used to 

calculate d33%, see projects OSF page: https://osf.io/tfmb8/). If a replication study’s effect is 

statistically smaller than d33%, then we can conclude the original evidence to suggest a theoretically 

interesting effect existed is not convincing and was likely a false positive, p-hacked, or fraudulent 

(Simonsohn, 2015). To use the small telescopes approach, a typical one-sided significance test is 

used with the null hypothesis (H0) equivalent to ≥ d33% and an alternative hypothesis (H1) that d < 

d33% (see Figure 1). One limitation of the Small telescopes approach is that it requires a sample size 

 
12 The R code provided by Lakens et al. (2018) was adapted (with permissions) to create this figure. The exact code 
used to create Figure 1 is shared on Open Science Framework: https://osf.io/5r7a9/. 
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roughly 2.5 times the original to detect d33% and thus may not be applicable when the original study 

used a large sample. However, as Simonsohn notes, when the sample size of an original study was 

large, we may be less interested in knowing whether we could achieve d33% as this could be 

negligibly small in such circumstances (e.g., d33% for an independent t-test [N = 4,000] = 0.049).  

Minimum effects testing: Using this method, the SESOI is a range that becomes H0 (e.g., d 

= -.05 – .05), and effects larger than the SESOI range in either direction (e.g., d < -.05 or > .05) 

are set as H1 (see Figure 1). Thus, we test whether an effect lays statistically within (H0) or outside 

(H1) a range of effects that would be so small so as to be of no interest if they were found, 

regardless of whether they reached significance using traditional NHST (Murphy et al., 2014). In 

replication terms, this option enables researchers to select a SESOI that, if achieved, would 

represent the minimal level of evidence required to support the original study. Addiction 

researchers should determine their SESOI based on a consideration of the theoretical or clinical 

importance of different effect sizes (Lakens, Scheel, & Isager, 2018). 

Equivalence testing: This approach can be viewed as the inverse of minimum effects testing. 

It involves testing whether an effect is statistically within upper and lower equivalence boundaries 

that represent the SESOI (Lakens et al., 2018). In equivalence testing, H0 represents a meaningful 

effect (i.e., larger than the SESOI range in either direction), while effects within the boundaries of 

the SESOI support H1 (see Figure 1). Choosing between minimal effects and equivalence testing 

may depend on whether one wishes to place the burden of proof on replication (when H1 is 

supported, findings support the original study) or non-replication (when H1 is supported, findings 

do not support the original study; see Hedges & Schauer, 2019). Lakens and colleagues (2018) 

have developed the TOST (two one-sided significance tests) which can allow addiction researchers 

to easily include equivalence testing in their studies13 (available for R, jamovi, excel). 

 

 
13 The TOST can also be adapted for use by those wanting to employ the small telescopes approach. 
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Figure 2. Examples of all possible equivalence testing outcomes from RCTs published in Addiction (panels 1, 

3, & 4) & a recent study published in International Journal of Mental health & Addiction (panel 2; no example 

of this outcome could be identified in trials published in Addiction, likely because this finding typically requires 

very large sample sizes & small effects) 

 [1] Lintzeris et al. (2002), comparison of self-reported heroin use after 8 days between intervention 

(buprenorphine) & control groups; [2] Bener et al. (2019), difference between students with internet addiction 

disorder (1) vs. "normal" students (2) on question 4 of the 14-item Fatigue Scale ("Do you have problems starting 

things?"); [3] Petrakis et al. (2017), comparison of mean no. of drinks per day during 30-day follow-up between 

intervention (Mecamylamine) & placebo groups; [4] Grønbæk & Nielsen (2007), drinks per day comparison 

between Minnesota day clinic patients vs. standard public psychotherapy treatment patients in the 30-days post 

intervention. 

Lakens et al. (2018) recommend combining equivalence testing with traditional NHST, 

resulting in four possible outcomes (see corresponding panels in Figure 2): [1] clear evidence of 

effect: not statistically equivalent and significantly different from zero (i.e., H0 in NHST), [2] the 

effect is smaller than the SESOI, though is greater than zero: statistically equivalent and 

−3 −2 −1 0 1

Mean Difference

Equivalence bounds −1.201 and 1.201
Mean difference = −1.9 

 TOST: 90% CI [−2.693;−1.107] non−significant 
 NHST: 95% CI [−2.848;−0.952] significant

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

Mean Difference

Equivalence bounds −0.555 and 0.555
Mean difference = 0.17 

 TOST: 90% CI [0.072;0.268] significant 
 NHST: 95% CI [0.053;0.287] significant

−3 −2 −1 0 1 2 3

Mean Difference

Equivalence bounds −2.702 and 2.702
Mean difference = −0.43 

 TOST: 90% CI [−2.015;1.155] significant 
 NHST: 95% CI [−2.323;1.463] non−significant

−6 −4 −2 0 2 4

Mean Difference

Equivalence bounds −4.521 and 4.521
Mean difference = −1.8 

 TOST: 90% CI [−5.01;1.41] non−significant 
 NHST: 95% CI [−5.639;2.039] non−significant

1 2 

3 4 



 16 

significantly different, [3] no evidence of effect: statistically equivalent and not statistically different 

[4] the SESOI cannot be rejected, but the effect is not significant using NHST: not statistically 

equivalent and not significantly different. Figure 2 plots the findings from a reanalysis of the 

outcomes of three randomised control trials published in Addiction (panels 1, 3, & 4) and a study 

recently published in International Journal of Mental health & Addiction (panel 2). A medium 

effect size (d = 0.5)14 was used for upper and lower boundaries for ease of illustration, though 

addictions researchers should give proper consideration to the equivalence boundaries that would 

be appropriate for their research (see Anvari & Lakens, 2019; Lakens et al., 2018). Each of the 

outcomes presented in Figure 2 is more informative than using NHST alone, and outcome 4 may 

be of particular interest in the context of replication research. This outcome indicates that although 

not statistically significant using NHST, the effect may be equal to or larger than the SESOI—

which in this case is a noteworthy effect size of d = 0 .5—and therefore the original study may 

have lacked sufficient power to detect a meaningful effect. Going forward, addictions researchers 

can use the TOST, as done here, to determine whether other null findings reported in their 

subfields may require further investigation (as has been done for other fields: Quintana, 2018). 

Maxwell et al. (2015) state that equivalence testing can be used to determine a range of values 

that, if a q and its CI were observed within (they propose ranges for d of -0.10 to 0.10 or -0.05 to 

0.05), would support the conclusion that the null hypothesis is “for all intents and purposes essentially 

true”. Thus, if the range of parameter values observed in a replication study is within the 

equivalence boundaries, then strong evidence for the absence of an effect has been found and any 

effect(s) observed in previous investigations should be questioned. However, to classify an effect 

as equivalent to null based on such small ranges would require inordinately large sample sizes for 

addiction research. For example, to achieve 80% power for a between groups t-test using 

equivalence boundaries of -0.10 and 0.10 (d) and assuming the true effect is 0, a total of 3,426 

 
14 Cohen’s d effect size was used to set boundaries here (hence the difference in scales along the x-axes in the plots), 
though raw difference scores can also be used for this purpose. 
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participants would be required (1,713 per group). For boundaries of -0.05 and 0.05 under the same 

conditions, 13,704 participants would be required (6,852 per group). The solution to this issue as 

recommended by Maxwell and colleagues (2015) echoes a recommendation made earlier in this 

article: addiction researchers must work collaboratively, undertaking multiple replication studies 

across multiple labs15. Only through such collaborations can we achieve the necessary sample sizes 

required to provide convincing evidence for the absence of an effect. 

Approach 4: Bayesian statistics 

A fourth approach is the use of Bayesian statistics and the calculation of Bayes Factors (BF). 

In NHST terms, BFs provide an indication for the relative evidence for H0, and H1 using likelihood 

ratios and therefore may be favoured over p-values. BFs also incorporate researchers’ prior beliefs 

about the theory under study, which is included into the statistical model as a prior (e.g., one’s prior 

belief about the probability of a coin landing on heads in a coin toss is likely to be 0.5). Once the 

data are observed, one’s degree of belief in the theory is then updated accordingly into a posterior 

belief in the form of the resulting BF. According to convention, BFs > 3 represent substantial 

support for H1 over H0, BFs < 0.333 (or 1/3) represent substantial support for H0 over H1, and 

BFs between 0.333 and 3 reflect insufficient evidence for either hypothesis. While using a Bayesian 

approach to statistical inference was once seen as a complicated and unusual approach, such 

methods are becoming increasingly more common (e.g., Pisklak et al., 2019) and user-friendly 

software (e.g., JASP) has been developed that can now easily calculate BFs. Indeed, the flagship 

journal of the addictions field, Addiction, now recommends all authors report BFs in studies 

reporting null findings, with the suggestion that only BFs < 0.3 should be interpreted as 

representing no evidence of effect (i.e., support for H0 over H1).  

 
15 The upcoming SCORE (Systematizing Confidence in Open Research & Evidence) project by the Centre for 
Open Science and DARPA (Defence Advanced Research Projects Agency) provides another example of such multi-
lab collaborations efforts in the wider social and behavioural sciences. 
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Bayesian methods and BFs possess a number of properties that make them useful for 

interpreting replication outcomes (Dienes, 2014, 2016), some of which mirror those provided by 

the methods outlined in Approach 3 above. For example, unlike in traditional NHST, researchers 

can clearly specify H0 and H1, potentially specifying H1 as the original study’s (or meta-analysis) 

finding for comparison. Such an approach has been advocated by Verhagen and Wagenmakers 

(2014) and then updated by Ly et al. (2018), who propose evaluating replication outcomes from 

both a sceptic’s (i.e., no effect exists) and proponent’s (i.e., the original study’s finding reflects the 

true effect) perspective. The relevant evidence for the sceptic’s perspective (Ho) over the 

proponent’s (Hr) can then be calculated.  

In addition to such model comparisons, Bayesian statistics can also be used for estimating 

parameters and their variance in a similar way to frequentist approaches (Kruschke, 2011). The 

95% credible interval calculated for parameters in Bayesian statistics contain 95% of estimated 

parameter values that are most plausible based on the observed data. In an approach analogous to 

equivalence testing in frequentist statistics, researchers using Bayesian approach can identify a 

Region of Practical Equivalence (ROPE) that contains the range of values for q we consider to be 

equivalent to null (Kruschke, 2011) and observe whether the credible interval within, outside, or 

partially within the  ROPE. This approach therefore allows researcher to consider the proportion of 

q values equivalent to null as well as making categorical interpretations, and again can provide 

convincing evidence for the absence (entire interval falls within the ROPE) or presence (entire 

interval falls outside of the ROPE) of an effect in the context of replication research.  

Conclusions 

There is a need for addiction researchers to conduct replication studies to ensure the veracity 

of our understanding surrounding addiction and related phenomena. Selecting appropriate studies 

for replication should involve taking into consideration each study’s potential impact from 

theoretical, academic, societal, and clinical viewpoints. Consideration should also be given to how 
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the results of replication studies will be interpreted and compared with the original finding. A 

variety of approaches are available for this purpose, including effect sizes and their confidence 

intervals, interval predictions, small telescopes, and equivalence testing. In line with the Open 

Science Collaboration’s (2015) view that “No single indicator sufficiently describes replication success”, using 

several of these methods together will allow for the most comprehensive interpretation of findings. 

Finally, it is essential that addiction researchers recognise that multiple sources of variation can 

affect each study’s outcome and therefore: [1] exact replication of an effect is unrealistic, and [2] 

one “failed” replication should not be cause to declare the original effect does not exist—the 

addictions field must adopt meta-scientific approach wherein the accumulation of evidence is 

prized and single findings are interpreted cautiously.   
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Supplemental materials 

Supplemental materials, including an annotated list of relevant articles and resources relating to 

the interpretation of replication outcomes and the R code used to produce the figures presented 

here can be accessed via this project’s Open Science Framework Project Page: 

https://osf.io/5r7a9/  
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