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Introduction

Aspergillus fumigatus is a ubiquitous saprophytic mold able to grow on a diversity of material

ranging from decayed organic matter in the environment to space station cupolas [1]. Yet this

fungus is equally adept as a serious opportunistic pathogen, causing pulmonary aspergillosis

and the more deadly invasive aspergillosis (IA). There are an estimated 3,000,000 cases of pul-

monary aspergillosis annually and more than 200,000 cases of IA each year reaching a mortal-

ity rate of up to 90% in the most susceptible populations [2]. Difficulties in treating IA include

delayed detection and increasing resistance to antifungal treatment. Like many opportunistic

fungi, there is no one gene that makes A. fumigatus such a threatening pathogen. One unique

feature of this pathogen is its arsenal of small molecules that impact disease development. Sec-

ondary metabolites are characterized as bioactive molecules of low molecular weight that are

not required for growth of the organism but instead aid survival in harsh environments, resist-

ing desiccation and UV stress and improving competition with other microbes. For A. fumiga-

tus, these benefits extend to aiding growth not only in the environment but in the human body

as well. Some secondary metabolites combat the host immune system by affecting immune cell

function or by shielding the fungus against host attack, whereas others allow the fungus to

acquire essential, scarce cofactors. The following synopsis of secondary metabolites produced

by the opportunistic human pathogen A. fumigatus highlights how microbial metabolites,

although undoubtedly evolved as environmental protectants, can impact infectious disease

development (Fig 1). Although we delineate the roles of each metabolite by category for ease of

discussion (e.g., “on the offensive,” “scavenging the battlefield,” “arms race”), the reader should

note that each metabolite may have several biological roles for the fungus, in part illustrated in

Fig 1.

On the offensive: How A. fumigatus combats the immune system

Once inside the host, A. fumigatusmust survive interactions with components of the immune

system by avoiding, suppressing, or weakening the immune response. The following secondary

metabolites have been shown to impact disease or interactions with the immune system

through such mechanisms.

Dihydroxynapthalene melanin

Dihydroxynapthalene (DHN) melanin is a polymer consisting of 1,8-dihydroxynapthalene,

found on the conidial surface. As an environmental benefit, DHNmelanin helps to prevent
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desiccation of spores and confers resistance to UV radiation [3]. In the host, DHNmelanin

protects the conidia by scavenging reactive oxygen species [4], reducing phagosomal acidifica-

tion in alveolar macrophages [5], and inhibiting apoptosis in epithelial cells [6]. When the

polyketide synthase gene (pksP/alb1) responsible for the initial step of melanin production is

deleted, there is a loss of spore pigment, a defect in virulence in intravenously injected immu-

nocompetent murine models, and rapid killing spores in macrophage models [4]. Recently,

DHNmelanin has been described as a pathogen-associated molecular pattern, in that a C-type

lectin receptor expressed in myeloid cells and CD31+ endothelial cells in humans recognizes

DHNmelanin and has been shown to have a protective role against disseminated infection in

immunocompetent mice and recipients of stem cell transplants [7].

Gliotoxin

Gliotoxin is an epidithiodioxopiperazine that has been extensively studied in the context of

infection. Gliotoxin inhibits activity of proteins that contain susceptible free thiols such as

the host NADPH oxidase, a protein complex necessary for the generation of antimicrobial

reactive oxygen species [8]. Gliotoxin has also been shown to inhibit nuclear factor-kappa B

(NF-κB)-mediated transcription of cytokine genes and decrease cytotoxic activities of T lym-

phocytes [9]. A. fumigatus is resistant to its own toxin through a protective enzyme encoded

in the gliotoxin cluster [10]. More recently, this metabolite has been shown to suppress the

macrophage immune response by preventing integrin activation, interfering with actin

dynamics, and impairing phagocytosis through affecting phosphoinositide metabolism [11].

When the gliotoxin nonribosomal peptide synthetase gene, gliP, is deleted, there is an attenua-

tion of virulence in non-neutropenic murine models of IA but not in neutropenic murine

models [12].

Endocrocin

Endocrocin is a polyketide that is localized to the conidia during growth [13]. Using an in vivo

zebrafish assay, endocrocin was found to directly affect immune cells by inhibiting neutrophil

chemotaxis [14]. When the polyketide synthase gene encA is deleted, there is an attenuation of

virulence using the Drosophila melanogaster IA model [15]. Endocrocin belongs to a common

class of anthraquinones and is closely related to emodin, a precursor in the trypacidin pathway

that has been associated with mediating neutrophil apoptosis [15]. Although an exact role for

endocrocin has not been established in nature, several related metabolites provide UV protec-

tion to fungi, similar to the role of DHNmelanin [3].

Fumagillin

Fumagillin is a monoterpenoid, amoebicidal toxin with valuable pharmaceutical potential due

to its inhibitory activity against methionine aminopeptidase-2, making it useful for the treat-

ment of microsporidiosis [16]. The toxin has been found to suppress the immune response of

Galleria mellonella by inhibiting the activity of phagocytes [17] and reduces the ability of the

insect immune cells to kill opsonized Candida albicans cells and phagocytose A. fumigatus

conidia [17]. In addition, fumagillin also reduces the ability of hemocytes to take up oxygen

and inhibits the translocation of p47 protein [17], an essential component of the NADPH

Fig 1. Roles of Aspergillus fumigatus secondary metabolites. A list of the secondary metabolites produced by A. fumigatus, flanked by their proposed roles in the
environment (right) and the host (left). Metabolites with a “?” indicate that the compound has not been examined in a niche. Bracketed numerals (e.g., [22]) indicate the
reference associated with the role of the metabolite. Nidulanin A is a proposed metabolite produced by A. fumigatus, whereas all other metabolites are characterized end-
product metabolites from a biosynthetic gene cluster. ROS, reactive oxygen species; TNF-α, tumor necrosis factor alpha.

https://doi.org/10.1371/journal.ppat.1007606.g001
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oxidase complex. Fumagillin administered to insect larvae increases the susceptibility of the

larvae to A. fumigatus [18]. Recently, virulence assays with an A. fumigatus fumagillin deletion

mutant strongly support a role for this toxin in epithelial cell damage during IA [19].

Fumigaclavines

Fumigaclavines are ergot alkaloids, a class of compounds known to act as feeding deterrents

and exhibit insecticidal and bactericidal activities [20]. Using the G.mellonella insect model

for IA, it was found that a strain of A. fumigatus deficient in all ergot alkaloid production,

ΔdmaW, resulted in a significantly reduced virulence. Strains that were still able to produce

ergot alkaloids, but not fumigaclavine C, were significantly less virulent than wild type but still

more virulent than the strain in which there was no production of ergot alkaloids, suggesting a

role of the end product fumigaclavine C in virulence [20]. Fumigaclavine C has also been

shown to inhibit the production of the pro-inflammatory cytokine tumor necrosis factor alpha

(TNFα), suggesting a mechanism of action for the molecule [21].

Scavenging the battlefield: How A. fumigatus acquires essential
micronutrients

Secondary metabolites regulate key aspects of micronutrient homeostasis and allow A. fumiga-

tus to continue normal cellular function by meeting the needs for the trace elements such as

copper and iron. Both are toxic in high doses but are necessary for essential cellular processes

such as respiration and branched-chain amino acid biosynthesis. The ability to acquire these

micronutrients is directly related to the ability of A. fumigatus to cause disease.

Siderophores

Siderophores produced by A. fumigatus are characterized by their hydrodroxamate moieties

and function in high-affinity iron uptake and storage mechanisms. Extracellular siderophores

fusarinine C and triacetlyfusarinine C are secreted into the environment, where they bind Fe3+

and transport it back into the cell. Intracellular siderophores ferricrocin and hydroxyferricro-

cin are responsible for iron storage and homeostasis. When the enzyme responsible for the

first step in siderophore biosynthesis sidA is deleted, both extracellular and intracellular side-

rophore production is abolished. The sidA deletion grows poorly under iron-limiting condi-

tions [22] and displays increased sensitivity to hydrogen peroxide. In addition, this mutant

was found to be highly attenuated in virulence using a neutropenic murine model [23], sug-

gesting that proper iron acquisition is essential for disease progression in the host.

Hexadehydroastechrome

Hexadehydroastechrome (HAS) is a tryptophan-derived secondary metabolite that binds to

iron. Overexpressing the transcription factor present within the HAS biosynthetic gene cluster

results in an increase in both siderophore and HAS production in addition to increased viru-

lence in a neutropenic murine model [24]. HAS regulates fungal iron homeostasis circuitry,

aligning iron acquisition and consumption pathways with secondary metabolite expression

[25], including the newly discovered xanthocillin gene cluster [26].

Xanthocillins

Xanthocillins are tyrosine-derived metabolites that contain a characteristic isocyanide func-

tional group and have been recently shown to be produced by the xan cluster in A. fumigatus.

Overexpression of the transcription factor present within the cluster results in an increased
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production of isocyanides and a defect in copper-dependent pigmentation indicating a possi-

ble link of this cluster to copper homeostasis [26]. The isocyanides produced by A. fumigatus

may represent a unique mechanism, on top of the canonical copper regulatory system [27], to

maintaining copper homeostasis for this pathogen.

Arms race: How A. fumigatus uses secondary metabolites to
compete in the environment and host

Several secondary metabolites have no known effect or have not been tested for effects on viru-

lence or interactions with the immune system but have only been shown to provide an advan-

tage to A. fumigatus when competing with other microbes in the environment.

Trypacidin

Trypacidin is an anthraquinone that has been found to have antiprotozoal, cytotoxic, and anti-

phagocytic properties. The compound displays activity against Toxoplasma gondii and Trypa-

nosoma cruzi in vitro that causes toxoplasmosis and Chagas disease, respectively. Deleting the

polyketide synthase essential for trypacidin production eliminates production of the metabo-

lite and coincides with an increase in phagocytosis when challenged with Dictyostelium discoi-

deum and macrophages, indicating that trypacidin acts as an antiphagocytic metabolite [28].

The trypacidin pathway shows redundant synthesis to the endocrocin pathway, where both

contribute to final endocrocin synthesis in some strains of A. fumigatus [15].

Helvolic acid

Helvolic acid is a fusidane antibiotic that exhibits in vitro antiprotozoal activity against the try-

panosome Trypanosoma brucei brucei GUTat3.1, the causative agent of African sleeping sick-

ness [29], and helvolic acid derivatives exhibit antibacterial activity against Streptococcus

agalactiae and Staphylococcus aureus [30]. In addition, helvolic acid also affects mammalian

cell lines, decreasing the beat frequency of ciliated respiratory epithelium, a process important

in preventing colonization by A. fumigatus [31].

Fumiquinazolines

Fumiquinazolines are tryptophan-derived peptidyl alkaloids that have a broad range of activity

and accumulate in A. fumigatus conidia [32]. Fumiquinazoline F isolated from cultures of Pen-

icillium coryphilum exhibited activity against S. aureus andMicrococcus luteus [33]. Fumiqui-

nazolines also exhibit antifungal activity with fumiquinazoline H and I isolated from

Acremonium sp. showing weak antifungal activity against C. albicans [34].

Fumitremorgins

Fumitremorgins belong to the diketopiperazine alkaloids class of compounds and contain a

unique, 8-membered endoperoxide ring. Fumitremorgin B has been found to have in vitro

antifungal activity against a variety of phytopathogenic of fungi [35]. In addition, fumitremor-

gin B was found to be lethal to brine shrimp and displayed antifeedant activity towards army-

worm larvae [35]. Fumitremorgins have also been shown to affect mammalian cells.

Fumitremorgin C displays inhibitory activity towards the breast cancer resistance protein, an

ATP-binding cassette transporter that is implicated in cellular resistance to anticancer drugs

[36].

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007606 April 4, 2019 5 / 9

https://doi.org/10.1371/journal.ppat.1007606


Pyripyropene A

Pyripyropene A was discovered during an investigation into inhibitors of acyl-coenzyme A

(CoA):cholesterol acyltransferase, a mechanism by which to treat hypercholesterolemia and

atherosclerosis [37]. Pyripyropenes were further shown to exhibit in vivo aphicidal activity

against the green peach aphid (Myzus persicae) during a screen of compounds that act as insec-

ticides [38]. How these activities may relate to aspergillosis has not been assessed.

Pseurotin

Pseurotin has been shown to be have several antimicrobial and cytotoxic properties. It has

been demonstrated to have antibacterial properties when screened against both gram-positive

and gram-negative organisms [39]. This metabolite is encoded by an intertwined biosynthetic

gene cluster with fumagillin [40] but, unlike fumagillin, was not implicated in epithelial tissue

damage [19].

Neosartoricin

Neosartoricin is a prenylated anthracenone and was discovered following activation of the

gene cluster from A. fumigatus and Neosartorya fischeri [41]. The compound was found to

have T-cell antiproliferative activity suggesting that the compound functions as an immuno-

suppressive [41]. Like several metabolites synthesized by A. fumigatus, the biosynthetic gene

cluster is conserved in several pathogenic fungi [42].

Fumisoquin

Fumisoquin is an isoquinolone alkaloid with biosynthetic machinery that bears a striking simi-

larity to plant berberine bridge enzyme and tetrahydrocannabinol biosynthesis [43]. Deletion

of the fumisoquin transcription factor did not impact virulence in a murine infection model

[44]. A related isoquinalone metabolite produced by Aspergillus flavus stimulates Aspergillus

species spore germination while inhibiting bacterial growth [45], possibly hinting at a function

for fumisoquin.

Nidulanin A

Nidulanin A is a tetracyclopeptide/isoprene isolated from Aspergillus nidulans [46]. The nidu-

lanin A gene cluster is conserved in all Aspergillus spp., including A. fumigatus, although it has

not been detected in this fungus [42]. At present, nidulanin A has yet to be tested for any anti-

microbial or virulence-related properties.

Prospective

A. fumigatus produces a wide variety of small molecules, many of which are demonstrated to

impact virulence, others of which have not been investigated, and likely still some of which

have yet to be discovered. These molecules are the weapons that A. fumigatus uses to do battle

with the immune system, facilitate the acquisition of essential micronutrients in their environ-

ment, and compete with other microbes. It is important to note, however, that A. fumigatus

isn’t alone in producing secondary metabolites that affect virulence. Many of these secondary

metabolites are conserved in other pathogenic fungi [38]. Studying secondary metabolites pro-

duced by A. fumigatus will provide insight into understanding not only the chemical arsenal of

A. fumigatus but the chemical arsenal of other pathogenic fungi as well.
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