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Abstract. Localization in a discrete system of oscillators refers to the partition of the population
into a subset that oscillates at high amplitudes and another that oscillates at much lower amplitudes.
Motivated by experimental results on the Belousov–Zhabotinsky reaction, which oscillates in the
relaxation regime, we study a mechanism of localization in a discrete system of relaxation oscillators
globally coupled via inhibition. The mechanism is based on the canard phenomenon for a single
relaxation oscillator: a rapid explosion in the amplitude of the limit cycle as a parameter governing
the relative position of the nullclines is varied. Starting from a parameter regime in which each
uncoupled oscillator has a large amplitude and no other periodic or other stable solutions, we show
that the canard phenomenon can be induced by increasing a global negative feedback parameter γ,
with the network then partitioned into low and high amplitude oscillators. For the case in which the
oscillators are synchronous within each of the two such populations, we can assign a canard-inducing
critical value of γ separately to each of the two clusters; localization occurs when the value for the
system is between the critical values of the two clusters. We show that the larger the cluster size, the
smaller is the corresponding critical value of γ, implying that it is the smaller cluster that oscillates
at large amplitude. The theory shows that the above results come from a kind of self-inhibition of
each cluster induced by the local feedback. In the full system, there are also effects of interactions
between the clusters, and we present simulations showing that these nonlocal interactions do not
destroy the localization created by the self-inhibition.
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1. Introduction. The Belousov–Zhabotinsky (BZ) reaction is the prototype
system in nonlinear chemical dynamics [1, 2, 3] (see references therein). In bulk, it is
a relaxation oscillator. A wide variety of spatially extended patterns have been found
in experiments on this reaction. Along with the experiments, chemically plausible
mathematical models have been proposed and studied both analytically and numer-
ically. The results obtained qualitatively reproduce experimental findings. Recently,
new patterns have been found as nondiffusive couplings have been experimentally and
numerically introduced.

In particular, the existence of localized oscillatory clusters has been reported in
[4, 5] for the BZ reaction with global inhibitory feedback. Simulations performed on
the Oregonator model [5] and a modified Oregonator model [6] of the BZ reaction,
both with global inhibitor feedback, reproduce the experimental findings. However,
the mechanism by which localized cluster formation occurs remains unclear from both
the mathematical and chemical points of view.
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We consider as a cluster a set of “cells” or “chemical points” of the reactor that
oscillate synchronously with the same amplitude. In certain cases, depending on some
parameter, only two different amplitude regimes of oscillations occur: large amplitude
oscillations (LAO) and small amplitude oscillations (SAO). The LAO regime consists
of limit cycles whose amplitudes are O(1), i.e., almost equal to the maximum am-
plitude of the limit cycle for a single uncoupled oscillator, whereas the SAO regime
consists of limit cycles whose amplitudes are of order of magnitude ε � 1. In such
cases there is a range of amplitudes that is not observable because they occur in an
exponentially small interval of the governing parameter. When the system is divided
into two or more clusters and at least one oscillates in an LAO regime and one in
an SAO regime, we say that the clusters are localized. Clusters that are in the same
amplitude regime may oscillate with a small difference in their amplitudes (compared
with the LAO), but we do not refer to that situation as a localization phenomenon.
Note that our definition of clusters does not require oscillators in each cluster to be
spatially grouped; we disregard spatial structure in this work.

The localized cluster patterns found in the experiments and simulations on the
BZ reaction with global inhibitory feedback [4, 5, 6] present two main features that
might seem counterintuitive:

1. Two different oscillatory regimes coexist in a system of identical coupled
oscillators.

2. The cluster with the largest number of oscillators is always in the SAO regime
whereas the smallest clusters are in an LAO regime; one might expect the
largest cluster to be oscillating in an LAO regime and suppressing the smaller
ones as occurs in other systems, e.g., neural systems with inhibitory synapses,
with all-to-all identical coupling. In this latter case, if one cluster has a larger
number of cells than the others, the former can suppress the latter.

In this paper we seek to explain the mechanism of localization for globally cou-
pled relaxation oscillators of the FitzHugh–Nagumo (FHN) type, along with the two
features mentioned above. The FHN-type models were chosen as simplifications of
the Oregonator models. Although they are not precise as descriptions of chemical
phenomena, they display the localization phenomenon and are easier to study ana-
lytically in order to give some insight into the dynamical mechanisms that produce
localized solutions. In addition, they display some of the relevant qualitative features
of the modified Oregonator model studied in [6], such as the shape of the nullclines,
the fact that the limit cycle is created in a supercritical Hopf bifurcation, and the re-
laxation nature of the oscillator. In a forthcoming paper we will address the questions
related to the mechanism of localization in the modified version of the Oregonator
used in [6, 7].

We argue that the mechanism of localization is based on the canard phenomenon
that occurs in single relaxation oscillators. The canard phenomenon is a very rapid
change in the amplitude of the limit cycle of a relaxation oscillator as the inhibitor
nullcline moves with respect to the activator nullcline [11, 12, 13, 14, 15, 16]. It
arises in the context of experiments and simulations of nonlinear chemical dynamics
[17, 18, 19] and in a two-pool model describing the mechanism of calcium-induced
calcium release [20, 21].

The mechanism of localization in oscillatory systems, not of the relaxation type,
has been studied in [8, 9, 10] for nonidentical diffusively coupled oscillators. To our
knowledge, the mechanism of localization in relaxation-type oscillators has not been
analyzed before.
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In section 2 we present a general formulation for a class of models of globally
coupled oscillators of FHN type that include the modified FHN (MFHN) models
studied in this manuscript. For single FHN-type oscillators, the fast variable null-
cline is cubic-like and intersects, on its middle branch, the slow variable nullcline,
an increasing function. The parameters were chosen such that this intersection is
an unstable fixed point. In section 3 we explain the reduction of dimensions strat-
egy, a self-consistent argument that reduces the dimensionality of the mathematical
problem by assuming the existence of M clusters, each with a different dynamical
behavior (different amplitudes, phases or both). Within each cluster, the oscillators
synchronize.

In section 4 we describe the canard phenomenon for a single FHN-type equation
and review some results. Following [15], we present a mathematical expression for
an asymptotic approximation to the “canard critical value” for the parameter λ, the
parameter responsible for the displacement of the slow variable nullcline relative to
the fast variable nullcline, as a function of the remaining parameters of the model.
When, by increasing or decreasing λ through a critical value λc, there is a sudden
change (of canard type) in the amplitude of the limit cycle, we say that the canard
phenomenon has been induced by changes in λ, and we call λc the canard critical
value of λ. Strictly speaking, the sudden change in the amplitude of the limit cycle
takes place in an exponentially small interval of values of λ; the canard critical value
is the limit of the interval as ε→ 0.

In section 5 we show that, when there are synchronized (bulk) oscillations for the
globally coupled system (only one cluster), the canard phenomenon may be induced
by increasing the value of the global feedback parameter γ and keeping λ fixed. In
the FHN-type models with global feedback presented here, as well as in the BZ model
with global feedback used in [6], the intersection point between nullclines remains
fixed as γ is increased. When γ = 0 (no global feedback) the uncoupled oscillators
are in an LAO regime; localization for these models is a consequence of the global
coupling. An asymptotic approximation to the critical global feedback value, γc, is
also calculated as a function of λ and other parameters of the model. These results
are the basis of our analysis of the localization phenomenon.

The localization phenomenon for a two-cluster system, in which one cluster is in
an LAO regime and the other is in an SAO regime, is analyzed in section 6. The dy-
namics of the two-cluster globally coupled system is analyzed by studying each cluster
separately and considering the other cluster as forcing it. Under specific assumptions,
this dynamics is a combination of self-inhibition of each cluster, responsible for creat-
ing an interval of values of γ within which a localized solution may exist, and inhibition
(forcing) exerted on each cluster by the remaining ones. We show that self-inhibition
is stronger the larger the cluster size, which explains why in a localized solution the
largest cluster is in an SAO regime. We show that, for the special case of the van
der Pol (VDP) equations with global feedback, localization is produced by only the
self-inhibition, and the forcing exerted on each cluster by the other does not affect
localization. In this paper we analyze only the effect of self-inhibition; however, we
present some simulations of other globally coupled FHN systems that support our
claim that the localization phenomenon is present with the same features predicted
theoretically. In section 7, we relate our results to experiments and simulations.

2. Models. In this paper we study models of the type{
v′k = F (vk, wk) − γ (〈w〉 − w̄),
w′

k = ε G(vk, wk;λ)
(1)
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Fig. 1. Nullclines for a sigmoid version of the FHN model for several values of λ = v̄ − vmin

(the intersection point between nullclines).

for k = 1, . . . , N and 0 < ε � 1. In (1), F (v, w) is such that the zero level curve
F (v, w) = 0 can be expressed as w = f(v) with f(v) a cubic-like function having one
local minimum at (vm, wm) and one local maximum at (vM , wM ) with vm < vM and
wm < wM . The function G is a nonincreasing function of w such that the zero level
curve G(v, w;λ) = 0 is an increasing function of v for every λ in a given neighborhood
of λ = 0 and is also a decreasing function of λ for all v in a neighborhood of vm. We
further assume that F = 0 and G = 0 intersect at (v̄, w̄) with v̄ = vm when λ = 0 and
that (v̄, w̄) is an unstable fixed point lying on the central branch of f when λ > 0.
The constant γ is the global feedback parameter, and 〈w〉 is given by

〈w〉 =
1

N

N∑
k=1

wk.(2)

Note that (v̄, w̄) does not depend on γ, as we can see by replacing 〈w〉 by w̄ in (1). In
all models considered here, the systems are assumed to be in a relaxation oscillatory
regime in the absence of global coupling (γ = 0). For γ = 0, changes in the parameter
λ alter the position of the wk nullcline (see Figure 1). When this nullcline moves,
the intersection point (v̄, w̄) changes. As we will explain in section 4, without loss of
generality we can redefine λ such that λ = v̄. In the literature v is usually referred to
as the activator or the “potential” variable and w as the “inhibitor” or the recovery
variable.

Some specific systems may be modeled by making simplifying assumptions on (1)
and considering F (v, w) = f(v) − w and G(v, w;λ) = g(v;λ) − w, where f is as de-
scribed before and g is an increasing function of v for every λ in a given neighborhood
of λ = 0 and a decreasing function of λ for all v in a neighborhood of vm. Examples are

(i) VDP equations in Lienard form

f(v) = −v3 + v2, G(v, w;λ) = v − λ;(3)

(ii) the classical FHN equations

f(v) = −h v3 + a v2 − b v + c, g(v;λ) = β v − η,(4)

where h, a, b, c, β, and η are nonnegative constants;
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Fig. 2. Nullclines for the MFHN model for a single oscillator (or equivalently for γ = 0).
The values of the parameters used in our simulations are h = 1.92, a = 4.32, b = 1.8, c = 0.23,
β = 0.41, η = 0.05, ε = 0.05, vm = 0.25, f(vm) = 0.02, v̄ = 0.328, w̄ = 0.036092. The function f
was constructed in such a way that the maximum and minimum are close to 1 and 0, respectively,
in the following way: (i) we took a cubic function with minimum 0 at v = 0 and maximum 0.98 at
v = 1, (ii) we shifted it up by 0.02, (iii) we shifted it to the right by 0.25. The function g, a sigmoid
function, was built in such a way that it crosses f at a single point, v̄, placed to the right of the Hopf
bifurcation and such that v̄ > λc (beyond the canard critical value for a single oscillator). Note that
g is very steep and limv→±∞ = ±1.

(iii) the sigmoid FHN equations

f(v) = −h v3 + a v2 − b v + c, g(v;λ) =
1

2
(tanh((v − β)/η) + 1) ,(5)

where h, a, b, c, β, and η are nonnegative constants; and
(iv) the MFHN equations, which we use in our simulations,

f(v) =

{
fcub(v), v ≥ vm,
fcub(vm) v2m/v

2, v ≤ vm,

g(v;λ) =
1

2
(tanh((v − β)/η) + 1) ,

(6)

and

fcub = −h v3 + a v2 − b v + c.(7)

Here vm is the minimum of fcub; a, b, c, h, β, η, and ε are nonnegative constants.
In our simulations we use the following values for the parameters: h = 1.92, a = 4.32,
b = 1.8, c = 0.23, β = 0.41, η = 0.05, and ε = 0.05. With those parameters we get
(vm, wm) = (0.25, 0.02) and (v̄, w̄) = (0.328, 0.036092). We can see the graph of the
corresponding nullclines in Figure 2. In (4), (5), and (6) the parameter λ (which was
defined as the v-coordinate of the intersection point between the two nullclines of the
system) is implicitly defined by other parameters of the model.

The MFHN model is a simplification of the modified version of the Oregonator
model used in [6]; it allows an easier qualitative dynamical understanding by reproduc-
ing important aspects of the BZ dynamics and keeping some of its features, including
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the “N” shape of the nullcline corresponding to the first equation in (1), its asymptotic
approach to the w axis, its qualitative behavior as a function of the global feedback
parameter, and an inhibitor dynamics described by a sigmoid function rather than a
line. The motivation for using the MFHN system instead of more classical versions
of the FHN system is that, by changing the global feedback parameter γ, we can find
small amplitude limit cycles with smaller amplitude in the v direction than for the
FHN equations. This is due to the fact that the activator nullcline is asymptotic to
the w axis.

3. Strategy: Reduction of dimension using clusters. We are interested
in localized solutions to (1)–(2) for γ �= 0, in which two different portions of the
system display LAO and SAO, respectively. Toward this end we will analyze the
existence, properties, and stability of solutions to models of type (1)–(2) with M
different oscillatory behaviors (M ≤ N). More specifically, we will look for solutions
to (1)–(2) in which the system of N oscillators is divided into M different sets, each

set containing a fraction αk, k = 1, . . . ,M , of the N oscillators with
∑M

k=1 αk = 1, and
such that all oscillators in a set synchronize and oscillate with the same amplitude.

Since all the oscillators in each set are equivalent, we can write

〈w〉 =

M∑
j=1

αj wj .(8)

Bulk oscillations correspond to M = 1. Two-phase (phase-locked) oscillations cor-
respond to M = 2, as do localized oscillations in which a fraction of the system
oscillates with large amplitude and the rest of the system oscillates with small ampli-
tude. M = 3 includes three-phase (phase-locked) oscillations and localized oscillations
in which a fraction of the system displays two-phase (phase-locked) LAO and the rest
of the system oscillates with small amplitude.

In order to consider the influence of the rest of the system on the kth oscillator,
we define

Sk =

M∑
j=1,j �=k

αj wj(9)

for k = 1, . . . ,M . Using (9) and (1), we obtain{
v′k = F (vk, wk) − γ αk wk + γ w̄ − γ Sk,
w′

k = εG(vk, wk;λ)
(10)

for k = 1, . . . ,M . Note that the last term in the first equation of (10) is the only one
depending on wj , j = 1, . . . ,M , j �= k. This term can be seen as a forcing exerted
by the rest of the oscillators on the kth one. For M = 1 (Sk = 0, α1 = 1), (10) is
an unforced oscillator with global coupling; it describes bulk oscillations of the whole
system. For M > 1, the inhibitor nullsurfaces are not dependent on γ or Sk, while
the activator nullsurfaces, which are solutions of

F (vk, wk) − γ αk wk + γ w̄ − γ Sk = 0(11)

for k = 1, . . . ,M , vary depending on Sk and γ.
When F (v, w) = f(v) − w in (10) we have FHN-type equations. In this case the

activator nullsurfaces are given by

wk =
f(vk) + γ w̄

1 + γ αk
− γ

1 + γ αk
Sk(12)
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for k = 1, . . . ,M . For each k, the solutions (vk, wk) of the FHN-type equations
can be considered as living in a three-dimensional space (vk, wk, Sk). The activator
nullsurfaces vary in the Sk direction. As the system evolves, Sk changes in a periodic
fashion. For each value of Sk we can consider the projection of (12) onto the (vk, wk)
plane. This gives us the possibility of looking at the phase space of the FHN-type
equations for each oscillator separately as if it were two-dimensional, with the activator
nullcline moving up and down periodically according to Sk, i.e., according to the
dynamics of the rest of the M − 1 oscillators. The intersection point in the (vk, wk)
plane between the projections of the inhibitor and activator nullsurfaces becomes a
periodic function of t that moves as the wk nullcline moves. We call the vk-coordinate
of this time-dependent intersection point λk = λk(t) for k = 1, . . . ,M . Thus, for
systems of the form f(v, w) = f(v) −w, we can decompose the whole system into M
forced subsystems of FHN type, one for each value of k. The forcing exerted on one
oscillator depends on the remaining ones.

Stability of a solution to (10) does not automatically imply stability with respect
to the full equations (1), since the solution may not be stable to perturbations that
destroy the clustering into groups of equivalent oscillators. Hence once a solution has
been numerically found for a specific model and value of M , it is desirable to check
its stability in the N -array of globally coupled oscillators. We approach this problem
numerically. In order to numerically solve system (1) we used the modified Euler
method [22] for N = 100 with a step size ∆t = 0.01. For M = 2 we divided the N
oscillators into two sets, each with uniform initial conditions. Once each set of oscil-
lators (with αkN oscillators belonging to each set, k = 1, 2) settled down in a specific
limit cycle, we applied a random perturbation of maximum amplitude 0.001 to each
variable. We applied the following criterion for stability: if, after the perturbation,
each oscillator returns to its original limit cycle and phase difference, then we say that
the system is N -stable (numerically stable in an array of N oscillators). Otherwise we
say that the system is N -unstable (numerically unstable in an array of N oscillators).
We are aware that our definition of stability is not a rigorous one and can be affected
by numerical instabilities. Still, it gives us valuable information about the stability
of phase and localized clusters for the subset of values of γ for which they exist.

4. Canard phenomenon. In this section we review the canard phenomenon
for relaxation oscillators. Consider system (1) for a single oscillator and γ = 0; i.e.,

{
v′ = F (v, w),
w′ = ε G(v, w;λ),

(13)

where 0 < ε � 1 and where F and G are as described in section 2. We first look
at FHN-type models; i.e., F (v, w) = f(v) − w with f as described in section 2. We
assume that system (13) is in an oscillatory regime. The nullclines for a sigmoid-type
FHN model and a limit cycle corresponding to a chosen set of parameters are shown
in Figure 3.

The dynamics of system (13) depends on the value of λ, i.e., on the relative
position of the w nullcline with respect to the v nullcline. For the FHN-type equations
there exists a Hopf bifurcation point λH(ε) ≥ vm in a neighborhood of (vm, wm) which
converges to (vm, wm) as (ε, λ) → (0, 0) (see Appendix C and Figure 1). For values
of λ < vH system (13) has a steady state as the only attractor, and the system is
excitable [1, 3, 23, 24]; i.e., relatively small perturbations (but large enough to exceed a
threshold, a curve in phase space, determined by the v nullcline and the parameters of
the model) give rise to a large excursion that returns to the attractor. This trajectory
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Fig. 3. Nullclines and limit cycle for a sigmoid version of the FHN model where λ = v̄− vmin.
The values of the parameters are as in Figure 2 and (a) λ = 0.0375, (b) λ = 0.0585, (c) λ = 0.059,
(d) λ = 0.5.

is usually called an excitation loop, a pulse, or a spike. Subthreshold perturbations
return to the stable fixed point with no large excursion. At λ = λH(ε), system (13)
undergoes a supercritical Hopf bifurcation. As λ increases, the amplitude of the limit
cycle increases slowly for small enough values of λ, part of the trajectory being very
close to the unstable branch of the v nullcline for a while, then crossing the unstable
branch and moving toward the left branch of the v nullcline, as illustrated in Figure
3(a) and 3(b). At some critical point λc(ε) > λH(ε), the trajectory moves toward the
right branch of the activator nullcline instead of moving toward the left branch, and
the limit cycle expands rapidly (over an exponentially small interval in the parameter
λ) becoming a relaxation oscillator [1, 3, 25, 26], as seen in the transition from Figure
3(b) to 3(c). After that, the amplitude of the limit cycle either increases slowly or
remains constant as λ is increased, until the oscillator becomes like the one in Figure
3(d). By symmetry, when λ is near the maximum of w = f(v), the same effect is seen
in a small neighborhood of the Hopf bifurcation near λ = vM . In Figure 4 we can see
the amplitude of the limit cycle, given by the maximum and minimum values of v and
w (vmin, vmax, wmin, and wmax), as a function of λ for the sigmoid version of the FHN
equations (5). This rapid change from a “small” amplitude limit cycle to a “large”
amplitude limit cycle is known as the canard phenomenon [11, 12, 14, 15, 16, 27].
In this case the canard phenomenon has been induced by changes in λ. Here we
concentrate on the canard phenomenon near v = vm.
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Fig. 4. Amplitude of the limit cycle as a function of the crossing point between the activator
and inhibitor nullclines λ for a single cell FHN oscillator. The values of the parameters are as in
Figure 2. (a) v-amplitude (vmin and vmax), (b) w-amplitude (wmin and wmax).
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The canard phenomenon was discovered by Benoit et al. [14] for the VDP oscil-
lator. In their work [14] they show that there exists a critical value λc(ε) of λ such
that for λ in a small neighborhood of λc the limit cycle deforms into a curve similar
to the one shown in Figure 3(c). While Benoit et al. [14] used nonstandard analysis
techniques in their study, Eckhaus [12] and Baer and Emeux [13] used asymptotic
techniques. In particular they found expressions for the canard critical value λc for
VDP-type equations and for a generalization of system (13).

The canard phenomenon for (13) has been also studied by Dumortier and Rous-
sarie [11] and by Krupa and Szmolyan [15, 16]. We follow the latter authors in
our approach. In order to present their results, without loss of generality, we take
(vm, wm) = (0, 0). For (v, w) = 0 we assume that F (0) = 0, ∂F/∂v(0) = 0,
∂2F/∂v2(0) �= 0, i.e., (vm, wm) is a nondegenerate local minimum (fold point) of
the nullcline F (v, w) = 0 for λ in a suitable interval. Furthermore, ∂F/∂w(0) �= 0.
We also assume for (v, w, λ) = 0 that G(0) = 0, ∂G/∂v(0) �= 0, and ∂G/∂λ(0) �= 0.
These conditions defining a canard point (which will be referred to as canard condi-
tions) mean that the nullcline G(v, w, λ) = 0 is transverse to the nullcline F (v, w) = 0,
and it passes through the fold point with nonzero speed as λ varies. As pointed out
above, v̄ increases as λ increases (see Figure 1), allowing us to reparametrize λ such
that λ = v̄. For the VDP and FHN equations, these assumptions are satisfied with
an appropriate change of variables.

We show in Appendix B that

λc = Λ ε+ |Fw|Υ ε+ O(ε3/2),(14)

where

Υ =
Gv

2Fvv |Gλ|
(
Gv

Fvv

)
v

, Λ = − Gv

2F 3
vv |Gλ| (Gv Fvw Fvv +Gw F

2
vv ),(15)

and all the functions are calculated at 0. To obtain (14) we used an earlier result
by Krupa and Szmolyan [15]. There, the cubic-like function was assumed to have its
minimum at (0, 0).

For the VDP equations (3), Λ = 0 and Υ = −f ′′′(0) / 2 (f ′′(0))2 = 3/4, coinciding
with the expression found by Eckhaus [12]. For the classical FHN equations (4),
Λ = β / (2 f ′′(0) |gλ|) and Υ = −β f ′′′(0) / (2 (f ′′(0))3 |gλ|). The expression for the
canard critical value becomes

λc =
β

2 (f ′′(0))3 |gλ(0)| [ (f ′′(0))2−β f ′′′(0) ] ε+O(ε3/2) =
β ( 2 a2 + 3β h )

8 a3 |gλ(0)| ε+O(ε3/2).

(16)
For the general FHN-type equations with G(v, w;λ) = g(v;λ) − w,

λc =
g′(0)

2 (f ′′(0))3 |gλ(0)| [ (f ′′(0))2 − f ′′′(0) g′(0) + g′′(0) f ′′(0) ]ε+ O(ε3/2)

=
g′(0)

8 a3 |gλ(0)| [ 2 a2 + 3h g′(0) + a g′′(0) ]ε+ O(ε3/2).(17)

Note that if the minimum of the activator nullcline (vm, f(vm)) �= (0, 0), a translation
of coordinates may be performed without changing the values of the derivatives of f
and g.
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By construction, f in the MFHN model is a matching of two different functions.
The result is continuous but not differentiable at the origin. In order for the theory
described in this section to be applicable, F and G must be Ck-functions with k ≥ 3
(continuous at least up to the third derivative) [16]. In the analysis presented here we
consider functions f qualitatively similar to the MFHN function defined above, i.e.,
satisfying the canard conditions, but Ck with k ≥ 3. Our numerical simulations with
the MFHN function qualitatively agree with the analytical predictions.

5. Canard phenomenon induced by the global feedback parameter in
synchronized (bulk) oscillatory systems. In this section we study the influence
of the global feedback parameter γ on the amplitude regime (LAO or SAO) of the
solution for M = 1 (bulk or synchronized oscillations). In what follows, all functions
are calculated at 0. For M = 1, system (1) reads as

{
v′ = F (v, w) − γ w + γ w̄,
w′ = ε G(v, w;λ).

(18)

We assume that at γ = 0, λc = O(ε) such that λc �= O(εν), ν > 1, λ = O(ε) fixed,
and λ > λc; i.e., the system is in an LAO regime for γ = 0.

First we explain how to apply the theory developed in section 4 to system (18). In
the calculation of the canard critical value we use the fact that in a neighborhood of
(vm, f(vm)) = (0, 0) the v nullcline can be described by a parabolic function (see (48)
in Appendix A). Then, by our assumption λ = O(ε) (v̄ = O(ε)), it follows that γw̄ =
O(ε2). We can rescale the last term in the first equation in (18) by defining w̄ = κ ε2,
getting the following expression for the v nullcline: Φ(v, w, ε) := F (v, w)−γ w+γ κ ε2.
Note that κ is independent of v and that Φ(0, 0, 0) = 0 as required in [15].

Remark. When the activator nullcline Φ = 0 is ε-dependent, the canonical equa-
tions (48) are augmented by a term ε h6(v, w, ε) and the expression for the canard
critical value has an extra term proportional to h6,v [15].1 For (18) h6 = γ ε κ, so
h6,v = 0 and the expression for the canard critical value is not affected. The only
effect of γ on the canard critical value comes from the term −γ w in the first equation
in (18).

An expression for the canard critical value as a function of the global feedback
parameter γ can be calculated as in the calculation for γ = 0 (see Appendix B) to
obtain

λc(γ) = Λ ε+ ( |Fw| + γ ) Υ ε+ O(ε3/2) = λc(0) + γ Υ ε+ O(ε3/2).(19)

Expressions (19) and (15) imply that, by increasing the value of the global feedback
parameter, the value of the canard critical value is increased, provided

(
Gv

Fvv

)
v

> 0,(20)

since Gv and Fvv were assumed to be positive. So, if for γ = 0 we have λ > λc(0)
(the system is in an LAO regime), then the canard phenomenon can be induced by
increasing the value of γ without changing the value of λ. The change from LAO to
SAO takes place in an interval of values of γ exponentially small in ε.

We now compute γc, the amount that γ must be increased (in the limit as ε→ 0)
to induce the canard phenomenon, assuming that the system is in an LAO regime

1See the explanation after (53).
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when γ = 0. Taking into account the assumptions made at the beginning of this
section on λ and λc, the critical value γc(λ) of γ may be calculated as the value of γ
that brings λc(γ) to λ, i.e., by replacing γ by γc and λc by λ, respectively, in (19):

λ = λc(0) + γc(λ) Υ ε+ O(ε3/2).(21)

From (14)

|Fw|Υ ε = λc(0) − Λ ε+ O(ε3/2).(22)

Substituting (22) into (21), multiplied by |Fw|, we get

|Fw| [λ− λc(0) ] = γc [λc(0) − Λ ε ] + O(ε3/2).(23)

Note that in the FHN models |Fw| = O(1), which has been used in the error term in
(23). Rearranging terms and using (14), we get

γc(λ) = |Fw| λ− λc(0)

λc(0) − Λ ε
+ O

(
ε3/2

λc(0) − Λ ε

)
= |Fw| λ− λc(0)

λc(0) − Λ ε
+ O(ε1/2).(24)

For the VDP equations (3), Fw = −1 and G is independent of w so we have
Λ = 0. Thus from (19)

λc(γ) = λc(0) (1 + γ) + O(ε3/2),(25)

and

γc(λ) =
λ− λc(0)

λc(0)
+ O(ε1/2).(26)

Note that, since G is independent of w, the nullclines intersect at the same value λ
for all γ ≥ 0.

Using (19) and (24), the expressions for λc and γc for the FHN-type equations
with G(v, w;λ) = g(v;λ) − w are given by

λc(γ) = λc(0) +
γ g′(0)

2 f ′′(0) |g(λ)|
[
g′′(0) f ′′(0) − g′(0) f ′′′(0)

[f ′′(0)]2

]
ε+ O(ε3/2)(27)

and

γc(λ) =
λ− λc(0)

λc(0)

[
1 +

g′(0)

2 λc(0) f ′′(0) |gλ| ε
]

+ O(ε1/2).(28)

In both cases, as γ increases, the canard critical value moves to the right; then
there exists a critical value of the global feedback parameter, γc, such that for values
of γ below (above) γc, solutions display LAO (SAO).

As noted above, for the MFHN model used in our simulations, we do not have
an expression for the canard critical value as a function of the parameters of the
model and γ, but we conjecture on the basis of numerical simulations that the be-
havior is similar to the smooth case described before. The results of numerical sim-
ulations are shown in Figures 5 and 6. In Figure 5 we see the dependence of the
amplitude of the limit cycle (represented by the minimum and maximum values of
v and w) on γ for the MFHN model. We observe that for γ = γc (in this case γc ∼
0.429), there is a sudden change in both the v- and w-amplitudes of the limit cycle.
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Fig. 5. Amplitude of the limit cycle for the MFHN oscillator as a function of the global feedback
parameter γ. The values of the parameters are as in Figure 2.



A CANARD MECHANISM OF LOCALIZATION 2011

Fig. 6. Nullclines and phase plane for the MFHN oscillator for various values of γ. The
function f(v; γ) = (f(v) + γ w̄)/(1 + γ). The values of the parameters are as in Figure 2 and (a)
γ = 0, (b) γ = 0.428, (c) γ = 0.429, (d) γ = 1.

In Figure 6 we show the shape of the limit cycle for several values of γ above and be-
low γc. For γ = 0 (Figure 6(a)) the system is in a relaxation oscillation regime. As γ
increases, the limit cycle goes through the lower knee of the activator nullcline, comes
up along the unstable branch for a while, and then moves rapidly to the right branch
of the activator nullcline (Figure 6(b)) if γ < γc; if γ > γc, the trajectory crosses
the unstable branch and moves rapidly to the left branch of the activator nullcline
(Figure 6(c)).

Our numerical simulations show that bulk oscillations for the MFHN model are
100-stable for γ ≤ 0.39 and γ ≥ 25.0.

6. Localized solutions. In this section we analyze the existence of localized
solutions for a system of globally coupled FHN-type equations, i.e., equations (1)–(2),
where F (v, w) = f(v) − w. We deal here with the case M = 2; this can be easily
generalized to larger values of M . In a two-cluster localized solution, some of the
oscillators are in an SAO regime while the other oscillators are in an LAO regime.

By applying the reduction of dimensions described in section 3 we reduce the
system of N oscillators to a system of two oscillators. The activator nullcline for each
oscillator is given by (12) for k = 1, 2. The first term in (12) depends only on vk
and the second term is independent of (vk, wk) and is the only one depending on wj ,
j = 1, 2, j �= k. As explained in section 3, we can consider the second term in (12)
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as moving the nullcline, whose shape is given by the first term in (12), up and down.
We call λk,c(γ) and γk,c(λ) the canard critical value and the critical global feedback
parameter value, respectively, for k = 1, 2. Looking at each of the two oscillators
separately we can calculate the respective canard critical values as a function of γ and
the fraction of oscillators in each cluster, αk, following the same reasoning leading to
(19) and (24) in section 5, where γ is replaced by αk γ. This yields

λk,c(γ) = λc(0) + αk γ Υ ε+ O(ε3/2)(29)

and

γk,c(λ) =
1

αk

λ− λc(0)

λc(0) − Λ ε
+ O(ε1/2)(30)

for k = 1, 2. Thus, for a given γ, the larger αk the larger the canard critical point
for the kth oscillator and the smaller the corresponding γk,c, i.e., the less the global
feedback needed to get SAO. We can easily calculate

λ1,c(γ) − λ2,c(γ) = (α1 − α2) γ Υ ε+ O(ε3/2)(31)

and

γ2,c − γ1,c =
α1 − α2

α1 α2

λ− λ(0)

λc(0) − Λ ε
+ O(ε1/2).(32)

For the VDP equations, the value of λk(t) (see section 3 for the definition of this
quantity) does not depend either on k or on t. Let us refer to it as λ. In this case,
expression (31) implies that if α1 �= α2, then we can find values of the global feedback
parameter γ for which λ has a value between λ1,c and λ2,c, thus producing a localized
solution. As we can see from (31) and (32) the interval of values of λ and γ for which
we can expect a localized solution increases with the difference between the fractions
of oscillators in the two clusters. Since λk(t) is independent of k and t, localization
in the VDP model is a consequence only of nonsymmetric self-inhibition, i.e., not a
consequence of the forcing that the oscillators exert on one another. Note that the
cluster with the larger αk is the one in the SAO regime, as seen in experiments and
simulations on the BZ reaction with global feedback. (In the latter case the LAO
regime consisted of two phase locked clusters.) The shape, frequency, and amplitude
of each limit cycle (considered separately) in the localized solutions depend, in ways
that are not yet fully understood, on γ, on the size of the other oscillator, and possibly
on other quantities.

For the FHN-type equations self-inhibition creates intervals of critical values of λ
and γ given by (31) and (32), respectively. In contrast to the VDP equations, when
γ > 0, λk(t) (see section 3 for the definition of this quantity) depends on both k
and t. The forcing exerted on each oscillator by the other one changes the value of
λk(t). Thus there are two effects we must consider in understanding how localized
solutions arise: self-inhibition and external inhibition or forcing. How external forcing
interacts with localization is not yet understood. However, our simulations for the
MFHN model show that localization is present as expected and that the numerically
determined interval γ2,c − γ1,c in which there is localization increases as α1 − α2

increases. In Figure 7 we show the amplitude of the solutions to the MFHN system
with M = 2 as a function of the global feedback parameter γ for different values
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Fig. 7. Amplitude of the limit cycle for 2 globally coupled (M = 2) MFHN oscillators as a
function of the global feedback parameter γ and for different values of the fraction of oscillators
in each cluster. The parameters are as in Figure 2 and (a) α1 = 0.5, v-amplitude, (b) α1 = 0.5,
w-amplitude, (c) α1 = 0.6, v-amplitude, (d) α1 = 0.7, v-amplitude, (e) α1 = 0.8, v-amplitude, (f)
α1 = 0.9, v-amplitude.

of αk, k = 1, 2. The amplitude of the oscillatory solutions for vk is represented as
the minimum and maximum values vk,min and vk,max, respectively. In Table 1 we
present numerical approximations of γ1,c and γ2,c for different values of α1 and α2.
For α1 = 0.6, 0.7, and 0.8 we found that the localized solutions corresponding to a
subset of values of γ included in (γ1,c, γ2,c) are 100-stable.
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Table 1
Localized solution for the MFHN model. Values of the canard critical values γc,1 and γc,2 as

a function of the fraction of oscillators in each cluster. The values of the parameters are as in
Figure 2 with M = 2. The intervals of 100-stability, I, are (i) I = 1.01 for α1 = 0.6, (ii) I = 0.6
for α1 = 0.7 and I = 0.05 for α1 = 0.8. For α1 = 0.9 100-stable localized solutions were not found.

α1 α2 γc,1 γc,2

0.5 0.5 1.47 1.47
0.6 0.4 1.01 2.40
0.7 0.3 0.77 4.85
0.8 0.2 0.6 8.64
0.9 0.1 0.5 9.53

The analysis presented in this section can be generalized for larger values of M ,
in which case we will have two regimes (LAO and SAO), but in each of the regimes
we can have different amplitudes or phases for different clusters.

7. Discussion. In this paper we analyze the mechanism of localization of oscilla-
tions for a globally coupled system of relaxation oscillators of FHN type. In addition
to localization, these models display the basic features of the modified Oregonator
models studied in [6] and [5] to reproduce the experimental results: shape of the null-
clines, a limit cycle created in a supercritical Hopf bifurcation, and display of canards
among others.

Although the present study is motivated by the BZ reaction, a spatially extended
system, experimental evidence suggests that the phenomena studied here, the mech-
anism of localization or creation of localized clusters, does not depend on diffusion
[4, 28]. Based on the results of the simulations presented in [6] and simulations per-
formed by the authors and not presented here, we conjecture that the diffusion plays
an important role in spatially grouping together oscillators belonging to the same
cluster.

We analyzed the canard phenomenon induced by the global feedback parameter
γ for bulk oscillations (M = 1), obtaining an expression for the canard critical value
λc and the critical global feedback parameter γc as functions of the parameters of the
models considered. We showed that, by increasing the value of the global feedback
parameter, the canard phenomenon is induced for a critical value γc; i.e., as γ passes
γc the system rapidly changes from an LAO regime to an SAO regime due to self-
inhibition. Our numerical stability calculations show that this limit cycle need not
be 100-stable in a neighborhood of γc; e.g., for values of γ close enough to γc, bulk
oscillations lose stability, generating other patterns, among them localized structures.
The idea of induction of the canard phenomenon by changing γ is a key to the analysis
of localization.

We used the idea of self-inhibition to partially explain the two-cluster localization
phenomenon (M = 2) for a system of FHN-type equations. We applied the reduction
of dimension via clusters, and we analyzed each of the two oscillators separately,
considering each as a forcing exerted on the other. By writing the equations for
the nullclines of each oscillator, we saw that their dynamics can be understood as
a combination of two phenomena: self-inhibition of each oscillator and inhibition
(forcing) exerted on each oscillator by the remaining ones. Self-inhibition creates
intervals of critical values of λ and γ given by (31) and (32), respectively. The forcing
exerted on each oscillator by the other one changes the values of λk(t). We did not
analyze the effect of the forcing exerted on each oscillator by the remaining one, but
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we studied this effect numerically, showing that the main features of localization are
present; i.e., the larger cluster is in an SAO regime, and the larger the size difference
between two clusters the larger the interval of values of γ for which the system has
a localized solution, which is 100-stable. Our analysis reveals that for the VDP
equations, localization is produced by self-inhibition alone. For systems that are not
of FHN type (e.g., the BZ equations [6]), the analysis becomes more complicated.

In experiments on the BZ reaction with global inhibitory feedback [4, 5] as well
as in simulations using an Oregonator model [5] and another BZ model [6], localized
structures consisted of three clusters, the largest cluster in an SAO regime and two
smaller phase-locked clusters in an LAO regime. The mechanism we propose here for
FHN-type models does not deal with the multiple clusters in LAO regimes but does
explain the counterintuitive inverse relation between amplitude regime and cluster
size and sheds light on the role of self-inhibition in the phenomenon of localization.

We conjecture that a similar mechanism is responsible for localization in a mod-
ified Oregonator model for the BZ reaction [6] that we study in a forthcoming paper,
as well as in the Oregonator model [5]. The canard phenomenon for a single two-
dimensional Oregonator model has been studied in [29], although in this case the
Hopf bifurcation taking place in a neighborhood of the minimum of the activator
nullcline may be subcritical instead of supercritical; then SAO are not possible for
a single oscillator, though they might be possible in a globally coupled system. Our
preliminary analysis shows that global feedback changes the stability type of the Hopf
bifurcation point, thus allowing for SAO.

Appendix A. Calculation of the canonical form. The first step in calculat-
ing the canard critical value for system (13) is to transform it into its canonical form.
We assume (vm, wm) = 0.

We first expand the right-hand sides in both equations in (13) in Taylor series:

{
F (v, w) = −b w + a v2 +H1(v, w),
G(v, w, λ) = e v − c λ+ d w +H2(v, w, λ),

(33)

where

a =
1

2

∂2F

∂v2
(0), b =

∣∣∣∣∂F∂w (0)

∣∣∣∣ ,(34)

c =

∣∣∣∣∂G∂λ (0)

∣∣∣∣ , d =
∂G

∂w
(0), e =

∂G

∂v
(0),(35)

H1(v, w) =
∂2F

∂vw
(0) v w +

1

6

∂3F

∂v3
(0) v3 + O(w2, v2w, vw2, w3),(36)

H2(v, w, λ) =
1

2

∂2G

∂v2
(0) v2 +

∂2G

∂vλ
(0) v λ+ O(w2, λ2, v w,wλ).(37)

In (34) and (36) 0 = (0, 0), whereas in (35) and (37) 0 = (0, 0, 0).
Next, we substitute (33) into (13), getting

{
v′ = −b w + a v2 +H1(v, w),
w′ = ε [ e v − c λ+ d w +H2(v, w, λ) ].

(38)
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Finally, we rescale system (38) by defining

V = e1/2b1/2a−1, W = e a−1, L = e3/2b1/2a−1c−1, T = e−1/2b−1/2,(39)

v̂ =
v

V
, ŵ =

w

W
, λ̂ =

λ

L
, t̂ =

t

T
,(40)

Ĥ1(v̂, ŵ) =
T

V
H1(V v̂,W ŵ)

= T W
∂2F

∂v̂ŵ
(0) v̂ ŵ +

1

6
T V 2 ∂

3F

∂v̂3
(0) v̂3 + O(ŵ2, v̂2ŵ, v̂ŵ2, ŵ3)

= ŵ

[
T W

∂2F

∂v̂ŵ
(0) v̂ + O(ŵ)

]
+ v̂2

[
1

6
T V 2 ∂

3F

∂v̂3
(0) v̂ + O(ŵ)

]
,(41)

and

Ĥ2(v̂, ŵ, λ̂) =
T

W
H2(V v̂,W ŵ, L λ̂)

=
T V 2

2W

∂2G

∂v̂2
(0) v̂2 +

T V L

W

∂2G

∂v̂λ̂
(0) v̂ λ̂+ O(ŵ2, λ̂2, v̂ ŵ, ŵλ̂)

= v̂

[
T V 2

2W

∂2G

∂v̂2
(0) v̂ + O(ŵ)

]
+ λ̂

[
T V L

W

∂2G

∂v̂λ̂
(0) v̂ + O(ŵ, λ̂)

]
(42)

and substituting (39)–(42) into (38). Calling

h1(v̂, ŵ) = −T W ∂
2F

∂v̂ŵ
(0) v̂ + O(ŵ) = b−1/2 e1/2 a−1 ∂

2F

∂v̂ ŵ
(0) v̂ + O(ŵ),(43)

h2(v̂, ŵ) =
1

6
T V 2 ∂

3F

∂v̂3
(0) v̂ + O(ŵ) =

1

6
e1/2 b1/2 a−2 ∂

3F

∂v̂3
(0) v̂ + O(ŵ),(44)

h3(v̂, ŵ, λ̂) =
T V 2

2W

∂2G

∂v̂2
(0) v̂ + O(ŵ) =

1

2
e−1/2 b1/2 a−1 ∂

2G

∂v̂2
(0) v̂ + O(ŵ),(45)

h4(v̂, ŵ, λ̂) = −T V L
W

∂2G

∂v̂λ̂
(0) v̂ + O(ŵ, λ̂)(46)

= −e1/2 a−1 b1/2 c−1 ∂
2G

∂v̂λ̂
(0) v̂ + O(ŵ, λ̂),

h5(v̂, ŵ, λ̂) = d T + O(v̂, ŵ, λ̂) = d e−1/2 b−1/2 + O(v̂, ŵ, λ̂),(47)
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rearranging terms we get the canonical form

{
v̂′ = −ŵ + v̂2 − ŵ h1(v̂, ŵ) + v̂2 h2(v̂, ŵ),

ŵ′ = ε [ v̂ − λ̂+ v̂ h3(v̂, ŵ, λ̂) − λ̂ h4(v̂, ŵ, λ̂) + ŵ h5(v̂, ŵ, λ̂) ].
(48)

Note that in (48) the sign ′ represents d/d t̂.

Appendix B. Calculation of the canard critical value. In [16] an expression

for λ̂c was found:

λ̂c =
−a1 + 3 a2 − 2 a3 + 2 a5

8
ε+ O(ε3/2),(49)

where

a1 =
∂h1

∂v̂
, a2 =

∂h2

∂v̂
, a3 =

∂h4

∂v̂
, a5 = h5.(50)

Substituting (34), (35), and (43)–(47) into (50), we get

a1 = −2 G
1/2
v Fvw

|Fw|1/2 Fvv , a2 =
2 G

1/2
v |Fw|1/2 Fvvv

3 F 2
vv

,(51)

a3 =
|Fw|1/2 Gvv

G
1/2
v Fvv

, a5 =
Gw

G
1/2
v |Fw|1/2

,(52)

where all the functions are calculated at 0. The corresponding expression for λc = L λ̂c
is

λc(
√
ε) = −g

3/2
v |Fw|1/2
4 Fvv |Gλ| [−a1 + 3 a2 − 2 a3 + 2 a5] ε+ O(ε3/2)

= − Gv

2F 3
vv |Gλ| [Gv Fvw Fvv +Gv |Fw|Fvvv(53)

− |Fw|Gvv Fvv +Gw F
2
vv ] ε+ O(ε3/2),

where all the functions are calculated at 0.
If F were not independent of ε, then we would need to add a term ε h6 in (48).

This would produce an additional O(ε) term, proportional to dh6/dv, in the expression
for λc [15].

Appendix C. Equilibrium point and Hopf bifurcation. Here we present
a result by Krupa and Szmolyan [15]. Based on the calculations from appendices A
and B, we apply it to system (1) and the examples presented in section 2.

Consider system (1) with γ = 0 and (vk, wk) replaced by (v, w). Call

A = −a1 + 3 a2 − 2 a3 − 2 a5.(54)

Assume the following:
(i) The critical manifold {(v, w) : F (v, w) = 0} can be written in the form w =

f(v), and the function f is cubic-like, i.e., it has precisely two critical points, one
nondegenerate minimum and one nondegenerate maximum, each of which satisfies
∂2F/∂v2(p) �= 0 and ∂F/∂w(p) �= 0. Without loss of generality, the minimum of f
can be taken as (0, 0).
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(ii) For ε = 0 the left and right branches of the critical manifold F (v, w) = 0 are
attracting and the central branch is repelling.

(iii) For λ = 0 the fold point (0, 0) is a nondegenerate canard point; i.e., it satisfies
∂G/∂v(0) �= 0 and ∂G/∂λ(0) �= 0.

(iv) When λ = 0, v′ < 0 for the slow flow on the right branch of f and v′ > 0 for
the slow flow on the central and left branches of f , including the point (0, 0).

Then there exist ε0 > 0 and λ0 > 0 such that, for each 0 < ε < ε0, |λ| < λ0, system
(1) with γ = 0 and (vk, wk) replaced by (v, w) has precisely one equilibrium point pe
in a neighborhood of the origin which converges to the canard point as (ε, λ) → (0, 0).
Moreover, there exists a curve

λH(
√
ε) = −a5

2
ε+ O(ε3/2)(55)

such that pe is stable (unstable) for λ < λH (λ > λH ). The equilibrium point pe
loses stability through a supercritical (subcritical) Hopf bifurcation if A > 0 (A < 0).

The proof is given in [15].
By substituting (51) and (52) into (54) we get

A =
2

|Fw|1/2 (Gv)1/2 (Fvv)2
[
Gv Fvv Fvw + |Fw|Gv Fvvv − |Fw|Gvv Fvv −Gw (Fvv)2

]
.

(56)

Note that for the FHN equations (examples (ii) and (iii) in section 2) the condition
for a supercritical Hopf bifurcation is equivalent to 3h gv +a gvv > 2 a2. In particular,
for the classical FHN equations (example (ii) in section 2) this becomes 3hβ > 2 a2.

By substituting the second equation in (52) into (55) we get

λH(
√
ε) = − Gw

2 (Gv)1/2 |Fw|1/2 ε+ O(ε3/2).(57)

Note that for the FHN equations λH(
√
ε) = 1 / (Gv)1/2ε+O(ε3/2), and for the classical

FHN equations λH(
√
ε) = 1 /β1/2ε+ O(ε3/2).
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