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ARTICLE

A cancer drug atlas enables synergistic targeting
of independent drug vulnerabilities
Ravi S. Narayan1,17, Piet Molenaar2,17,18, Jian Teng3,17, Fleur M. G. Cornelissen4, Irene Roelofs4, Renee Menezes5,

Rogier Dik1, Tonny Lagerweij 4, Yoran Broersma4, Naomi Petersen4,6, Jhon Alexander Marin Soto4,7,

Eelke Brands1, Philip van Kuiken4, Maria C. Lecca8, Kristiaan J. Lenos8, Sjors G. J. G. In ‘t Veld4,

Wessel van Wieringen9, Frederick F. Lang 10, Erik Sulman 11, Roel Verhaak 12, Brigitta G. Baumert 13,

Lucas J. A. Stalpers 14, Louis Vermeulen 8, Colin Watts 15, David Bailey 16, Ben J. Slotman 1,

Rogier Versteeg 2, David Noske4, Peter Sminia 1, Bakhos A. Tannous3, Tom Wurdinger4, Jan Koster2,19 &

Bart A. Westerman 4,19✉

Personalized cancer treatments using combinations of drugs with a synergistic effect is

attractive but proves to be highly challenging. Here we present an approach to uncover the

efficacy of drug combinations based on the analysis of mono-drug effects. For this we used

dose-response data from pharmacogenomic encyclopedias and represent these as a drug

atlas. The drug atlas represents the relations between drug effects and allows to identify

independent processes for which the tumor might be particularly vulnerable when attacked

by two drugs. Our approach enables the prediction of combination-therapy which can be

linked to tumor-driving mutations. By using this strategy, we can uncover potential effective

drug combinations on a pan-cancer scale. Predicted synergies are provided and have been

validated in glioblastoma, breast cancer, melanoma and leukemia mouse-models, resulting in

therapeutic synergy in 75% of the tested models. This indicates that we can accurately

predict effective drug combinations with translational value.
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P
ersonalized therapies against tumor-driving targets are
being used effectively in the clinic, but in many cases drug
resistance occurs giving rise to inevitable relapses1–7. Since

tumors are dependent on a limited number of molecular
mechanisms for their survival/proliferation, combination therapy
enables simultaneous targeting of these crucial mechanisms and is
expected to decrease therapy resistance8–12.

Many positive effects of drug combinations in the clinic are
reflective of the best response to either one of the two drugs13.
Therefore, combinations of drugs are commonly more effective
because each drug compensates for the drawback of the other
drug. Currently, only a fraction of these combinations provide
synergistic (i.e., more than additive) effects13. Therefore, the
identification of crucial mechanisms that lead to synergistic drug
effects is highly desirable. However, the identification of these
drug combinations has so far only been possible using an
empirical setting (i.e., high-throughput testing of all combinations
for each cell line), followed by identification of molecular features
such as genetic mutations and transcriptome, methylome, and
proteome genomic data to predict the therapy response
(reviewed14–16). This showed that synergy prediction is possi-
ble17, although with a limited overall probability and only
applicable on a defined lineage background. The recent pan-
cancer DREAM community effort of the Drug Combination
Prediction Challenge confirmed these previous findings on a pan-
cancer scale18.

Drug combination therapies where drugs work synergistically
are expected to be particularly useful for tumor types for which
chemotherapeutic and targeted approaches have failed or show
frequent cases of therapy resistance. Among these are Glio-
blastoma (GBM) but also triple-negative breast tumor patients19,
BRAF-driven melanoma20, and BCR-ABL-driven chronic mye-
loid leukemias21.

Given that not all possible drug combinations can be tested
onto each patient-specific mutation profile, a major challenge is
to orchestrate the most effective combination therapies to a large
range of genetic mutation profiles of patients. Here, we use an
approach to identify synergistic drug pairs based on a method
that we call the drug atlas. This method enables us to predict drug
vulnerabilities based on single drug-response data on a pan-
cancer scale and link this to personalized features. Our metho-
dology forms a generalizable strategy to identify personalized
multidrug therapies and enabled us to identify novel and unex-
pected combination therapies.

Results
A drug atlas allows visualization of complex synergistic drug
interactions. The number of possible effective combinations of
existing anticancer drugs is enormous and calls for a rational
approach to select the most potential combinations, also taking
into account the genetic background of the individual case. We
reasoned that relations between cancer processes can be reflected
by the relations between drug effects. Therefore, drug-response
data might guide us towards combination therapies that affect
tumor-driving processes simultaneously. Our approach is exem-
plified in Fig. 1a: if a cell line is sensitive to drug A and not to
drug B, or vice versa, then the underlying processes are appar-
ently working independently by showing exclusive vulnerabilities.
If a third cell line is, however, sensitive to both drug A and B, then
these independent processes can be targeted simultaneously and
form a co-vulnerability. We argued that we can use this concept
to identify commonly occurring co-vulnerabilities in cancer cell
lines, and when these are treated with the right combination
therapies, then more than additive (synergistic) drug effects can
be expected.

To determine which processes work independently, we
calculated the level of dissimilarity of single-drug effects over
many cell lines. For this, we used 60,000 previously published
drug dose–response curves obtained from the Sanger GDSC1000
and Novartis/Broad CCLE drug-encyclopedias (all sources,
including hyperlinks, are summarized in Supplementary Data 1).
The area under the curve from these data, representative for the
drug effect, was subsequently clustered using Ward or average
hierarchical clustering (details are provided in the Methods sec-
tion). Drugs that have similar responses over many cell lines will
end up in the same cluster while drugs that have dissimilar
responses over many cell lines will cluster relatively further away.
To visualize these cluster-distance relations, the cluster tree was
projected as a 2D Voronoi diagram which we call the drug atlas.
This drug atlas provides an intuitive overview of drug-effect
relations over many cell lines. The atlas method was validated in
parallel using world map coordinate relations (Supplementary
Fig. 1a, see also Supplementary Fig. 1b–d).

To investigate how drug combinations with a synergistic effect
relate to drug-effect similarities, we curated all published and peer
reviewed synergy data matching the cell line data that were used
to create the drug atlas. This resulted in identification of 483 drug
pairs that showed a synergistic effect in 156 cell lines
(Supplementary Data 2, references are given in the Supplementary
References). These synergistic interactions are visualized onto the
drug atlas by drawing a line between the respective drugs (Fig. 1b,
a more detailed view on drug targets22 is given in Supplementary
Fig. 1e). An example from the list of curated data is shown in
Fig. 1c.

Consistent with our concept, most synergistic drug interactions
span a large distance on the atlas, showing in qualitative way that
the corresponding drug pairs affect unrelated processes.

Drug distance, drug sensitivity, and targeted therapy correlate
to drug synergy. Based on our concept, we expect that inhibition
of unrelated processes will result in synergistic effects since they
represent independent survival mechanisms. To quantify this, we
calculated the level of dissimilarity of drug effects using the drug
distance. For this, we selected the GDSC (MGH) data22, which
showed the most consistent clustering (unlike the combined
MGH and GDSC1000 data, Supplementary Fig. 1f, see also
Haibe-Kains et al.23). As independent benchmark data, we used
the DREAM drug-synergy challenge data, consisting of
11,173 synergy measurements24. Drug effects were already clus-
tered to generate the drug atlas and were used to calculate the
cophenetic distances between the clusters. The larger the cophe-
netic distance, the more unrelated the drug effects and the higher
the drug distance is. As a reference, the drug distance of the full
spectrum of possible interactions between all drugs was used as
well as the distance within known pathways/gene ontologies25. In
agreement with our concept, the average drug distance of drug
pairs with synergistic effect significantly exceeded the average
overall drug distance Fig. 2a, P= 4 × 10−4), confirming our initial
hypothesis. Other distance models (average clustering) showed a
similar outcome (see Supplementary Fig. 2a). Similarly as we
determined the drug distance, we could calculate the target dis-
tance since every drug has a defined target22. For this, we used the
already clustered drugs and then calculated the cluster distance
based on the average of each target (since more drugs have the
same target). This also showed that target distances of drug
combinations with a synergistic effect commonly exceeded the
average target distance of all possible pairs for the GDSC data
(Fig. 2b, P= 4.5 × 10−15), which was confirmed for another
clustering method (Supplementary Fig. 2b) and for the DREAM
data (Fig. 2c) as well. The identified distance–synergy relationship
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was independent of the within-pathway versus between-pathway
distance25, supporting the concept that distance, whether within
or between known pathways, determines the chance of observing
synergy. Consistently, given that most (80%) possible interactions
occur between processes, synergies are mostly found between
processes (Fig. 2d; Supplementary Fig. 2c).

Since we identified synergistic drug pairs for cell lines that
are present in the GDSC data, we were able to match drug-
sensitivity data to the cell lines that showed synergy in that

particular case. From our model, we expect a higher sensitivity
in case synergy occurs. We therefore tested whether the
occurrence of synergy correlates to drug sensitivity. This
analysis indeed showed that the cell lines that show synergy
with particular drugs were significantly more sensitive to these
respective drugs than control cell lines from the matching
tumor type (Fig. 2e, Poverall= 1 × 10−4, Supplementary Fig. 2d,
P= 6 × 10−4). Similar results were obtained by using the
DREAM dataset (P < 1 × 10−4, Fig. 2f).

Cell Line Cosmic_ID Tissue Cancer-type Drug1 Drug2 Note Pubmed ID Reference Determined by

TCCSUP 687459 Bladder Bladder Genistein Camptothecin Synergy 23365634 Wang, PLoS One. 2013;8(1) T-test/histogram

RT112 909704 Bladder Bladder mapatumumab Epirubicin Synergy 25483927 Ahmed, Oncol Rep. 2015 Feb;33(2) isobolographic analysis

TCCSUP 687459 Bladder Bladder Azacytidine Cisplatin Synergy 18538698 Shang, Urology. 2008 Jun;71(6) isobolographic analysis

TCCSUP 687459 Bladder Bladder Dicoumarol Doxorubicin Synergy 19583730 Matsui, BJU Int. 2010 Feb;105(4) T-test/histogram

KU-19-19 907312 Bladder Bladder Camptothecin 5-fluorouracil Synergy 24156021 Ide, Cancer Med. 2013 Aug;2(4) Combination Index Chou and Talalay

J82 753566 Bladder Bladder Gemcitabine Pemetrexed Synergy 16868547 Mey, Br J Cancer. 2006 Aug 7;95(3) Combination Index Chou and Talalay

T-24 724812 Bladder Bladder Gemcitabine Pemetrexed Synergy 16868547 Mey, Br J Cancer. 2006 Aug 7;95(3) Combination Index Chou and Talalay

J82 753566 Bladder Bladder Gemcitabine Trichostatin A Synergy 21944112 Jeon, J Urol. 2011 Nov;186(5) isobolographic analysis

SW1710 909749 Bladder Bladder Gemcitabine Trichostatin A Synergy 21944112 Jeon, J Urol. 2011 Nov;186(5) isobolographic analysis

T-24 724812 Bladder Bladder Gemcitabine Trichostatin A Synergy 21944112 Jeon, J Urol. 2011 Nov;186(5) isobolographic analysis

BFTC-905 910926 Bladder Bladder Bortezomib Tubacin Synergy 24618845 Rosik, Cancer Biol Ther. 2014 Jun 1;15(6) T-test/histogram

RT-112 909704 Bladder Bladder Bortezomib Tubacin Synergy 24618845 Rosik, Cancer Biol Ther. 2014 Jun 1;15(6) T-test/histogram

T-24 724812 Bladder Bladder LY294002 Radiation Synergy 12788194 Gupta, Int J Radiat Oncol Biol Phys. 2003 Jul One-sided Wald statistic

TCCSUP 687459 Bladder Bladder Sunitinib Cisplatin Synergy 18534874 Sonpavde, Urol Oncol. 2009 Jul Combination Index (Harris 2004)

HT-1376 907066 Bladder Bladder Pazopanib Docetaxel Synergy 21529900 Li, Urology. 2011 Jul;78(1) Combination Index Chou and Talalay

J82 753566 Bladder Bladder Pazopanib Docetaxel Synergy 21529900 Li, Urology. 2011 Jul;78(1) Combination Index Chou and Talalay

RT4 687455 Bladder Bladder Pazopanib Docetaxel Synergy 21529900 Li, Urology. 2011 Jul;78(1) Combination Index Chou and Talalay

T-24 724812 Bladder Bladder Pazopanib Docetaxel Synergy 21529900 Li, Urology. 2011 Jul;78(1) Combination Index Chou and Talalay

T-24 724812 Bladder Bladder Anti-Fas MoAbn Doxorubicin Synergy 9070496 Mizutani, Cancer. 1997 Mar 15;79(6) isobolographic analysis

T-24 724812 Bladder Bladder Anti-FasmAb Cisplatin Synergy 9679929 Mizutani, J Urol. 1998 Aug;160(2) isobolographic analysis

T-24 724812 Bladder Bladder Anti-FasmAb Cisplatin Synergy 10425290 Mizutani, Oncol Rep. 1999 Sep isobolographic analysis

T-24 724812 Bladder Bladder Anti-Fas MoAbn Doxorubicin Synergy 9070496 Mizutani, Cancer. 1997 Mar 15;79(6) isobolographic analysis

T-24 724812 Bladder Bladder Anti-FasmAb 5FU Synergy 10425290 Mizutani, Oncol Rep. 1999 Sep isobolographic analysis

T-24 724812 Bladder Bladder Catechin NS398 Synergy 15546559 Farivar, Am J Surg. 2004 Nov;188(5) T-test/table

TCCSUP 687459 Bladder Bladder Catechin NS398 Synergy 15546559 Farivar, Am J Surg. 2004 Nov;188(5) T-test/table

HT-1376 907066 Bladder Bladder Lapatinib OSI-027 Synergy 24054871 Becker, Urol Oncol. 2014 Apr;32(3) Combination Index Chou and Talalay

T-24 724812 Bladder Bladder Lapatinib OSI-027 Synergy 24054871 Becker, Urol Oncol. 2014 Apr;32(3) Combination Index Chou and Talalay

UM-UC-3 724838 Bladder Bladder Lapatinib OSI-027 Synergy 24054871 Becker, Urol Oncol. 2014 Apr;32(3) Combination Index Chou and Talalay

TCCSUP 687459 Bladder Bladder Ciprofloxacin Doxorubicin Synergy 10414727 Kamat, Urology. 1999 Jul;54(1) T-test/histogram

T-24 724812 Bladder Bladder JTE-522 Cisplatin Synergy 15371874 Mizutani, J Urol. 2004 Oct;172(4 Pt 1) isobolographic analysis

HT-1197 907065 Bladder Bladder JTE-522 5-fluorouracil Synergy 12442003 Mizutani, J Urol. 2002 Dec;168(6) isobolographic analysis

T-24 724812 Bladder Bladder JTE-522 Cisplatin Synergy 15371874 Mizutani, J Urol. 2004 Oct;172(4 Pt 1) isobolographic analysis

HT-1197 907065 Bladder Bladder JTE-522 5FU Synergy 12442003 Mizutani, J Urol. 2002 Dec;168(6) isobolographic analysis

T-24 724812 Bladder Bladder JTE-522 5FU Synergy 12442003 Mizutani, J Urol. 2002 Dec;168(6) isobolographic analysis

T-24 724812 Bladder Bladder Meloxicam Sunitinib Synergy Arantes- Arantes-Rodrigues, 2013 Combination Index Chou and Talalay

T-24 724812 Bladder Bladder MF-tricyclic Lovastatin Synergy 12066226 Feleszko, Oncol Rep. 2002 Jul Combination Index Chou and Talalay

T-24 724812 Bladder Bladder MLN8237 Gemcitabine Synergy 23403633 Zhou, Clin Cancer Res. 2013 Apr 1;19(7) Combination Index Chou and Talalay

T-24 724812 Bladder Bladder MLN8237 Paclitaxel Synergy 23403633 Zhou, Clin Cancer Res. 2013 Apr 1;19(7) Combination Index Chou and Talalay

T-24 724812 Bladder Bladder Doxorubicin Verapamil Synergy 6433043 Simpson, J Urol. 1984 Sep;132(3) T-test/histogram

RT4 687455 Bladder Bladder Cisplatin Gemcitabine Synergy 20558835 Da, Exp Biol Med (Maywood). 2010 Jul;235(7) Combination Index Chou and Talalay

5637 687452 Bladder Bladder Cisplatin Sunitinib Synergy 24369536 Arantes, Biomed Res Int. 2013;2013 Combination Index Chou and Talalay

HT-1376 907066 Bladder Bladder Cisplatin Sunitinib Synergy 24369536 Arantes, Biomed Res Int. 2013;2013 Combination Index Chou and Talalay
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Since the cell lines used to build the drug atlas have been
characterized on a genetic level by Novartis/Broad CCLE and
Sanger GDSC1000 which is matched to drug-sensitivity profiles
(confirmed by others26,27; CCLE data is now fully available28), we
could analyze the role of mutations in relation to drug sensitivity
upon presence of synergy, which showed that high sensitivity
significantly corresponded to the presence of driver mutations,
both by direct targeting of the protein, linking our synergy model
to driver mutations (Fig. 2e, f, indicated by ‘targeted’). Also, when
cases of matched tumor drivers and their targeting drugs were
excluded, a significantly increased sensitivity was seen for
synergistic drugs (Fig. 2e, f, indicated by ‘non-targeted’). For
breast tumors, synergy with HER2-Neu/EGFR inhibitors

correlated significantly with HER2-Neu/EGFR-activating muta-
tions (P= 1 × 10−4, Fig. 3a).

Drug distance and sensitivity can predict synergy linked to
tumor-driving mutations. To independently provide evidence
for our hypothesis, we performed an independent drug-synergy
screen in GBM cell lines. For this, drugs were chosen to have a
high drug distance as well as a high sensitivity in GBM cell lines
(Supplementary Figs. 1d and 3a (showing sensitivity and distance,
respectively)). We tested a total of 30 different combinations
(Supplementary Data 1) onto 9 glioblastoma cell lines (which are
part of the GDSC dataset). Drugs were titrated up to an IC50
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Fig. 2 Synergistic drug pairs show a large distance on the drug atlas. a The cophenetic distance (to quantify the drug-effect-dissimilarity) between the

curated synergistic drug pairs was compared with distances between drugs in the same-ontology group or the distance between all drugs. The distance of

curated synergistic drug pairs significantly exceeds the average distance between all drugs as well as the same-ontology24 distance, which indicates that

most synergistic drug pairs have a relative large drug distance. To calculate the cophenetic distance, WARD.D2 clustering was used (dynamic window

shown on the right of the histogram). b Similar results were obtained when the distances between targets29 of the drugs were used. c When the

benchmark data of DREAM24 were analyzed, similar results were seen when the distances between targets of the drugs were used. d Histograms showing

that between-process interactions as seen in synergistic combinations match between-process interactions over all drug pairs, indicating that synergy

occurs both within as well as between processes and is not limited to between-process interactions. e According to our model, sensitivity for both drugs is

necessary for synergy to occur. Since we have used GDSC cell lines for our curation, we were able to match drug sensitivities to occurrence of synergy

which showed that a significant higher sensitivity is observed for synergistic drugs compared with the overall sensitivity for the corresponding drugs.

Sensitivities are normalized to 1 representing the average of all IC50s for a drug in a certain tissue. Overall sensitivity includes all known IC50 values for the

cases where synergy was observed. Targeted indicates that a targeted drug is used in a cell line that harbors the respective mutated target. Non-targeted

indicates that mutation-targeted drugs in a non-mutated or non-amplified context. f When the benchmark data of DREAM24 were analyzed, similar results

were seen when the sensitivities of the drugs were used. P-values a–f, Student's t test (one-sided). Error bars histograms, standard error; box-and-whiskers

plot, minimum, 25th percentile, median, 75th percentile, and maximum. Curated drug–drug distances synergistic drug pairs n= 81, all drug–drug distances:

n= 8515; within-pathway distances, n= 235; target–target synergistic pairs n= 193. Comparison between and within pathways for all versus synergistic

drug pairs: all within n= 495; all between n= 2746; synergy within n= 117; synergy between n= 363.
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(Supplementary Fig. 3b, Supplementary Data 3a), and the synergy
between drugs was determined by studying the combined drug
effect in a 6 × 6 matrix where each drug was titrated using a
twofold dilution in each step (Fig. 3b). The viability was measured
using CellTiter Glo 3D after 72 h of exposure to the drugs as
examined in triplicate experiments. Based on these viabilities, the
combination index was calculated using the median effect prin-
ciple by Chou and Tallalay29. A substantial number of tested
combinations showed synergy, i.e., up to 18 out of 30 pairs (60%)
showed synergy over multiple cell lines and 116 out of 270 drug
pairs (43%) showed synergy over all cell lines (i.e., having a
combination index less than 0.8). Based on the curated synergy
data, we could set a threshold that distinguishes synergistic drug
pairs from randomly chosen drug pairs. Around 8% of randomly
picked drug combinations meet these synergy criteria, indicating
that we have a strong enrichment over the background (Fig. 3c,
P < 1 × 10−5). The full list of determined combination therapies is
given in Supplementary Data 3b. Chou and Talalay Combination
Index synergy significantly correlated (P < 1 × 10−4) to other

synergy/additivity metrics (Loewe, BLISS or HSA method), see
Supplementary Fig. 3c and Supplementary Data 3c, where each
model interprets weak interactions differently (Supplementary
Fig. 3d). Improvement of the interpretation of synergy data could
become more robust by taking more complex interactions into
account according to Wicha et al.30).

We generated a synergy predictor based on the (1) the
individual drug sensitivities, (2) their target information, and (3)
the drug distance (see Methods and Code Availability). We
analyzed whether the sensitivity and drug distance contributed to
the predicted power which was the case for both data sources
(Fig. 3d). The predictive power of our model of this logistic
correlation model was analyzed using receiver operator curve
(ROC) analysis, which showed an area under the curve (AUC) of
0.858 (Fig. 3e). The best-ranking drug combinations predicted by
the model are provided in Supplementary Data 3d. When the
model was applied to the independent DREAM benchmark data,
the AUC was 0.735 showing that our model can be applied to
external data (Fig. 3e). Synergies were relatively more often
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Fig. 3 Synergistic drug pairs show a large distance on the drug atlas. a Occurrence of synergy with EGFR/HER2 inhibitors in breast tumor cell lines is

significantly linked to mutations of the EGFR or HER2 genes. b Example of a heatmap of a typical experimental result of our drug screen showing the

relative viability as a result of the titration of two drugs in different combinations. Synergy was calculated by the median effect principle by Chou and

Tallalay29. c A total of 30 preselected drug pairs were validated for synergistic efficacy in nine GBM cell lines. Drugs were chosen because these drugs

showed a high drug distance on the drug atlas (see Supplementary Fig. 3a) and because they individually show a high sensitivity (see Supplementary

Fig. 3b). The histogram shows the summary of the results of in vitro measurement of drug–drug synergy showing a significant enrichment over the

background. d Area under the curve analysis of the dose-responder curve shows that the distance as well as the sensitivity contribute to the predictive

power of the synergy prediction model for both tested datasets. d The synergy prediction model that we developed based on the previous data shows a

good performance by the receiver operator curve analysis. Model performance was tested through cross-validation of the curated data and on the

benchmark data of Menden et al.24 and quantified using the area under the curve. P-values a, c χ2 test. Error bars histograms, standard error; Fraction of

cell lines with EGFR/HER mutations (n= 35) is compared with wild-type cell lines (n= 43). The glioblastoma synergy screen was performed in triplicate

and showed n= 91 (synergy) versus n= 116 (no synergy) as compared with random pick n= 16 (synergy) versus n= 184 (non-synergy). All

dose–response effects were cross-validated numerous times. The prediction model was trained on 463 combinations, where the controls were taken

iteratively (n= 1000). For the in vitro validation of synergy, non-consistent results were repeated until consistent.
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observed in the literature and predicted for breast cancer and less
often observed and predicted for lung tumors (both P < 1 × 10−5;
Supplementary Fig. 3e).

Together, these analyses show a clear positive correlation
between drug distance and the occurrence of synergy between the
corresponding drugs. In addition, cell lines that show synergy are
commonly relatively sensitive to these drugs, especially in cases
where tumor-driver mutations are targeted. We were able to
generate a prediction model for the occurrence of synergy which
showed a good performance, also when applied to external
DREAM data. We could validate our model in a drug-synergy
screen showing a significant enrichment over the background.
These data support our hypothesis and link our concept to
personalized features.

The drug atlas enables identification of multi-drug synergy
in vitro. Multi-drug (>2) combinations are difficult to identify
given the enormous numbers of possible combinations of more
than two drugs. For example: for 600 FDA approved cancer drugs
there are 54 × 106 possible combinations of three drugs per cell
line/patient. We noticed that multiple identified synergy pairs
show connections on the drug atlas. In the cell lines U251, T98,
and U87-MG, connected triangles can be observed where each
pair of each axis has individually shown synergy between the
drugs Torin1, Erlotinib, and Docetaxel (Fig. 4a).

Given that sensitivity and distance predicts synergy, we argued
that dual synergies might predict synergies of multidrug
combinations. We therefore experimentally validated a potential
synergistic effect of Torin1, Erlotinib, and Docetaxel (Fig. 4b, all
data are shown in Supplementary Data 4). We calculated the
secondary synergy (see Methods), to make sure that each drug
contributed to the synergy. We tested a panel of 21 cell lines for
the putative synergy which resulted in a strong synergistic effect
overall with combination indexes up to 0.18 (strong synergy
shown by strong red color, cell line H4 and T98) leading to a loss
of viability below 10% of the control (greyscale in Fig. 4b, lower
panel of Supplementary Data 4). Glioma Sphere Cultures (GSC),
i.e., primary cultures that faithfully resemble GBM tumors in
their genetic and transcriptomic make-up, showed similar effects.
The effective potency of each drug was increased 8–16-fold in the
combination, and in some cases up to 64-fold (T98, U251). These
data show that we have identified a synergistic multidrug
combination where each drug enhances the effect of the other,
leading to a strong synergy (average combination index of 0.46)
with a severe loss of viability (average 92% reduction).

Since we argued that the effectiveness of dual synergy might be
predictive for the effectiveness of multi-drug synergy, we
therefore analyzed whether the magnitude of dual-therapy
synergies correlated to the occurrence of multi-drug synergy.
For all dual treatments, we correlated the corresponding dual
combination index to the independently obtained multi-drug
combination index. This clearly showed a significant correlation
between dual synergies and the multi-drug synergy (Pearson
correlation between 0.679 and 0.812, P < 1.4 × 10−3, Fig. 4c).
Therefore, our methodology might be used to identify more
multi-drug therapies based on dual-therapy effects.

Before we can apply the identified multidrug combination to a
mouse model, it might be useful to focus on clinically relevant
drugs for GBM patients, also taking toxicity and blood brain
barrier transfer into account. We therefore chose to test a new
panel of drugs that have overlapping targets with the previous set,
but have better blood brain barrier crossing potential. We selected
Osimertinib (Targrisso, AZD9291; targets EGFR), AZD2014
(MTOR1/2) and Docetaxel (Microtubules, molecular structures
are shown in Supplementary Fig. 4a) which, based on literature

research, can reach concentrations in the brain that match
effective in vitro conditions. When applied to a panel of cell lines/
primary cultures that previously showed a response to the
previous set of drugs, this led to strong synergies in vitro as
expected (Supplementary Fig. 4b). Together, by using our drug-
atlas approach, we are able to identify a drug synergy between
three drugs that would otherwise be difficult to achieve.

Drug atlas identified combinations show synergy in vivo. We
analyzed whether our prediction model to predict synergy can be
validated in relevant orthotopic mouse models. We selected the
previously identified therapy of three drugs as well as the best-
ranking drug combinations (see highlighted pairs in Supple-
mentary Data 3d) for GBM, triple-negative breast cancer, mela-
noma, and leukemia models, and tested whether their respective
predicted drugs showed synergy in vivo. No obvious toxicity was
observed in these experiments (except for the triple combination,
see below).

The combination of three drugs (Osimertinib, AZD2014, and
Docetaxel) was tested in an U87-MG-FM (Fluc-Mcherry)
orthotopic glioblastoma model, which showed a clear synergistic
effect leading to 10–100 reduction of the tumor volume as
measured from the luciferase levels (Fig. 5a, RLU average,
combination index between 0.21 and 0.60) in vivo around days
14–18. The treatment resulted in a significant better survival (P=
0.04, Fig. 5f). All cross group significances are given in
Supplementary Data 5. Some mice (n= 3 out of 7) experienced
constipation due to toxicity of docetaxel with/without the other
drugs (Fig. 5a). Progression occurred after day 14, either because
the drugs were administered too shortly or because therapy
resistance occurred.

We subsequently applied a predicted combination in GBM
consisting of a combination of two drugs: the PI3K/MTOR/
microtubule inhibitor GNE-317 and docetaxel. This drug
combination came out of the logistic multiple regression model
as a top-ranking combination. GNE-317 has been shown to pass
the blood brain barrier31. When these drugs were co-adminis-
tered, a good synergy was observed (combination index between
0.56 and 0.80, Fig. 5b). The survival of the mice was significantly
better (P < 0.04, Fig. 5f).

We also applied a predicted combination in the triple-negative
breast cancer cell model MDA-MD-231-FM. We choose the
BRAF inhibitor AZD628 in combination with the nucleoside
analog Gemcitabine as top-ranking drug combination. After
orthotopic transplantation and start of the treatment, a strong
synergistic effect was seen (combination index between 0.08
and 0.11, Fig. 5c), resulting in a significant better survival (P < 1 ×
10−4, Fig. 5f).

We then tested a predicted combination for the Melanoma
model CHL1-FM. For this, we used the CDK4 inhibitor GCP-
082996 and the nucleoside analog Gemcitabine, again the top-
ranking drug combination. After orthotopic transplantation and
treatment, a clear synergistic effect was seen (combination index
between 0.62 and 0.68, Fig. 5d), resulting in a significant better
survival (P < 1 × 10−4, Fig. 5f).

We finally tested a predicted combination for the Leukemia
model BV-173-Gluc. Due to the metastatic nature of these
experiments, the cancer cells were tagged with soluble Gluc
which can be measured in the blood of the mice. We used the
BCR-ABL inhibitor Imatinib in combination with the BCR-
ABL inhibitor Dasatinib because this was the top-ranking drug
combination. After orthotopic transplantation and treatment a
synergistic effect was seen after 14 days (combination index
<0.25, Fig. 5e), resulting in a significant better survival (P < 1 ×
10−4, Fig. 5f). Synergy might, in this case, be driven by a
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combination of optimal on-target (BCR-ABL) and off-target
effects (Imatinib inhibits PDGFR and Dasatinib inhibits
Src32,33) of these drugs resulting in complementing polyphar-
macology. One more model showed a significant survival effect
as well as synergy of the combination (Supplementary Fig. 5a,
b, MDA-MD-231 triple-negative breast cancer model) and two
models showed a weak survival advantage without showing
significance synergy (HT-29 colorectal cancer model and NCI-
H460 non-small cell lung cancer model (see Supplementary
Fig. 5c, d).

Together, the outcome of these in vivo experiments confirm
the validity of our synergy prediction model in five independent
mouse models and indicate that the prediction model has a
translational value.

Discussion
Selections of combinations of drugs that optimally match per-
sonalized features are pivotal for an efficient therapy. Since the
number of possible combinations of drugs is enormous, we have
used a rational approach to identify synergistic drugs rather than
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a high-throughput drug-screen and biomarker-based approaches
that are common practice in the field12,17,24,34. In particular, a
long sought approach to discover multidrug (n > 3) synergies has
so far been lacking in the field given the practical difficulties in
experimental setup and capacity needed. Our drug atlas approach
enables to identify these multidrug combinations which could
increase therapy combination efficacy, reduce therapy resistance
and could aid in designing optimal polypharmacological (i.e.,
multi-targeted) therapies. We used single drug dose–response
data to construct the drug atlas. Since this drug atlas is based on
normalized drug sensitivities, it can be seen as a quantifiable
model of the relations between drugs. The validation of our
hypothesis that unrelated processes might be important for
occurrence of drug synergy came from curated synergistic
interactions among 156 human cancer cell lines. These drugs
were matched, when possible, to genetic mutations (i.e., onco-
genic drivers). This showed that both drug distance and the drug
sensitivity positively correlate to the occurrence of synergy.
Independent validation of our model by in vitro drug screening of
GBM cell lines confirmed our predictions. In addition, testing our
model on the DREAM synergy benchmark dataset, additionally
showed its value.

Both closely related as well as unrelated processes have been
considered accountable for drug synergies: they result from
intimate process connections (causing maximal target, pathway
or feedback inhibition35–39) to less related parallel pathway
connections that can cause synthetic lethal interactions36,40–42.
Gayvert et al.12 showed that synergistic combinations in mutant
BRAF cell lines had a trend toward lower correlation of sensi-
tivity over multiple cell lines, hence a drug-distance effect. Our
method, that is based on common exclusive effects of drugs, is
relevant for processes that are commonly only weakly con-
nected. When these processes are simultaneously active in
tumor cells, they offer a particular strong vulnerability given
their independence. Thus, this provides a way to move from an
already beneficial mutual exclusive action13 to an even more
beneficial synergistic mode of action. Our model therefore
complements previous findings and concepts and provides a
framework for understanding the relations of survival
mechanisms.

Based on our distance model, we could generate a drug-synergy
predictive model. As a proof of concept, we validated the
synergistic effect of five drug combinations in vivo for GBM,
triple-negative breast cancer, melanoma, and CML models in
mice. The identified combination of three drugs also resulted in a
synergistic response in vivo, resulting in a 10–100-fold reduction
in tumor size in vivo. The other models showed a similar per-
formance including an additional triple negative breast cancer
model. Together with a lung and colorectal cancer model that did
not show synergy, the success rate of synergy identification is six
out of eight cases (75%, P= 2.3 × 10−9 over an estimated 8%
background synergy).

A major obstacle for implementing combination treatment in
the clinic is the occurrence of synergistic toxicities. In many cases,
these toxicities are a result of additive toxicities because targets
are shared between the combined drugs37,43–45. Although we
noticed only minor toxicity during the in vivo experiments, the
combination of three drugs led to toxicity, probably through
epithelial damage of the colon. To enable to proceed with this
therapy, a scheduling strategy might important to reduce toxicity
without compromising the efficacy.

For both independent action as well as for synergistic inter-
actions of drug combinations, therapy resistance might occur.
This could be due to various compensation and independence
mechanisms that can occur on a cellular level46. Drug indepen-
dence and synergy do therefore not preclude therapy resistance
but when optimally aligned, stronger and more lasting effects of
drug combinations can be expected. In conclusion, by using
single-drug dose–response data we could predict combination
therapies and have found that independent (parallel) vulner-
abilities represent an important class of drug combination targets.
We have developed a method to identify these vulnerabilities
which enabled us to predict multidrug combinations which could
be validated in vivo with a high success rate. The atlas concept
provides an important insight in how to predict effective com-
bination therapies. Our method is scalable and forms a resource
for future translational validation of our results.

Methods
Molecular features of the cell lines and drug targets. Datasets used in this study
are described in Supplementary Data 1 and refer to Sanger GDSC cancer cell lines
(as well as Novartis/Broad CCLE data). For expression analysis, data of the Cosmic
consortium were used (Gene expression analysis of 789 cancer cell lines using the
Affymetrix HT- HG-U133A v2 platform, Source: EBI ID: E-MTAB-78322).

Generation of the drug atlas. Since drug dose–response datasets can be seen as
collections of n-dimensional vectors, the similarity between these nonzero vectors
(has at least one nonzero component) can be determined by calculating the cosine
alpha of the inner product space, or in other words, the angle the drug-response
vector for a specific drug has to all other drug-response vectors47,48. For all cal-
culations, the relation between drug dose–response data over all cell lines was
calculated as the cophenetic distance49,50. The cophenetic distance of two objects in
a cluster tree is the depth of the branches separating both objects, and is defined by
the following formula (Eq. (1)):

c ¼

P

i<j x i; jð Þ � �xð Þ t i; jð Þ ��tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i<j x i; jð Þ � �xð Þ2
h i

P

i<j t i; jð Þ ��tð Þ2
h i

r ;

ð1Þ

where C is the cophenetic correlation coefficient, which can be calculated from
x(i, j)= | Xi − Xj | , the ordinary Euclidean distance between the ith and jth
observations. t(i, j) is the dendrogrammatic distance between the model points Ti
and Tj. This distance is the height of the node at which these two points are first
joined together. �x is the average of the x(i, j), and �t is the average of the t(i, j) The
script is available at https://stat.ethz.ch/R-manual/R-devel/library/stats/html/
cophenetic.html.

AUC values of the GDSC Encyclopedia (MGH data only22, see also “Quality
control: dataset quality” below) were stored in sorted data vectors as 1-AUC per
cell line. The value of the AUC fluctuates between 0 and 1; zero reflecting the

Fig. 4 Identification and validation of a synergistic therapy of three drugs. a Plots showing a magnified part of drug atlas containing the dual synergy

results. The plots enable to identify putative triple-synergistic drug combinations by connecting effective dual synergistic combinations in this case leading

to identification of an Erlotinib, Torin1, and Docetaxel combination, which was validated in 21 cell lines. b Combination indexes of serial twofold dilutions of

the three drugs when administered as a dual (outer triangle) or triple combinations (inner triangle). Both serum grown classical cell lines as well as serum-

free cultured primary GBM cultures were analyzed. Synergy (shown in red) was calculated by the median effect principle29 by calculating the added effect

of the third drug on top of the effect of the first two drugs (secondary synergy, see Methods). For this, twofold dilutions that led to a IC50 effect were

performed, using drug concentrations of Erlotinib (2–20 µM), Torin (0.4 µM), and Docetaxel (6.3–25 nM) as start concentrations. Lower panels in grey

show relative viabilities after treatment with the three tested drugs. Drugs were diluted in a twofold manner and viability was assayed using CellTiter Glo

3D after 72 h. All data points were normalized to untreated controls. Experiments were performed in triplicate and repeated independently. Non-consistent

results were repeated until consistent. c The combination indexes of measured dual synergies were significantly predictive for triple synergy as shown for

21 experimentally tested cell lines. r value is the Pearson correlation. P-value: Pearson correlation P-value.
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highest response. The distance of drug A with respect to drug B was calculated
as 1 minus the similarity between the AUC data vectors. Dose–response data
were clustered using Ward.D2 or average clustering. Within-pathway
distances were calculated by using the ontology groups according My Cancer
Genome, see Supplementary Data 1 for sources. Drugs with known cross
reactivity over multiple pathways were excluded to calculate the within-pathway
distance.

To generate the drug atlas Vonoroi map, AUCs of GDSC-MGH dose–response
experiments were converted into cosine alpha vectors. This distance matrix of all
against all drugs was clustered using a hierarchical clustering algorithm with a
Euclidean distance metric and pairwise average linkage resulting in a cluster tree
separating the drugs based on their responses to drugs in different cell lines. This
binary cluster tree was subsequently drawn as a flattened map using an adapted
version of the Weighted Fast Voronoi Layout (WFVL) algorithm24. In a Voronoi
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diagram, a plane is divided in regions based on a set of sites on the plane. The
borders between the regions are drawn where the distances between two sites are
equal. This results in set of polygons. In a weighted Voronoi diagram, the distance
to a site is calculated according to the weight of a site. A centroidal Voronoi
diagram shifts sites to get an even distribution of sites over the plane by taking the
aspect ratios of the polygon sides into account. By recursively applying a weighted
centroidal Voronoi diagram to a cluster tree of data we can map this data structure
onto a plane (see also Supplementary Fig. 1a).

Since this is a non-deterministic algorithm thresholds need to be set to finalize
calculation. Furthermore, these calculations are computationally intensive, so
heuristics are needed to compute this in acceptable time. Most important heuristic
in the WFVL is the use of a “power diagram”; a transformation of the 2D plane to a
3D convex hull that enables fast calculation of the centroidals.

Additional heuristics that were used were developed in house and are described
in the pseudocode below:

1. Calculate branch grouping threshold based on percentage clusters formed at
tree depth d→ branch threshold b
Apply heuristics

2. Group if branch distance below threshold b
3. Identify early split of genes to be placed in corners based on similarity →

grouped clustertree Tg

4. Recursively layout branches: Apply weighted Fast Voronoi Layout (FVL) per
branch → approximate Voronoi map Va

5. Smoothen Va map by re-applying FVL while maintaining relative positions
→ evenly distributed Voronoi Map V

Thickness of borders between regions reflects the cutoff in the cluster tree (the
cophenetic distance); higher up results in a thicker border.

Quality control: dataset quality. Initially data of the combined pharmacogenomic
encyclopedias of the Genomics of Drug Sensitivity in Cancer (Sanger GDSC29)
consortia were used to generate the drug atlas, but the resulting clustering pattern
showed that the difference between the WTSI and MGH drugs within this dataset,
which had a more pronounced effect on the clustering than the actual
dose–response data itself23,51,52. GDSC100027 also clustered independently from
the WTSI and MGH data, probably because the coverage was much higher since all
cell lines versus drugs were measured. However, within this data, similar as for the
original GDSC (WTSI) data, there were stronger clustering differences observed
than for the GDSC (MGH) data. Given this bias, we selected the GDSC (MGH)
dataset which showed the most robust clustering (see Supplementary Fig. 1f).

Literature synergy data curation: in silico identification and visualization. In
order to obtain control data for our approach, we retrieved drug-synergy data from
the literature. A systematic literature search to identify all published synergy data
for all Sanger GDSC (MGH) cancer cell lines was performed to gain insight into
the usability of our drug atlas. Using GDSC (MGH) cell lines as a reference, we
used Boolean operators to generate a full list all known synergistic drug combi-
nations for these cell lines. For this, we used the following steps:

1. Pubmed was searched for <CCLE/GDSC cell line name> to check whether
the cell line is annotated at all (wild cards <*> were used to identify alternative
spelling of the cell line names).

2. If positive, pubmed was searched for < CCLE/GDSC cell line name >+
<synerg*> (the wild card * ensures that both synergy and synergistic are found).

3. For each positive case, the PDF manuscript was checked whether the cell line
(s) used was correct and which method was used to calculate drug–drug synergy.
The following methods were allowed (of which the first two cover 92% of the
cases):

Combination Index Chou and Talalay
isobologram analysis
t test (in histogram or table)
z-score>3
Bliss or Loewe synergy
Variants of the upper methods

Additive or antagonistic interactions were also recorded using the PubmedID.
4. In addition, Google scholar was searched for < CCLE/GDSC cell line name >

+ <synergy > ” using wild cards as above. When more than ~100 hits were found,
<methods to determine synergy (see point 3)> were added in the search term, and
the provided text was manually checked for correctness.

Only peer reviewed papers annotated in Pubmed were considered. No ligand
treatments were included. Papers mentioning synergy, but referring to biochemical
or biophysical interactions were excluded. References for all found synergies are
given in the Supplementary Referenes. Synergistic drug combination targets were
annotated onto the atlas for each tumor type either as drug relation or target
relation. Pairs of identified synergy pairs were visualized using Sankey diagrams
(http://sankeymatic.com/build/).

Synergy prediction model based on sensitivity, distance, and mutations. The
objective of the model is to predict drug synergy by using not only sensitivity data
of different cell lines to individual drugs but also the drug atlas distance. Predic-
tions with and without using the drug atlas distance were performed as to
demonstrate its added value. For the data preparation, each row in the data cor-
responds to values for one cell line and a pair of drugs. As such, there is a lot of
structure in the data, via the drug pairs. In addition to the distance between the two
drugs from the drug atlas, the data include individual drug-sensitivity value as well
as target information relating to each drug of the pair, where target information
indicates whether or not the drug targets a gene known to be affected/mutated in
the cell line at hand. Finally, it includes an indicator variable if the two drugs are
known to display synergy. Per drug pair and cell line, the objective function first
proposed (Eq. (2))

C �s�Sþ dD12 þ t
X2

i¼1
Ti

h i

; ð2Þ

where C is a binary variable indicating whether sensitivity information about the
cell line is available for at least one drug (C= 1) or not (C= 0), S is the average of
the sensitivities S1,S2 of the cell line for drugs 1 and 2, respectively, D12 is the
distance between the two drugs in the pair, and T1,T2 represent the value of the
targeted variable for drugs 1 and 2, relative to the cell line. Specifically, Ti is equal to
1 if the drug targets a gene known to be affected (e.g., mutated) in the cell line, and
0.01 otherwise. In the above, C,S1,S2,D12,T1,T2 are given, while s, d, t need to be
estimated. We minimized this function for all cell lines relating to the same tissue.

Optimization of the model. The objective being to predict whether or not two
drugs display synergy, we analyzed the logistic regression model with the synergy
indicator as response when the covariates consisting of (1) the individual drug
sensitivities, (2) their target information and (3) the drug distance, were taken
along, per cell line. Note that rows where drug-synergy information is left as 0 may
be unknown or no synergy. We know that the synergy variable θij depends on the
distance dij between the drug pair (i,j) on the drug atlas, and on the target infor-
mation tijk, which indicates if at least one of the drugs targets a gene mutated in the

Fig. 5 In vivo validation of predicted combination therapies. a In vivo luminescence monitoring after orthotopic transplantation of Fluc-mCherry-tagged

U87-GBM cells. Tumors were engrafted for 1 week and then treated with Osimertinib, AZD2014, and docetaxel (RLU median). Measurement of averages

of luciferase activity (RLU average) is shown after 14 and 18 days showing a synergistic response (combination index between 0.55 and 0.21). Note that

some toxicity was observed in docetaxel-treated mice. b Similar setup showing orthotopically transplanted Fluc-mCherry-tagged U87-GBM cells (median

of each group is shown) after treatment with the PI3K/mTOR inhibitor GNE-317, and the microtubule inhibitor Docetaxel, resulting in a synergistic

response (combination index between 0.56 and 0.80). c Measurement of luciferase activity in the triple-negative breast cancer cell model MDA-MD-231-

FM showing the median after treatment with the BRAF inhibitor AZD628 in combination with the nucleoside analog Gemcitabine, resulting in a strong

synergistic response (combination index between 0.06 and 0.11). d Measurement of luciferase activity in the orthotopically transplanted Melanoma model

CHL1-FM showing the median after treatment with the CDK4 inhibitor GCP-082996 and the nucleoside analog Gemcitabine resulting in a synergistic

response (combination index between 0.62 and 0.68). e In vivo luminescence measurement of tail vein-injected chronic myeloid leukemia (CML) BV-173-

Gluc cells. Due to the metastatic nature of the transplantation, the cancer cells were tagged with soluble Gluc which can be measured in the blood of the

mice, showing a synergistic decrease in luciferase activity when the combination therapy of the ABL inhibitor Imatinib together with the ABL inhibitor

Dasatinib was applied (combination index between 0.24 and 0.79). f Kaplan–Meier curves showing a better survival of mice treated with the combination

of drugs (see Supplementary Data 5). For all experiments, luciferase levels were normalized to levels of one week after injection. Toxicity monitoring

consisted of assessment of body weight, hematopoietic-, liver-, and brain toxicity. P-value: t test (one-sided) of the median survival. The number of mice

per group are shown in the figures.
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cell line k. We could write the synergy between the two drugs indexed by i,j as
(Eq. (3)):

θijk ¼
tijke

dij

1þ tijke
dij

; ð3Þ

which yields a positive correlation between the synergy θijk and the drug atlas
distance dij and that, if none of the drugs i,j targets a mutation of cell line k, the
synergy is close to zero. We can compute θijk per pair (i,j) for all available cell lines,
then average them out. This simplistic approach does not involve a logistic
regression. Alternatively, we can fit per tissue a logistic model (Eq. (4)):

logitðθijÞ ¼ αþ βtijk þ δdij þ eijk; ð4Þ

where now θij indicates synergy between drugs i and j irrespective of the cell line,
eijk represents a normally distributed error with mean 0 and variance σ2, and i ≠ j.

The above does not involve the individual drug sensitivities. These could be
included simply as covariates, as in (Eq. (5)):

logitðθijÞ ¼ αþ βtijk þ δdij þ γikSik þ γjkSjk þ eijk: ð5Þ

Note that the above do not make use of any model for the combined sensitivity,
which is not observed in this case.

Application. The idea is to fit the model to the cell lines for which synergy is
known. Note that there is no information if no synergy is also known. We will only
use the cell lines for which sensitivity is available for both drugs. At this point, the
other ones are not informative.

Logistic regression. The data contain an indicator variable Label that is 1 for cases
where the two drugs display synergy, and 0 otherwise. Per tissue, we fit a logistic
regression using all rows for which Label is 1, and then choosing at random the
same number of cell lines (observations) for that tissue for which Label is 0.

Testing covariates: drug targets. We compared four model fits. Model IA relates
only the target information (at least one drug targets the cell line modification) is
(Eq. (6)):

logitðθijÞ ¼ αþ βtijk þ eijk: ð6Þ

Testing covariates drug targets and distance. Model IB relates both target
information and the drug atlas distance (Eq. (7)):

logitðθijÞ ¼ αþ βtijk þ δdij þ eijk: ð7Þ

This model can be used to assess the added value of the distance by comparing
its results to those using model IA.

Testing covariates drug targets and sensitivity. The second pair of models
involves the target information, as well as the individual sensitivities of the cell line
to the drugs. Model IIA is (Eq. (8)):

logitðθijÞ ¼ αþ βtijk þ γikSik þ γjkSjk þ eijk: ð8Þ

Testing covariates drug targets, sensitivity, and distance. Finally, model IIB is
the same as model IIA, but also includes the drug atlas distance (Eq. (9)):

logitðθijÞ ¼ αþ βtijk þ δdij þ γikSik þ γjkSjk þ eijk: ð9Þ

This model can be used to assess the added value of the distance by comparing
its results to those using model IIA.

Correlations between drug sensitivity and synergy. To correlate the occurrence
of synergy with the drug sensitivity, we normalized the drug sensitivity per drug per
tissue type to correct for the tissue specific dynamic range. For this, sensitivity per
tissue type per drug was shifted to the normalized average value, which was set to 1
(average 2log IC50 concentration per tissue per drug). All sensitivities shown are
the delta 2log IC50 compared to the normalized value.

GBM cell lines and primary cultures. The glioblastoma cell lines used for this
study are listed in Supplementary Data 1. Cell lines were cultured in Dulbecco’s
Modified Eagle’s Medium (Gibco™, Life Technologies) supplemented with peni-
cillin/streptomycin (Gibco™, Life Technologies) and 10% fetal bovine serum
(Gibco™, Life Technologies) and maintained at 37 °C with 5% CO2 in a humi-
dified environment. Cells were grown strictly in the log phase between and during
experiments. Glioma Sphere Cultures (GSCs) were obtained from single patient
surgical specimens at MD Anderson (procedure is described in Bhat et al.53) or at
the Vrije Universiteit medical center (VUmc) Amsterdam. At the VUMC, tumors
were washed twice with phosphate-buffered saline (PBS) in a Petri dish. The
tumor was cut into small pieces and treated with Accutase, containing 5% sterile

filtered EDTA (0.5 M, [pH 8]) and 4.5% DNAse I (10 mg/ml diluted in Hanks’
balanced salt solution (HBSS), Roche Life Science). The tumor material was
incubated for 30 min at 37 °C, and dissociated every 10 min by pipetting up and
down. Next, the tumor material was passed through a 100-μm cell strainer to
obtain a near-single-cell suspension. The suspension was centrifuged for 5 min at
1000 rpm, and supernatant was discarded. To lyse erythrocytes, 1 ml of E-lysis
buffer was added and incubated for 5 min at 37 °C, followed by centrifugation for
5 min at 1000 rpm to remove the supernatant. Glioma Sphere Culture (GSC) cell
lines were grown in Neurobasal-A Medium (NBM; supplemented with 1× N-2
supplement, 1× B-27 supplement, 0.1% heparin, 20 ng/ml EGF, and 20 ng/ml
bFGF (Peprotech) and primocin (Gibco). The medium was refreshed at least once
a week including 20–50% old medium, depending on the growth rate of the
GSCs. Spheroids were dissociated with Accutase (PBS containing 0.5 mM
EDTA·4Na and 3 mg/L Phenol Red, Sigma-Aldrich) and kept up to a maximal
size to prevent occurrence of a necrotic core. Spheres were centrifuged for 5 min
at 200×g, and the supernatant was discarded. Spheroids were resuspended in
Accutase and incubated for 3–5 min at 37 °C, again centrifuged for 5 min at
200×g and afterwards plated in a flask.

Drug screens. Drug screens were performed using the following drugs of which
the drug itself or its target was previously shown to be active against glio-
blastoma: Gemcitabine54 (Selleckchem), Rapamycin55 (Sigma-Aldrich), Doc-
etaxel56 (Selleckchem), Erlotinib57 (Selleckchem), JNK inhibitor VIII58 (EMD
Millipore), Akt inhibitor VIII59,60 (Sigma-Aldrich), Crizotinib61 (LC labora-
tories), Torin162 (LC laboratories), Pac-163 (Sigma-Aldrich), Embelin59 (Sigma-
Aldrich), AZD648258 (Tocris Bioscience), AS60124564 (EMD Millipore). Drugs
were dissolved in DMSO.

Screen optimization. Plating density of cell lines was determined to obtain ~90%
confluency after 96 h. Cells were counted with Coulter Counter (Beckman
Coulter), and cells were seeded in hexplo in 96-wells plate with a density of 5000,
4000, 3000, 2000, or 1000 cells per well in 200 μl DMEM complete medium
(+10% FBS and 1% P/S). Cell viability was determined 96 h post seeding using
CellTiter-Glo® 3D (Promega) viability assay (which uses ATP quantification as a
readout for metabolically active cells). In total, 150 μl medium was removed
from the wells, where after 50 μl CellTiter-Glo® 3D was added. Luminescence
was captured at OD1, 400-ms integration time from Greiner 96 Flat Bottom
White Polystyrene (GRE96fw_chimney) plates. After 20–30 min of incubation,
the total lysates were transferred to white polystyrene 96-wells plates (Greiner),
and relative light units were determined by Infinite® 200 Microplate Reader with
a CONNECT plate stacker system (Tecan). Cell viability for these optimizations
was confirmed by the amount of attached growing cells and by Crystal Violet
staining. Cells were seeded as described previously and 96 h post seeding all
medium was removed by pipetting. The cells were fixated with 100 μl 3.7%
formaldehyde in PBS for 20 min and stained with 100 μl Crystal Violet solution
(0.1% Crystal Violet, dissolved in 25% Methanol) for 30 min. Subsequently, the
Crystal Violet was discarded, and the plates were rinsed with demi water and
tapped onto a dry tissue, until no dye appeared on the tissue. Plates were air
dried at room temperature for at least 4 h. Crystal Violet staining was dissolved
in 100 μl of 1% SDS in demi water, and after 5 min at shaking plate the OD was
determined in Tecan reader at 540 nm. Experiments were performed in tripli-
cate, and were independently confirmed in replicate experiments. Toxicity of the
chosen drug pairs was taken into account by using normal human astrocytes,
fibroblasts, and neural stem cells.

For plating of glioma organoid/sphere cultures, organoid/spheroids were
dissociated into single cells using Accutase as described above. Cell counting was
performed by using a coulter counter (Beckman, US). Per cell line, two rows (per
row six wells) of respectively 5.000 and 2.500 single cells diluted in 100 μl NBM
were plated in non-coated round-bottom 96-well plates, in triplicate. Formation of
multicellular organoids took 4 days; consequently day four was indicated as “Day
0”. For optimizations, every 2 days, growth was measured by determining the
spheroid volume (mm3) and by measuring the viability using CellTiter-Glo® 3D as
above. Cells were incubated for 30 min with CellTiter-Glo® 3D, and subsequently
luminescence was measured. Measurements were averaged, and ratios were
calculated by day X/day 0. Viability was measured on days 0, 2, and 4. To
determine drug toxicity for primary cultures from the VU Medical Center,
organoid cultures were generated using non-coated round-bottom 96-well plates in
a 6 × 9 matrix. One row was used as control, whereas the other eight rows were
used for drug titration in triplo (8 × 3). Per well, 3000 single cells in 100 μl NBM
were plated. After organoid formation, drugs were added. Drugs were diluted 1:2 in
NBM per row. Three days after addition of drugs cell viability was determined
using CellTiter-Glo® 3D, using the same procedure as described above. For
analysis, the average cell viability of the controls and the different drug
concentrations was determined. Next, the cell viability in percentages was
calculated (average cell viability drug concentration X/average cell viability
control*100). IC50 concentrations were determined using GraphPad software,
plotting nonlinear regression curves and defining the absolute IC50 concentration
or area under the curve (AUC) surface.
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IC50/AUC determinations. Inhibitory concentrations leading to 50% viability
(IC50) were determined before synergy testing was performed. Optimal seeding
densities and drug concentrations were determined by titration in 100 µl DMEM
complete medium according to a 6 × 8 format. Twenty-four hours after seeding,
100 µl of the diluted drug was added. Drugs were titrated from a high con-
centration down in a nine step, threefold dilution series (up to 20,000-fold dilu-
tion). IC50 (and area under the curve [AUC]) concentrations were determined
using Graphpad Prism software.

Drug–drug-synergy determination. Titrations to determine drug synergy were
done by plating cells in optimal densities in a 6 × 7 format in 96-wells plate in
100 µl DMEM complete medium. After 24 h, cells received treatments of 50 µl of
drug 1 and 50 µl of drug 2, which were serial diluted twofold diluted in each step,
resulting in a non-treated control and an additional five concentrations for each
drug, together forming a matrix of 36 different concentration ratios for both
drugs. For drug-synergy determination, drugs were titrated in a window where
the IC50 concentration was chosen as the highest concentration to prevent
stochastic (low cell density) and off-target artifacts. Absolute IC50s were used,
except in the case of Rapamycin where the relative IC50 was used (absolute IC50
was never reached). For AZD6482 and JNK inhibitor VIII, it was in some cases
not possible to determine the IC50. The negative control, that received no drug,
was replicated in sixfold to obtain a more balanced design of untreated versus
treated wells. Assays were performed at least in triplicate in 96-wells plates
(Nunc) for classical GBM cell lines or in low-adhesion plates when primary
cultures were used. Three days after, drug treatment cell viability was measured
using CellTiter-Glo®. Per 96-wells plate the average cell viability of each drug
condition in percentages was calculated using DMSO-treated cells as controls.
After data normalization, synergy calculations were performed (example shown
in Fig. 2i).

Multi-drug combinations. Drugs used for the multi-drug experiment were Erlo-
tinib, Torin1, and Docetaxel. Cells were plated as described for dual-drug com-
binations and 24 h post seeding 50 µl of drug 1 and 2 were added in a five times
twofold dilution series in two directions. In total, 18 × 96-wells plates were
necessary for one multi-drug experiment: 50 µl of third drug was added per set of
three plates in one concentration over the whole 6 × 7 format. In total, five con-
centrations of third drug were added, and DMSO-treated cells served as control.
For primary cultures, four round-bottom 96-well plates were used, 3.000 cells per
well were plated in a 6 × 9 matrix. After 4 days, drugs were added to the organoids/
spheroids. Per drug, three different concentrations were used (diluted 1:4 for,
respectively, Erlotinib and Torin1, 1:2 for Docetaxel). After 72 h of treatment,
200 µl medium was removed from the wells, after which 50 µl CellTiter-Glo® 3D
was added. Read-out methods and data calculations were performed as
described above.

Synergy calculation. Synergy was determined using the median effect principle
by Chou and Tallalay29. The combination index of an amount of n drugs was be
calculated by using an n-dimensional adapted formula, Eq. (10)).

CI n drugsð Þ ¼

Pn
k¼0

1
Vn

� �

� n�1
100

� �

1
V1::n

� � ; ð10Þ

where Vn is the normalized measured viability (in %) of each drug separately for
n drugs. V1..n is the actually measured viability (in %) of the combination of 1..n
drugs. A combination index lower than 0.8 is indicated as drug synergy, a
combination index of 1 is indicated as additive and a value higher than 1 is
indicated as drug antagonism. For each cell line, the combination index (mea-
sured synergistic effect, % cell viability) was determined and subsequently the
theoretical additive effect (% cell viability)—the effect of the drug combination
when the drugs in theory would not have worked synergistically—was calculated
to compare the measured synergistic effect with the theoretical additive effect.
Loewe65, Bliss66, and HSA (highest single agent) calculations of synergy were
performed using Combenefit67, software is available at the following website:
https://sourceforge.net/projects/combenefit/). Thresholds for synergy were
determined by linear interpolation using the combination index of 0.8 resulting
in the threshold for Loewe synergy at 7.8 and for Bliss additivity at 2.5.

Multi-drug experiments. For n= 3 drugs, synergy can be expressed either as the
sum of all three drugs (primary CI) as well as the effect of the n (third) drug on
top of n-1 (two) other drug combination; i.e., [DA+ DB] + [DC], [DB + DC] +
[DA], and [DA+ DC] + [DB] (secondary CI)68. The primary CI was used for all
double-synergy experiments and the in vivo experiments. The secondary CI was
used for all in vitro multi-drug experiments. To calculate the secondary com-
bination index, the combined effect of the first two drugs is taken as a single-
drug effect and the synergistic effect of the third drug is calculated on top of this

combination (Eq. (11)).

ð11Þ

Interassay reproducibility. For some synergy determinations, inter-experimental
reproducibility in the dose responses was observed. To solve this, the cultures were
strictly cultured under log-expanding conditions between and during experiments.
Experiments were repeated which resulted in proper window where the maximal
dose led to a 50% viability readout.

Statistics. All Statistical analyses were performed using Graphpad Prism 5 soft-
ware, except distance models (performed in R). The survival distributions were
estimated using Kaplan–Meier methodology using the log-rank test. To enable to
calculate the correlations between multiple drug sensitivities and the combination
index, the relative sensitivity for each drug was normalized over all tested cell lines
(n= 20) and expressed as 0 (most sensitive) to 1 (least sensitive). This enabled to
calculate the average sensitivity for two drugs for each cell line and to correlate
these values to the CIs.

Ethical approval and mouse housing. Studies were performed in accordance with
the European Community Council Directive (2010/63/EU) for laboratory animal
care and the Dutch Law on animal experimentation and when performed in a
facility at Massachusetts General Hospital accredited by the Association for the
Assessment and Accreditation of Laboratory Animal Care (AAALAC). Studies
were approved by the Animal Welfare Body (IVD) of the VU and VUMC (in
Amsterdam) and Institutional Animal Care and Use Committee (IACUC) in
Boston. All experiments meet ARRIVE guidelines69. Four to 6-week-old female
Athymic Nude-Foxn1nu mice were purchased from Harlan/Envigo, and used after
1 week of acclimatization. All animals were housed in one cage and kept under
filter top conditions, receiving ab libitum water and food.

In vivo efficacy testing. For the GBM model, U87-MG cells were orthotopically
injected into 8-week-old female Athymic Nude-Foxn1nu mice. Mice were anes-
thetized using isoflurane. The analgesic Temgesic was used at 0.1 mg/kg. In all, 0.3
mg/ml stock (Reckit Benckiser) was diluted 15×, and 50 µl was used per 10 g s.c. In
addition, paracetamol (Bayer 120 mg/5 ml) was added 8× diluted to drinking water
1 day before the procedure. Lidocaine (VUMC Apotheek 13G15-001A, 1000 mg
per 50 ml) was added to the skin surface. FM (Fluc-mCherry) tagged U87-GBM
cells (n= 400,000) were injected using 5 µl PBS. Cells were injected using a ste-
reotact injection device and injected in the striatum (0= bregma) lr −2, tn 0.5, tb
−3 mm. Injection speed was 2 µl per minute, followed by a 2 min lag time. One
week after tumor engraftment, mice were treated as described under the sub-acute
In vivo toxicity testing section. Luciferase activity was measured twice a week as
described before70. In case the mice had to be taken out of the experiment due to
tumor growth and/or weight loss, the last observation carried forward method was
used to compensate for the loss of information in each group (defined at rando-
mization). Progressive disease is defined as the last time point before disease
progression (i.e., weight loss).

For the GBM models, mice were divided into four groups and treated with:
vehicle (1% DMSO), Docetaxel (71; 5 mg/kg) and GNE-317 (40 mg/kg), and
Docetaxel in combination with GNE-317. Drugs were administered
intraperitoneally 4 days per week for 3 weeks. In the multidrug experiment, the
same conditions were used and for Osimertinib72, 12.5 mg/kg was given orally for
two weeks together with AZD201473 at 9 mg/kg, given intraperitoneally. Docetaxel
(5 mg/kg) was given intraperitoneally every other day, i.e., at days 1, 3, and 5 of
each of the 2 weeks. Drugs were given individually or in combination.

For the triple-negative breast cancer model, MDA-MB 231 cells (5 × 106) were
injected into the fat pad of 8-week-old female athymic mice. Briefly, animals were
restrained at upright position, and the needle was gently insert into the 4th
mammary fat pad proximal to the nipple, bevel up, and 2–4 mm under the skin.
When tumors were palpable, mice were divided into four groups, and treated with:
vehicle (1% DMSO), AZ628 10 mg/kg, Gemcitabine 50 mg/kg, and AZ628 in
combination with Gemcitabine. Drugs were administered intraperitoneally 4 days
per week for 3 weeks.

For the melanoma model, CHL-1 (5 × 106) cells were injected intradermally
into the rear flanks of 8-week-old female athymic mice in 50 μl of PBS mixed with
50 μl Matrigel (Corning, NY). When tumors were palpable, mice were divided into
four groups and treated with: vehicle (1% DMSO), CGP-082996 10 mg/kg,
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Gemcitabine 25 mg/kg, and CGP-082996 in combination with Gemcitabine. Drugs
were administered intraperitoneally 4 days per week for 3 weeks.

Bioluminescence imaging was performed using the Xenogen IVIS 200 Imaging
System (PerkinElmer, Waltham, MA). The system is composed of an imaging
chamber, gas anesthesia system which is connected to an oxygen cylinder and
isoflurane tank, and a highly sensitive cryogenically cooled charge-coupled device
camera. Fresh luciferin solution is prepared by dissolving D-luciferin powder (Gold
Biotech, St. Louis, MO) in PBS at 25 mg/mL. Mice were injected intraperitoneally
with 150 mg/kg body weight of luciferin and transferred into the image chamber.
Imaging was acquired 10 min post-luciferin injection, and the image intensity was
quantitated using the Living Image software 4.3.1 from PerkinElmer.
Measurements of tumor size were also taken every 3 days using digital calipers, and
tumor volume was determined by the following formula: volume= (length ×
width × height) × 0.52.

For Leukemia model, 8-week-old nude mice were sub-lethally irradiated with
120 cGy 24 h before the intravenous (i.v.) injection of 3 × 106 BV-173 through the
tail vein. Mice were treated with: vehicle (1% DMSO), Imatinib 2 mg/kg, Dasatinib
2 mg/kg, and Imatinib in combination with Dasatinib. Drugs were administered
intravenously 4 days per week for 3 weeks. At indicated time points, 5 µL of blood
was withdrawn using a pipette Imaginib tip from a small incision at the tail tip of
conscious mice and immediately mixed with 1 μl of 20 mM EDTA. Gluc activity
was then measured using a plate luminometer (BioTek instruments, Vinouski, VT)
after injecting 100 µL of 100 µM coelenterazine and acquiring signal over 10 s.

Histopathological, hematological, and liver toxicity analysis. After completion
of the in vivo experiment (day 10), the brain, colon, and livers were fixed in 4%
formaldehyde/PBS for 24 h, dehydrated with alcohol, embedded in paraffin, and
tissues were then sliced into 4-μm-thick sections. Hematoxylin–eosin (H&E)
staining of the sections and histopathological analyses were performed by Prof.
Pieter Wesseling (department of Pathology, VUMC). Blood samples were collected
in nonheparinized EDTA-coated Eppendorf tubes, and complete blood counts
were determined with a COULTER® Ac·T diff™ Analyzer (Beckman Coulter,
Miami, FL, USA). Furthermore, blood smears were prepared and stained using a
May-Grünwald-Giesma protocol. Staining and the differential blood count (% of
each type of white blood cell) were performed by the VUMC, department of
hematology. The hematological parameters assessed were: hemoglobin con-
centration (HB), red blood cells (RBC), white blood cells WBC, and differential
leukocytes (neutrophils, lymphocytes, and monocytes). In case of suspected rela-
vance, liver toxicity was determined by measuring the liver enzymes Alanine
aminotransferase (ALAT) and Aspartate Aminotransferase (ASAT) in plasma
using an IFCC assay on the COBAS 8000 (Department of Clinical Chemistry, VU
Medical Center). Vendor reference values were obtained from Envigo. After the
animals were sacrificed, organ damages were analyzed. In the present studies, mice
tolerated the treatment with no significant toxicity, except for the therapy of three
drugs. We did not observe significant difference among the control and treatment
groups at the evaluated dose/time point.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All public sources used for the project are provided in Supplementary Data 1. All other
relevant data that support the results of this study are available from the corresponding
author upon reasonable request.

Code availability
Scripts are available through Github (https://github.com/bartwesterman/drug-atlas)
together with a demo that runs the code/software in example data (NatComm model.csv)
and typical run time. The script to create the Vonoroi diagrams is available upon
reasonable request.
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