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Abstract
In the past two decades, 7 coronaviruses have infected the human population, with two major outbreaks caused
by SARS-CoV and MERS-CoV in the year 2002 and 2012, respectively. Currently, the entire world is facing a
pandemic of another coronavirus, SARS-CoV-2, with a high fatality rate. The spike glycoprotein of SARS-CoV-2
mediates entry of virus into the host cell and is one of the most important antigenic determinants, making it a
potential candidate for a vaccine. In this study, we have computationally designed a multi-epitope vaccine using
spike glycoprotein of SARS-CoV-2. The overall quality of the candidate vaccine was validated in silico and
Molecular Dynamics Simulation con�rmed the stabilityof the designed vaccine. Docking studies revealed stable
interactions of the vaccine with Toll Like Receptors and MHC Receptors. Codon optimization was used to
optimize high expression of the vaccine in E.coli K-12 strain. In silico cloning suggested e�cient expression in
pET-28a (+) vector. The e�ciency of the candidate vaccine to trigger an effective immune response was assessed
by an in silico immune simulation. The computational analyses suggest that the designed multi-epitope vaccine
is structurally stable which can induce speci�c immune responses and thus, can be a potential vaccine candidate
against SARS-CoV-2.

Authors Tamalika Kar, Utkarsh Narsaria, Srijita Basak, and Debashrito Deb contributed equally to this work.

Introduction
Wuhan, a city in China, witnessed the outbreak of a febrile respiratory illness on 19th December 2019 due to the
coronavirus provisionally named as 2019-nCoV and later SARS- CoV–2 [1, 2]. The disease caused by coronavirus
was named as COVID–19 [1, 2]. Since then, the world is experiencing a grave situation of global public health
emergency due to the viral pandemic of severe febrile pneumonia like respiratory syndrome caused by the novel
coronavirus [2]. Coronaviruses are known to have caused three epidemics in the last two decades, namely
COVID–19 in 2019/20, Severe Acute Respiratory Syndrome (SARS) in 2002, and Middle East Respiratory
Syndrome (MERS) in 2012 [3]. As of April 15th 2020, total cases of SARS-CoV–2 con�rmed globally by World
Health Organization are 1,914,916 with 123,010 reported deaths
(https://www.who.int/emergencies/diseases/novel-coronavirus- 2019/situation-reports).

Human coronavirus (H-CoV) is a member of Coronaviridae family, a virus family characterized with the largest
RNA genome (26–32kb), among all of the viruses known till date [4–6]. A lipid envelope bilayer containing the
spike and membrane proteins surround positive stranded RNA genome of this virus [7]. The spike protein binds to
the host cell receptors and releases the viral genome into the host cell, thereby facilitating the viral replication [8].
Corona Viruses (CoVs) are mostly associated with respiratory illness and common cold [9], but can also cause
infections in Central Nervous System (CNS) [10]. To date, four genera of coronaviruses (α, β, γ, δ) have been
identi�ed [11]. Human coronaviruses (H-CoVs) belongs to α (HCoV–229E and NL63) and β (MERS-CoV, SARS-
CoV, HCoV- OC43, HCoV-HKU1 and SARS-CoV–2) genera of coronavirus, respectively [11].

In late December 2019, patients with Acute Respiratory Distress Syndrome (ARDS) along with cough, fever and
dyspnoea due to an unknown microbial infection were recorded in Wuhan, China [12]. Viral genome sequencing
of �ve pneumonia patients, hospitalized between 18th December and 29th December 2019, reported the presence
of a previously unknown β-CoV strain in all of the 5 hospitalized patients [12]. There was around 88% sequence
similarity between the novel β-CoV strain and two bat-derived severe acute respiratory syndromes (SARS)-like

http://www.who.int/emergencies/diseases/novel-coronavirus-
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coronaviruses namely, bat-SL-CoVZC45 and bat-SL- CoVZXC21, while MERS-CoV displayed a sequence identity
of about 50% with the novel β- CoV [12].

Coronavirus infection in humans is primarily guided by interactions between envelope anchored spike
glycoprotein (S-protein) of CoV and angiotensin converting enzyme 2 (ACE2) of the host cell receptor [13, 14]. The
viral RNA genome is released into the cytoplasm after the virus enters the cells and is then translated into two
polyproteins and structural proteins, after which the viral genome starts to replicate [11]. The S protein is
composed of two subunits, one subunit, S1, is the Receptor Binding Domain (RBD) and the other subunit, S2, is
responsible for the fusion of viral membrane and the host cellular membrane [15]. An overall 75% sequence
similarity was seen between SARS-CoV–2 and previously identi�ed SARS-CoV spike protein [16, 17] and it is also
reported, that the Coronavirus S protein is a major determinant of virus entry into host cells [3]. Hence, the spike
like glycoprotein is a potent choice for vaccine designing.

The conventional method of vaccine designing, involving the entire organisms or large proteins leads to
unnecessary antigenic load along with increased chances of allergenic responses [18]. This problem can be
overcome by peptide based vaccines comprising short immunogenic peptide fragments with the ability to elicit
strong and targeted immune responses, avoiding the chances of allergenic reactions [18]. Recent advancements
in computational biology have opened up new doors for designing effective vaccines in silico. [19–21]. In this
study, the in silico approach has been applied for attaining a multi-epitope vaccine against SARS-CoV–2 that
comprises epitopes of spike glycoprotein epitopes which induces the activation of cytotoxic T lymphocytes
(CTLs), helper T lymphocytes (HTLs) and interferon-γ (IFN-γ) (Fig. 1).

Results

Sequence retrieval and Phylogenetic analysis
The spike glycoprotein sequence of SARS-CoV-2 was retrieved from PDB (6VSB). Phylogenetic analysis showed
that the glycoprotein variants of SARS-CoV-2 clustered together in a single clade, having the most common
ancestry with SARS-CoV and MERS- CoV (Fig. 2). The variants of SARS-CoV-2 that clustered together had very
less branching, indicating low mutation rate. Hence, the vaccine designed against one strain can be used for all
the other strains of SARS-CoV-2. The phylogenetic analysis of all the glycoproteins of different strains of SARS-
CoV-2, isolated from different countries indicated that all the glycoproteins were closely related to one another
(Supplementary Fig. 1).

T cell epitope prediction
CTL epitopes were predicted using NetCTL1.2 and IEDB consensus methods whereas, HTL epitopes were
predicted using NetMHC II pan 3.2 server as shown in Table 1 and Table 2 (Supplementary Table 1 and 2). To
identify the best epitopes, the predicted epitopes were subjected to various immune �lters and those having high
binding a�nity to MHC class I and class II alleles were selected. The criteria for screening out the epitopes were:
they should be promiscuous, should be antigenic and should be immunogenic. The antigenicity of the epitopes
was predicted using VaxiJen v2.0 and immunogenicity was predicted using IEDB class I immunogenicity server.
The 3D structure of spike glycoprotein was modelled using I- TASSER and the epitopes considered for vaccine
construction were visualized on the same (Fig. 3).
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Table 1: CTL epitopes predicted using NetCTL 1.2 showing promiscuity. Epitopes with IC50 value<500nm were considered good binders towards specific alleles. VaxiJen v2.0 was used forpredicting antigenicity scores keeping a threshold of 0.4.   EPITOPES
   SUPERTYPE

  MHCCLASSIALLELE

  BINDING SCORE    IC50
   POSITON

  PREDICT IONSCORE
IMMUNOGENIC      SCORE

  ANTIGE NICSCORE
QIITTDNTF A24,A26,B58, B62 HLA-B*15:01 1.3 66.32 1113 0.7939 0.15816 0.4253HLA-A*32:01 1.7 472.54

YQPYRVVVL A2,A24,B8,B3 9,B62 HLA-B*15:01 1.2 131.99 505 0.8143 0.1409 0.5964HLA-A*02:06 1.615 99.74
   FTISVTTEI

   A2,A26,B58
HLA-A*68:02 0.2 3.05    718

   1.1808
   0.04473

   0.8535HLA-B*58:01 0.4 48.78HLA-A*02:06 0.6 8.29
HLA-A*26:01 0.615 481.17
HLA-A*02:01 0.8 25.37HLA-A*02:03 0.94 9.07

   YLQPRTFLL
   A2,B8,B39

HLA-A*02:01 0.3 5.36    269
   1.5152

   0.1305
   0.4532HLA-A*02:06 0.96 16.55

HLA-B*08:01 1.0 147.76HLA-A*02:03 1.005 15.24
HLA-A*24:02 1.115 406.74
HLA-A*23:01 1.275 278.62

HSAWSHPQF A1A24,B39,B58,B62 HLA-B*58:01 0.5 17.5 1257 0.8279 0.0279 0.8569HLA-B*35:01 1.5 287.84  STQDLFLPF   A1,A26,A24,B 62 HLA-A*32:01 0.2 17.27   50   1.0468   0.06828   0.6619HLA-B*15:01 0.3 13.32
HLA-A*26:01 0.46 437.88
HLA-A*23:01 1.415 394.77

   WTAGAAAYY
   A1,A26,B58,B 62

HLA-A*26:01 0.11 11.63    258
   3.1128

   0.15259
   0.6306HLA-A*30:02 0.115 16.16HLA-A*01:01 0.17 12.27HLA-A*68:01 1.185 30.13HLA-B*35:01 1.2 66.67HLA-B*15:01 1.6 132.2

Table 2: HTL epitopes showing promiscuity, as predicted using NetMHC II pan 3.2 server.VaxiJen v2.0 was used for predicting antigenicity scores keeping a threshold of 0.4
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EPITOPES POSTION ALLELE SCORE ANTIGENIC SCORE
    

INITRFQTLLALHRS

    
233

DRB1*01:01 1.00     
0.418

DRB1*04:01 0.80DRB1*04:05 0.25DRB1*08:02 1.60DRB1*11:01 0.60DRB1*12:01 0.90DRB1*15:01 0.30DRB4*01:01 0.50DPA1*02:01-DPB1*05:01 0.40DPA1*02:01-DPB1*14:01 0.70DRB5*01:01 0.12      GINITRFQTLLALHR

      232

DRB1*01:01 1.60       0.5582

DRB4*01:01 0.50DRB5*01:01 0.30DPA1*03:01-DPB1*04:02 2.00DPA1*02:01-DPB1*05:01 0.50DPA1*02:01-DPB1*14:01 1.00DPA1*02:01-DPB1*01:01 1.60DRB1*04:01 1.00DRB1*04:05 0.25DRB1*11:01 1.30DRB1*12:01 0.80DRB1*15:01 0.25   GWTFGAGAALQIPFA
   885

DRB1*01:01 2.00    0.4665DRB1*09:01 0.20DQA1*03:01-DQB1*03:02 0.60DQA1*04:01-DQB1*04:02 0.40DQA1*01:02-DQB1*06:02 0.60DQA1*05:01-DQB1*03:01 0.10   IRAAEIRASANLAAT
   1013

DRB1*04:01 1.40    0.6785DRB1*08:02 1.20DRB1*13:02 1.90DPA1*02:01-DPB1*14:01 0.80DQA1*01:02-DQB1*06:02 0.30DQA1*05:01-DQB1*03:01 1.00   AAEIRASANLAATKM
   1015

DRB1*04:01 0.70    0.7125DRB1*08:02 0.70DRB1*13:01 1.10DPA1*02:01-DPB1*14:01 0.50DQA1*01:02-DQB1*06:02 1.30DRB3*02:02 1.10   WTFGAGAALQIPFAM
   886

DRB1*09:01 0.40    0.6670DQA1*03:01-DQB1*03:02 0.80DQA1*04:01-DQB1*04:02 0.50DQA1*01:02-DQB1*06:02 0.50DQA1*05:01-DQB1*03:01 0.17   QPYRVVVLSFELLHA
   506

DPA1*02:01-DPB1*01:01 0.70    0.9109DPA1*01:03-DPB1*04:01 1.10DPA1*03:01-DPB1*04:02 0.50DPA1*02:01-DPB1*05:01 0.80DPA1*01:03-DPB1*02:01 1.10   PYRVVVLSFELLHAP
   507

DPA1*02:01-DPB1*01:01 0.80    0.8161DPA1*01:03-DPB1*02:01 1.30DPA1*03:01-DPB1*04:02 0.60DPA1*02:01-DPB1*05:01 0.80DPA1*01:03-DPB1*04:01 1.30

Multi epitope vaccine construct, Structural Modeling,
Re�nement and Validation
The main criteria used for designing the linear vaccine construct were: 1. it should contain overlapping HTL and
CTL epitopes (Supplementary Table 3), 2. It must be immunogenic, antigenic, but not an allergen, 3. It should
have high a�nity to HLA alleles and should be promiscuous. On basis of these parameters, a linear vaccine was
constructed including 7 CTL, 8 HTL and 3 IFN-γ (Table 1, Table 2 and Supplementary Table 4) epitopes joined by
GPGPG linkers. Cholera Toxin B (CTB) adjuvant was attached to the N-terminal of the construct via EAAAK linker
(Fig. 4A). The �nal vaccine construct consisted of 422 amino acids with a molecular weight of 44.15 kDa. The 3D
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models of the vaccine were generated using trRosetta server (Fig. 4B). Amongst the predicted models, the best
model was chosen that had a Z-score of -8.1 and it was within the range of scores of comparable size
proteins [22] (Fig. 4D). Ramachandran plot analysis showed 96.4%, 2.9% and 0.7% residues in favoured, allowed
and outlier regions, respectively which further veri�ed the overall quality of the vaccine construct (Fig. 4E). The
ERRAT of the re�ned structure revealed an overall score of 74.2947 (Fig. 4C).

Physicochemical properties of the vaccine construct
The multi-epitope vaccine construct was found to be immunogenic as predicted by IEDB class I immunogenicity
tool with a score of 6.65414. VaxiJen v2.0 con�rmed the antigenicity of the vaccine with a score of 0.5107.
Allergenicity was checked and it was found to be non- allergen as predicted by AllerTOP and AllergenFP web
servers. Other physicochemical properties were evaluated using ExPASy (Supplementary Material 1), which
revealed the theoretical pI and aliphatic index of the vaccine to be 9.96 and 78.74, respectively. The estimated
half-life of the vaccine as predicted by ExPASy is 30 hours in mammalian reticulocytes, >20 hours in yeast and
>10 hours in Escherichia coli. The Grand average hydropathicity (GRAVY) is -0.088, which supports the polar
nature of the candidate vaccine. The instability index of candidate was found to be 31.04, indicating the protein
to be a stable one. Since the designed candidate construct does not contain any transmembrane helices, no
expression di�culties are anticipated in the production of vaccine (Supplementary Figure S3). Also, the absence
of signal peptides in the vaccine construct signi�es prevention of protein localization (Supplementary Figure S2).

B cell epitope prediction
The linear/continuous and conformational/discontinuous B cell epitopes were predicted by the ElliPro server
using default parameters (Table 3 and Table 4). The visualisation of B cell epitopes in the �nal vaccine construct
was done using PyMOL (The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.) (Supplementary
Figure S4).

Table 3: Conformational/ Discontinuous B cell epitopes in the multi-epitope vaccine, predictedby ElliPro server. DISCONTINUOUS EPITOPES SCORER(334), KMGPGPGTRFAS(361-372), YAWNRK(374-379), ISGPGPGGINITRFQTLLAL(381-400), RGPGPGINI(402-410), RFQTLLAL(412-419), RS(421-422) 0.766M(1), DLCAEYHNTQIH(8-19), FSYTESLAGKREMAII(26-41), F(43),NGATFQVEVPGSQHIDSQKKAIERMKDTLRIA(45-76), LT(78-79), AKVEKLCV(81-88), NNK(90-92), PHAIAA(94-99),SM(101-102)   0.752HAGPGPGPY(261-269), AGPGPGW(302-308) 0.647L(114), YYGPGPGYL(131-139), GPGPGF(161-166), DNTFGPGPGHS(185-195), S(198) 0.608FAMGPGPGIRA(320-330) 0.601LPFGPGPGWT(116-125), W(197), FGPGPG(202-207) 0.579ATGPGPGAAE(341-350) 0.522
 

Table 4: Linear/ continuous B cell epitopes in the Vaccine construct, predicted by ElliPro server.
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LINEAR EPITOPES POSITION SCOREFSYTESLAGKREMAII 26 0.824AWNRKRISGPGPGGINITRFQTLLALHRGPGPGINITRFQTLLALHRS 375 0.81GATFQVEVPGSQHIDSQKKAIERMKDTLRIAYLTEAKVEKLCVWNNKTPHAIAAIS M 46 0.745HAGPGPGPY 261 0.731KMGPGPGTRFA 361 0.721DLCAEYHNTQIH 8 0.718FGPGPGWT 118 0.666YYGPGPGYL 131 0.655FAMGPGPGIR 320 0.618TFGPGPGHSAWSHPQFGPGP 187 0.602AGPGPG 302 0.561ATGPGPGAA 341 0.546GPGPG 161 0.543HRGPGPG 221 0.526
  
Population Coverage
The selected epitopes showed a total world population coverage of 95.78% (Table 5). In addition, the epitopes
showed 97.47%, 97.26%, 84.84%, 87.66% and 90.77% coverage in Europe, United States, China, South Asia and
Oceania, respectively (Table 5) (Supplementary Figure S5). The results suggest that the designed multi-epitope
vaccine can be used to tackle SARS-CoV-2 globally.

Table 5: Population coverage of the selected epitopes of the vaccine construct, as predicted byIEDB server. Population/area Coverage Average hit pc90World 95.78 4.29 1.78Europe 97.47 4.69 2.14United States 97.26 4.69 2.14China 84.84 3.17 0.66South Asia 87.66 3.1 0.81Oceania 90.77 2.79 1.04

Molecular Docking Analysis- Docking of the vaccine with TLR4
HADDOCK clustered 33 structures in 7 cluster(s), which represents 16.5% of the water re�ned HADDOCK
generated models. The top cluster with the lowest HADDOCK score is the most reliable cluster of all. A
representative model of the top cluster was subjected to further re�nement using HADDOCK re�nement server,
where 20 structures were clustered into one cluster, resulting in 100% of the water re�ned models generated by
HADDOCK. The statistics of the re�ned model are presented in the Table 6, and the structural analysis of the
re�ned model is shown in Supplementary Figure S7. The predicted interaction of the amino acids and a detailed
overview of the molecular docking are given in Supplementary Material 2 and Supplementary Figure S8,
respectively. Also, Ramachandran plot analysis was carried out for structural validation of the docked complex
(Supplementary Figure S6). The docked complex along with the some prominent hydrogen bonds is shown in
Figure 5.

Table 6: Table showing statistics of best refined docked TLR4/MD2 and vaccine complex.Smaller HADDOCK score represents strong protein interaction which is expressed in arbitraryunits (a.u).
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Vaccine-TLR4HADDOCK score (a.u) -130.9 +/- 10.1Cluster size 20RMSD from the overall lowest-energy structure (Å) 0.3 +/- 0.2Van der Waals energy (kcal mol-1) -72.4 +/- 1.3Electrostatic energy ( kcal mol-1) -238.9 +/- 12.2Desolvation energy ( kcal mol-1) -10.9 +/- 13.2Restraints violation energy ( kcal mol-1) 1.1 +/- 0.44
Buried Surface Area (Å2) 2204.4 +/- 22.4

Docking of vaccine with TLR2
HADDOCK clustered 80 structures in 11 cluster (s), which represents 40.0% of the water re�ned HADDOCK
generated models. The structure with the lowest HADDOCK score was chosen as the top cluster. A representative
model of the top cluster was subjected to further re�nement using HADDOCK re�nement server, where 20
structures were clustered into one cluster, resulting in 100% of the water re�ned models generated by HADDOCK.
The statistics of the re�ned model are presented in the Table 7, and the structural analysis of the re�ned model is
shown in Supplementary Figure S10. The predicted interaction of the amino acids and a detailed overview of the
molecular docking are given in Supplementary Material 3 and Supplementary Figure S11, respectively. Also,
Ramachandran plot analysis was carried out for structural validation of the docked complex (Supplementary
Figure S9). The docked complex along with the some prominent hydrogen bonds is shown in Figure 6.

Table 7: Table showing statistics of best refined docked TLR2 and vaccine complex. SmallerHADDOCK score represents strong protein interaction which is expressed in arbitrary units(a.u). 
Vaccine-TLR2HADDOCK score (a.u) -112.0 +/- 2.8

Cluster size 20
RMSD from the overall lowest-energy structure (Å) 0.3 +/- 0.2

Van der Waals energy (kcal mol-1) -73.2 +/- 5.2
Electrostatic energy ( kcal mol-1) -319.7 +/- 32.7Desolvation energy ( kcal mol-1) 25.1 +/- 4.3

Restraints violation energy ( kcal mol-1) 0.0 +/- 0.00
Buried Surface Area (Å2) 2094.7 +/- 24.1

 

Docking of vaccine with MHC class I receptor
HADDOCK clustered 120 structures in 12 cluster(s), which represents 60.0% of the water re�ned HADDOCK
generated models. The structure with the lowest HADDOCK score was chosen as the top cluster. A representative
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model of the top cluster was subjected to further re�nement using HADDOCK re�nement server, where 20
structures were clustered into one cluster, resulting in 100% of the water re�ned models generated by HADDOCK.
The statistics of the re�ned model are presented in the Table 8, and the structural analysis of the re�ned model is
shown in Supplementary Figure S13.The predicted interaction of the amino acids and a detailed overview of the
molecular docking are given in Supplementary Material 4 and Supplementary Figure S14, respectively. Also,
Ramachandran plot analysis was carried out for structural validation of the docked complex (Supplementary
Figure S12). The docked complex along with the some prominent hydrogen bonds is shown in Figure 7.

Table 8: Table showing statistics of best refined docked MHC class I and vaccine complex.Smaller HADDOCK score represents strong protein interaction which is expressed in arbitraryunits (a.u).
Vaccine-MHC IHADDOCK score (a.u) -214.7 +/- 4.1Cluster size 20RMSD from the overall lowest-energy structure (Å) 0.3 +/- 0.2

Van der Waals energy (kcal mol-1) -138.5 +/- 2.2Electrostatic energy ( kcal mol-1) -156.3 +/- 16.9Desolvation energy ( kcal mol-1) -45.0 +/- 5.8Restraints violation energy ( kcal mol-1) 0.0 +/- 0.00Buried Surface Area (Å2) 3585.9 +/- 60.3

 

Docking of vaccine with MHC class II receptor
HADDOCK clustered 64 structures in 9 cluster (s), which represents 32% of the water re�ned HADDOCK generated
models. The structure with the lowest HADDOCK score was chosen as the top cluster. A representative model of
the top cluster was subjected to further re�nement using HADDOCK re�nement server, where 20 structures were
clustered into one cluster, resulting 100% of the water re�ned HADDOCK generated models. The statistics of the
re�ned model are presented in the Table 9, and the structural analysis of the re�ned model is shown in
Supplementary Figure S16. The predicted interaction of the amino acids and a detailed overview of the molecular
docking are given in Supplementary Material 5 and Supplementary Figure S17, respectively. Also, Ramachandran
plot analysis was carried out for structural validation of the docked complex (Supplementary Figure S15). The
docked complex along with the some prominent hydrogen bonds is shown in Figure 8.

Table 9: Table showing statistics of best refined docked MHC class II and vaccine complex.Smaller HADDOCK score represents strong protein interaction which is expressed in arbitraryunits (a.u). 
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Vaccine-MHC IIHADDOCK score (a.u) -212.1 +/- 2.2Cluster size 20RMSD from the overall lowest-energy structure (Å) 0.3 +/- 0.2
Van der Waals energy (kcal mol-1) -132.5 +/- 3.2
Electrostatic energy ( kcal mol-1) -394.9 +/- 42.3Desolvation energy ( kcal mol-1) -0.6 +/- 4.4Restraints violation energy ( kcal mol-1) 0.2 +/- 0.27Buried Surface Area (Å2) 4276.9 +/- 43.1

 

Binding A�nity Analysis 
The binding a�nity of the 4 docked complexes was analysed using PRODIGY web server. The results revealed
that all of the 4 dockings were energetically feasible, as indicated by the negative values of Gibbs free energy
(ΔG). The ΔG values for the vaccine-TLR4, vaccine- TLR2, vaccine-MHC class I and vaccine-MHC class II receptor
was found to be -10.3 kcal mol-1, -11.2 kcal mol-1, -13.5 kcal mol-1, -16.0 kcal mol-1, respectively (Table 10). The
dissociation constant (Kd) of the docked complexes are shown in Table 10.

Table 10: Binding affinities of the docked complexes of the vaccine with TLR4, TLR2, MHC Iand MHC II, as predicted by PRODIGY server.Complexes Gibbs Free Energy (kcal mol-1) Kd (M)Vaccine-TLR4 -10.3 5.3E-08Vaccine-TLR2 -11.2 1.3E-08Vaccine-MHC class I receptor -13.5 2.9E-10Vaccine-MHC class II receptor -16 5.0E-12
 
Energy minimization and Molecular Dynamics Simulation of the
vaccine construct
Energy minimization for the vaccine construct was conducted for 2262 steps where the force reached <1000kJ /
mol. The potential energy of the system was computed to be -3.0e+06 kJ/mol with a total drift of -3.8 x 105

kJ/mol and the average potential energy was -2.9e+06 kJ/mol. After 50,000 steps of NVT the average
temperature was 299.8K with a drift of 1.0K (Fig. 9D). The average density of the system computed was 1012.5
kg/m3 with a total drift of 1.3kg/m3 (Fig. 9B). The pressure of the system was found to be 1.6 bar with a total
drift of

4.2 bar (Fig. 9C). Trajectory analysis was performed after a simulation period of 10 ns. The plot for the radius of
gyration showed the compactness of the protein around its axes (Fig. 9A). A plot of RMSD backbone revealed
very mild �uctuations, indicating the stability of the vaccine over time (Fig. 9E). The high peaks in the RMSF plot
suggested a high degree of �exibility in the vaccine construct (Fig. 9F).
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Reverse translation, codon optimization and in silico cloning of
the vaccine
The codon optimization index (CAI) is 1.0 and GC content of the reverse translated vaccine is 58.53%. These
results support the pro�cient expression of the designed vaccine in E. coli strain K-12 host. The cDNA obtained
after reverse translation of the designed multi-epitope vaccine was inserted into pET-28a (+) vector for restriction
cloning (Figure 10).

Immune simulation
The in silico immune response generate by the C-IMMSIM immune server is shown in Figure 11. The secondary
and tertiary responses generated by the simulation were signi�cantly higher when compared to the primary
response. The secondary and tertiary responses revealed a decrease in the antigenic concentration with normal
high levels of immunoglobulin activity (i.e., IgG1+IgG2, IgM, and IgG+IgM antibodies). In addition, multiple long
lasting B cell isotypes were found, suggesting possible isotype switching potentials and memory formation (Fig.
11 panel A ii, Supplementary Figure S18). The TH (helper) and TC (cytotoxic) cell populations also showed a
similar higher response with the pre activation of TCs during vaccination (Fig. 11 panel Aiv and panel Aiii)
(Supplementary Figure S17 F and S17 B). The NK (natural killer) and dendritic cell activity was found to be
consistent along with higher macrophage activity (Supplementary Figure S18) demonstrated during the exposure
(Fig. 11 panel Av). The generation of a good immune response was supported by the high levels of IFN-γ and IL-2
elicited in the simulation. After the vaccination, an injection of a “live-replicating virus” was simulated at around
day 366 in order to check the e�cacy of the vaccine. The antigen graph (Fig. 11 panel Ai) shows that after the
vaccination, when a live replicating virus is injected, the antigenic surge is virtually absent, indicating an effective
immune response mainly due to the protective action of high concentration of speci�c antibodies. This outcome
should be compared with a control simulation that was also performed consisting of an injection of the live virus
after 1 year, without prior vaccination. In this case, results indicate that without prior vaccination the host is
unable to contain the antigen, though an ine�cacious immune response is generated (Fig. 11B, Supplementary
Figure S19).

 

Discussion
SARS-CoV-2 has been declared as a global pandemic by the World Health Organization affecting people of all
age groups. World Health Organization’s announcement on COVID- 19 as a global public health emergency has
encouraged researchers to develop therapeutics such as drug candidates and vaccines against the disease [23].
The cost effective and time saving immunoinformatic approaches have already helped the researchers to predict
potential antigenic epitopes required for the development of a multi-epitope vaccine candidate [24-27]. The
distinctive concept of multi-epitope vaccine design as compared to classical single- epitope based vaccine is that,
the screening of viral genome to identify immunogenic epitopes results in the elicitation of a highly targeted
immune response without any reversal of viral pathogenesis [28].
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In this study, we aim at designing a multi-epitope, prophylactic vaccine targeting the spike protein of SARS-CoV-2,
which is one of the major determinants of antigenicity and viral entry into the host cell [3]. Several computational
tools were used to construct a multi-epitope vaccine, which has the ability to generate both humoral and cell
mediated immunity. The multi-epitope vaccine elicits immune responses based on short immunogenic sequences
instead of large proteins or whole genome which is typically used for recombinant vaccine technology. Thus, this
approach avoids the excess antigenic load as well as allergenic responses in the host [18, 29, 30]. The analysis of
the entire spectrum of possible antigens can be carried out using immunoinformatics and molecular modeling in
order to examine the potential binding with host proteins [24, 31-34]. In addition, these multi-epitope vaccines
have advantages over traditional and single-epitope vaccines due to the following unique features: i) multiple
MHC Class I and Class II epitopes can be recognized by TCRs from various T cell subsets, ii) overlapping CTL,
HTL and B cell epitopes have the capacity to activate humoral and cellular immune responses simultaneously, iii)
linking an adjuvant to the vaccine ensures a long lasting immune response with enhanced immunogenicity,  iv)
the in vitro antigen expression complications as well as the di�culty of culturing the pathogens can also be
avoided [35-43]. Designing of multi-epitope vaccines is an emerging area which has already gained importance,
and the vaccines designed by this approach, have not only shown in vivo e�cacy with protective immunity [44-
46] but also entered phase-I clinical trials [39, 40, 47, 48].

The present study utilized the potential immunogenic epitopes identi�ed from the SARS- CoV-2 spike protein to
construct the multi-epitope vaccine with Cholera Toxin B (CTB) as an adjuvant along with appropriate linkers.
Cholera Toxin B, which has been proven to act as a potential viral adjuvant, is linked at the N-terminal of the
vaccine construct [49-51].

Glycine rich linker, such as GPGPG, was preferred to link the screened epitopes as it enhances the solubility and
enable the adjoining domains to be accessible and act freely [52]. Various immunological �lters were used to
screen the predicted CTL and HTL epitopes: the epitopes must be antigenic and immunogenic, should bind with
multiple MHC class I and MHC class II alleles (promiscuous), and must have overlapping CTL and HTL epitopes.
Our designed vaccine was predicted to be non-allergen using AllerTOP v.2.0 server which was further veri�ed by
AllergenFP v.1.0 [53, 54].The other physicochemical properties of the vaccine were analysed using ProtParam tool
offered by ExPASy server [55]. The molecular weight of the construct was 44.15kDa and the instability index was
evaluated to be 31.04 which classify the vaccine to be stable. Generally, a protein whose instability index is lesser
than 40 are predicted to be stable and values above that predicts the protein as unstable [55]. The stability of the
vaccine candidate in this study was found to be better than the recently published multiepitope vaccine candidate
against SARS-CoV-2 in which instability index was found higher than the vaccine candidate of this study [56, 57].
The theoretical pI of the vaccine was calculated to be 9.96. The GRAVY index of the vaccine was -0.088, (lower
the GRAVY score, better is the solubility), which is re�ective of the vaccine’s polar nature and its effective
interaction with water, suggesting high solubility [58]. The designed vaccine in this study has better solubility
when compared to the other vaccine candidates proposed against SARS-CoV-2 by other research groups, Rehman
et al., and Qamar et al., where the GRAVY score was found to be 0.158 and 0.105, respectively. The aliphatic index
of 78.74 indicated the protein to be thermostable [59]. The half-life of the vaccine was evaluated to be 30 hours
(mammalian reticulocytes, in vitro), >20 hours (yeast, in vivo) and >10 hours (Escherichia coli, in vivo) which
indicates the time taken by the protein to reach 50% of its concentration after its synthesis in the cell. The
structural validation of the vaccine construct performed by Ramachandran plot analysis using RAMPAGE showed
that 96.4% of residues were in favoured region, 2.9% were in the allowed region and only 0.4% of the residues
were placed in the outlier region thereby, validating the tertiary structure of the vaccine. The ERRAT score of 74.29
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further validated the overall quality of the vaccine and Z-score assessment by ProSA web server revealed a score
of -8.1, indicating that the protein falls in the plot which consists of the Z-scores of the already determined
structures solved by NMR and X-ray crystallographic experiments [22].

The spike glycoprotein of SARS-CoV-2, which is one of the structural components of the virus, should be
recognized by the Toll Like Receptor 4 (TLR4) and Toll Like Receptor 2 (TLR2) expressed in the plasma
membrane of the cells [60-62]. Human Toll Like Receptor 4 (TLR4) is expressed in various types of immune cells
like monocytes, macrophages, granulocytes and immature dendritic cells [63]. A direct interaction between TLR4
and CTB is responsible for the activation of TLR4 by CTB [64]. This conclusion is strengthened by the fact that
the capacity of CTB to induce in�ammatory response is lost in TLR4-de�cient macrophages [64]. The ELISA-
based assays have demonstrated that CTB is able to induce NF-κB activation in TLR4 receptor cells by binding to
it directly [64]. In addition, TLR2 is also associated with recognition of viral envelop glycoprotein [60]. The myeloid
differentiation factor 88 (MyD88) acts as the primary adaptor for the core TLR2 signalling pathway, which results
in NF-κB and mitogen-activated protein kinase (MAPK) activation, leading to secretion of a core panel of
cytokines [60]. The interaction pattern of the vaccine with TLR4 and TLR2 was analysed by Molecular Docking
Studies (Fig. 5 and Fig. 6). The docking analysis of TLR4 and the vaccine construct showed that there are 3 salt
bridges and 7 hydrogen bonds formed during this interaction. The docked complex shows that the salt bridges
were formed between Arg41, Glu68, Asp69 of TLR4 and Asp113, Lys85, Lys82 of vaccine, respectively. Similarly,
docking analysis of TLR2 and the vaccine construct also showed that there are 3 salt bridges and 9 hydrogen
bonds formed during the interaction. The salt bridges formed in this case were between Asp516, Asp520, Arg547
of TLR4 and Lys85, Lys82, Glu105 of our vaccine, respectively. The molecular dynamics simulation of the vaccine
construct for 10ns showed that there were very mild �uctuations in the RMSD graph, indicating the vaccine’s
stability (Fig. 9). The RMSF graph showed regions with high peaks, indicating the high �exibility of the vaccine
construct (Fig. 9). To assure an effective expression, the linear vaccine construct was reverse translated into its
speci�c cDNA sequence. The GC content of it was recorded as 58.53%, therefore showing the possibility of
e�cient expression of the vaccine in candidate E. coli host. Further, insertion of the vaccine in the expression
vector pET-28a (+) for in silico cloning was performed for expression of the vaccine in bacterial system. The
immune simulation studies con�rmed that the designed vaccine was able to elicit speci�c immune responses
required to clear the antigen on secondary exposure (Fig. 11). Similar strategy has recently been applied for
designing multi- epitope vaccines against Pseudomonas aeruginosa [65], Klebsiella pneumoniae [66], Dengue
[67], Nipah virus [68], Hendra virus [69] and Malaria [70]. In addition, similar approach has also been applied for
developing vaccine against cancerous antigens [18, 71]. The CTL, HTL and IFN-γ epitopes included in the vaccine
has the capacity to trigger the stimulation of host's respective immune cells which in turn can cause the
activation of other immune cells via complex signalling.

Materials And Methods

Sequence retrieval and phylogenetic tree construction
The VIPR database (https://www.viprbrc.org/brc/home.spg?decorator=vipr) was used to retrieve the spike
glycoprotein sequences of 7 coronaviruses (HCoV-NL63, HCoV-229E, HCoV-0C43, HKU-1, MERS-CoV, SARS-CoV
and SARS-CoV-2) which have previously infected the human population. In addition, spike glycoprotein
sequences of different strains of SARS-CoV-2, isolated from 19 different countries (China, Japan, USA, Australia,
Finland, Sweden, India, Colombia, Taiwan, Pakistan, Italy, Israel, Iran, Iran, Vietnam, Peru, Brazil, Spain, Nepal and

http://www.viprbrc.org/brc/home.spg?decorator=vipr)
http://www.viprbrc.org/brc/home.spg?decorator=vipr)
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South Korea) around the globe were also retrieved from the VIPR database. Two phylogeny trees were
constructed and for both the trees, the MUSCLE tool [72] was used in order to align the glycoprotein sequences
and the alignment �le was used to construct the phylogenetic trees with default parameters and 1000 bootstrap
replicates, using the Neighbour Joining algorithm of MEGA 7.0.14 [73]

T cell epitope prediction
CTL epitope prediction - 9-mer long CTL epitopes were predicted using NetCTL 1.2 server
(http://www.cbs.dtu.dk/services/NetCTL/), recognized by the HLA Class I supertypes which are commonly
occurring in human population, i.e., A1, A2, A3, A24, A26, B7, B8, B27, B39, B44, B58 and B62 [74]. In the NetCTL
1.2 server, the thresholds were set at 0.15, 0.05 and 0.75 for distinctive parameters such as proteasomal C-
terminal cleavage, Transporter Associated with Antigen Processing (TAP) and epitope recognition, respectively.
NetCTL supports epitope prediction with 54-89 % sensitivity and 94-99% speci�city. Also, the epitopes recognized
by other HLA Class I alleles were detected by Immune Epitope Consensus (IEDB) tool (http://tools.iedb.org/mhci/)
[75].

HTL epitope prediction - 15-mer long HTL epitopes were predicted using NetMHCII pan 3.2 server
(www.cbs.dtu.dk/services/NetMHCIIpan/), which had an a�nity to class II HLA alleles [76]. The predicted
peptides were classi�ed as strong, intermediate and non-binders with threshold value set at 2, 10 and >10%
respectively, based on the idea of percentile rank as given by NetMHCII pan 3.2 server.

The epitopes were screened on the basis of antigenicity as well as immunogenicity as predicted by VaxiJen v2.0
and IEDB class I immunogenicity web servers, respectively [77, 78]. The 3D structure of the spike glycoprotein
was modelled using I-TASSER in order to visualize the selected epitopes on the protein surface [79-81].

B cell epitope prediction
The ElliPro tool (http://tools.iedb.org/ellipro/) from IEDB server was used for predicting linear and
conformational/discontinuous B cell epitopes with default parameters [82].

IFN-γ epitope prediction- For both humoral and innate immunity, IFN-γ plays important role in antiviral, anti-
tumour and immune regulatory activities. Hence, IFN-γ inducing epitopes are important for designing a potential
multi-epitope vaccine. From the target protein, IFNepitope server (http://crdd.osdd.net/raghava/ifnepitope/) was
used to predict out the IFN-γ epitopes [83]. The server has a maximum accuracy of 81.39% and various
approaches such as machine learning strategy, motive-based analysis and accuracy hybrid approach is used for
the prediction of the epitopes.

Population coverage
The IEDB population coverage analysis tool (http://tools.iedb.org/population/) was used in order to check if the
epitopes of the designed vaccine had effectively covered the entire world population [84]. As, SARS-CoV-2 is a
global pandemic the population coverage was checked for the total world population, United States, Europe,

http://www.cbs.dtu.dk/services/NetCTL/)
http://tools.iedb.org/mhci/)
http://www.cbs.dtu.dk/services/NetMHCIIpan/)
http://tools.iedb.org/ellipro/)
http://crdd.osdd.net/raghava/ifnepitope/)
http://tools.iedb.org/population/)
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China, South Asia and Oceania. The default parameters were used and the coverage was checked against the
HLA class I and HLA class II binding alleles.

Multi epitope vaccine construct, Structural Modelling and
Validation
The screened CTL, HTL and IFN-γ inducing epitopes from the target glycoprotein were together linked by glycine-
proline rich GPGPG linkers. In addition, Cholera Toxin B (CTB) adjuvant was added by EAAAK linker to the N-
terminal of the vaccine construct as it can induce regulatory immune responses. trRosetta was used to generate
the 3D model of linear vaccine construct [85]. The tertiary structure was validated using ERRAT score [86]
followed by ProSA-web analysis [22]. ProSA-web validates the structure based on Z-score predicted. Further, the
overall quality of the generated model of vaccine was determined by Ramachandran plot analysis using
RAMPAGE server [87].

Physicochemical properties of the vaccine construct-
VaxiJen v2.0 [77] was used to check the antigenicity of the vaccine construct with a threshold value of 0.4. Viral
databases were used to extract whole-protein antigenicity prediction models. Each set was made up of 100
identi�ed antigens, and 100 non-antigens. The generated models were evaluated using data sets, utilizing internal
leave-one-out cross- validation and external validation. The models implemented in the server worked well in both
validations showing 70% to 89% predictive accuracy. Also, the allergenicity of the vaccine was checked using
AllerTOP server [53]. This server employs auto-cross-covariance (ACC) grouping of protein sequences into
uniform equal-length vectors. This has been applied to peptide study with the various types with quantitative
structure-activity relationships (QSAR). The K-nearest neighbour algorithm (kNN, k=1) is used by the server to
identify proteins based on a training set composed of 2427 identi�ed allergens and 2427 non-allergens of various
species. In addition, the allergenicity of the designed vaccine was cross checked by AllergenFP server (http://ddg-
pharmfac.net/AllergenFP/) [54]. Other physicochemical properties like Isoelectric point, molecular weight,
instability index, aliphatic index, half-life and GRAVY score of the vaccine was assessed using ExPASy ProtParam
server [55]. The vaccine construct was also checked for the presence of any signal peptides and transmembrane
helices by SignalP4.1 (http://www.cbs.dtu.dk/services/SignalP/) [88] and TMHMM server v2.0
(http://www.cbs.dtu.dk/services/TMHMM/) [89], respectively.

Docking with TLR4 dimer, TLR2, MHC class I receptor and MHC
class II receptor
For generation of a stable immune response, it is essential for the vaccine to interact with target immune cell
receptors. To study such interactions, molecular docking studies are performed. In this study, interactions of the
vaccine with TLR4 dimer and TLR2 are studied as they localize on cell surface thereby inducing immune
response when activated by the vaccine [90, 91]. In addition, the vaccine was also docked with MHC class I and
MHC class II receptors. TLR4 hetero-tetramer structure and TLR2 structure were obtained from Protein Data Bank

http://ddg-pharmfac.net/AllergenFP/)
http://www.cbs.dtu.dk/services/SignalP/)
http://www.cbs.dtu.dk/services/TMHMM/)
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ID 3FXI and ID 2Z7X, respectively whereas, the MHC class I and MHC class II receptors were obtained from PDB
ID 1I1Y and 1KG0, respectively.

CPORT [92] was utilized for predicting the active and passive residues for the interactions. The docking of the
vaccine with TLR4, TLR2, MHC class I and MHC class II receptors were performed by HADDOCK 2.4
(http://www.bonvinlab.org/software/haddock2.4/) [93]. The best cluster was chosen from the docked clusters
based on lowest HADDOCK score.

HADDOCK Re�nement Interface was used to re�ne the chosen cluster. The best structure after re�nement from
each docked complexes were chosen and their binding a�nity was calculated using PRODIGY web server [94,
95]. Finally, the interacting residues between the vaccine and the TLRs were mapped using PDBsum
(http://www.ebi.ac.uk/thornton- srv/databases/pdbsum/Generate.html) [96].

Energy minimization and Molecular Dynamics Simulation
GROMACS (GROningen MAchine for Chemical Simulations), a Linux-based program was used for the Molecular
Dynamics Simulation (MDS) and energy minimisation [97]. MDS was done for the vaccine structure in order to
see how it behaves in the in vivo biological system. OPLS-AA (Optimized Potential for Liquid Simulation-All Atom)
force �eld constrain was used to generate the topology �le required for energy minimization and equilibration. An
equilibrated three-point water model, spc216 was used as the solvent to simulate the vaccine with periodic
boundary conditions. The net charge of the vaccine construct was evaluated, and charged ions were added in
order to neutralize the system. The simulation run was performed for 10ns of the energy minimised structure in
order to �nd the Root Mean Square Deviation (RMSD) of backbone and Root Mean Square Fluctuation (RMSF) of
side chain. The graphs were visualized using Xmgrace plotting tool [98].

Reverse translation, codon optimization and in silico cloning of
the vaccine
The Java Codon Adaptation Tool (JCat) (http://www.jcat.de/) was used for codon optimization and reverse
translation which generated the cDNA sequence of the vaccine [99]. The codon optimized cDNA of the vaccine
was then expressed in E. coli K-12 strain. The result consists of GC content and codon adaptation index (CAI)
score, that can be used to access protein expression levels. In addition, the optimized multi-epitope vaccine
sequence was inserted into the pET-28a (+) vector by SnapGene tool

Immune simulation 
C-IMMSIM server (http://kraken.iac.rm.cnr.it/C-IMMSIM/) was used for performing the immune simulation of the
vaccine, in order to characterize the immune response pro�le and immunogenicity of the chimeric peptides [100].
C-ImmSim is an agent-based model that uses position-speci�c scoring matrices (PSSM) for immune response
prediction using machine learning techniques for predicting immune interactions. The minimum recommended
time between dose 1 and dose 2 for most of the vaccines currently in use, is 4 weeks [101]. The entire simulation
ran for 1400 time steps which are about 15 months (a time step is about 8 hours). Two peptide injections were

http://www.bonvinlab.org/software/haddock2.4/)
http://www.ebi.ac.uk/thornton-
http://www.jcat.de/)
http://kraken.iac.rm.cnr.it/C-IMMSIM/)
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given four weeks apart at time step 10, 94, 178, 262, 346, 430, 514, 598, 682, 766, 850, 934. Then a live virus was
injected at time step 1100, which is about 12 months after the simulation starts.

Conclusion
The current global pandemic of COVID-19 caused by SARS-CoV- 2 is to date un- controllable with high death rate.
No proper medical preventives like vaccines are given to the patients yet for recovery. Application of in silico
methods can be used to design an effective vaccine in lesser time and low cost. In this study, immunoinformatic
tools are used for constructing a multi-epitope vaccine against SARS-CoV-2 consisting of CTL, HTL and IFN-γ
epitopes that can trigger strong immune responses. The designed multi-epitope vaccine was found to be both
antigenic and immunogenic. The stability of the designed vaccine was assured by Molecular Dynamics
Simulation and a stable interaction of the vaccine with immune receptors was con�rmed by Molecular Docking
studies. Further, in silico expression studies con�rmed the vaccine’s expression in bacterial host and the e�ciency
of the vaccine to trigger an immune response was validated by Immune Simulation studies.
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Figure 1

Flowchart for the designed study. The entire approach used in the study comprises of several phases, which
involves identifying the target protein and its phylogenetic analysis. Epitope predictions from the chosen protein
(CTl, HTL, IFN-γ and B cell epitopes); vaccine construction and its quality check. Molecular Docking with immune
cell receptor, followed by MDS to check vaccine’s stability. Lastly, in silico vaccine expression and immune
simulation to understand how the vaccine elicits an immune response.
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Figure 2

Phylogenetic analysis of spike glycoprotein of 7 coronaviruses (HCoV-NL63, HCoV-229E, HCoV-0C43, HKU-1,
MERS-CoV, SARS-CoV and SARS-CoV-2) infecting humans. SARS-CoV-2 has shown very low rate of
diversi�cation.
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Figure 3

Tertiary structure of the spike protein with CTL epitopes marked by red colour, HTL epitopes are marked by blue
colour and IFN-γ epitopes marked by green colour, showing their surface positions.



Page 27/34

Figure 4

(A) Linear vaccine construct with CTL, HTL and IFN- γ depicted in sea green, pink and green boxes, respectively.
EAAAK linker (deep blue) was used for linking the adjuvant and GPGPG linkers (pale green) were used for linking
the epitopes. (B) 3D model of the �nal vaccine construct. Red, Limon and Blue represent the helical, sheet and
loop region, respectively. (C) Validation of the vaccine structure by ERRAT with a score of 74.2947. (D) Validation
of the structure with a Z-score of -8.1 using ProSA. (E) Ramachandran plot analysing using RAMPAGE 96.4%,
2.9% and 0.7% in the favoured, allowed and outlier region, respectively.
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Figure 5

(A) Figure obtained after molecular docking, showing TLR4/MD2 tetramer-vaccine docked complex. Vaccine
construct is shown in red colour while TLR4 dimer is shown in blue colour and MD2 co-receptor shown in green
colour. (B) Interacting residues between docked TLR4/MD2 tetramer (chain A) and vaccine (chain B). (C) Few
prominent hydrogen bonds within vaccine-TLR4 complex are focused.
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Figure 6

(A) Figure obtained after molecular docking, showing TLR2-vaccine docked complex. Vaccine construct is shown
in yellow colour while TLR2 is shown in hot pink colour. (B) Interacting residues between docked TLR2 (chain A)
and vaccine (chain B). (C) Few prominent hydrogen bonds within vaccine-TLR2 complex are focused.
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Figure 7

(A) Figure obtained after molecular docking, showing MHC I-vaccine docked complex. Vaccine construct is shown
in deep teal colour while MHC I is shown in �re brick colour. (B) Interacting residues between docked MHC I (chain
A) and vaccine (chain B). (C) Few prominent hydrogen bonds within vaccine-MHC I complex are focused.
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Figure 8

(A) Figure obtained after molecular docking, showing MHC II-vaccine docked complex. Vaccine construct is
shown in blue colour while MHC II is shown in yellow colour. (B) Interacting residues between docked MHC II
(chain A) and vaccine (chain B). (C) Few prominent hydrogen bonds within vaccine-MHC II complex are focused.
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Figure 9

(A) Radius of Gyration plot showing compactness of the vaccine around its axes. (B) Graph showing density of
the system during simulation. (C) Graph showing the pressure of the system during simulation. (D) Graph
showing the equilibrated temperature during energy minimisation. (E) RMSD plot of the vaccine construct
indicating stability. (F) RMSF plot of the vaccine construct showing high �uctuations, indicating high �exibility.
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Figure 10

In silico restriction cloning. The red coloured portion represents the codon optimised multi-epitope vaccine
inserted into the pET-28a (+) expression vector which is represented in black colour.
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Figure 11

In silico immune expression of the vaccine construct. Panel (A) Simulation with vaccine as antigen and later
injection of a live-replicating virus. A protective humoral response prevents the later injected virus to growth thus
showing the e�cacy of the vaccination. (B) Control simulation of the injection with live-replicating virus without
prior vaccination. In this case the viral load grows unstopped showing that a naïve host response is not able to
eliminate the virus.
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