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It is commonly believed that for single-input/single-output (SISO) systems, well-tuned
proportional, integral, derivative (PID) controllers work as well as model-based control-
lers and that PID controllers are more robust to model errors. In this paper we present
a novel offset-free constrained linear quadratic (LQ) controller for SISO systems, which
is implemented in an efficient way so that the total controller execution time is similar to
that of a PID. The proposed controller has three modules: a state and disturbance
estimator, a target calculation, and a constrained dynamic optimization. It is shown that
the proposed controller outperforms PID both in setpoint changes and disturbance
rejection, it is robust to model errors, it is insensitive to measurement noise, and it handles
constraints better than common anti-windup PID. Tuning the proposed controller is
simple. In principle there are three tuning parameters to choose, but in all examples
presented only one was actually varied, obtaining a clear and intuitive effect on the

closed-loop performance. © 2005 American Institute of Chemical Engineers AIChE J, 51:
1178-1189, 2005

Keywords: model predictive control (MPC), linear quadratic regulation (LQR), PID

control, tuning, constraints

Preamble: Six myths of PID and LQ Control

To stimulate discussion and set the stage for the results
section of the paper, we present first what we call six myths of
PID (proportional, integral, derivative) and LQ (linear qua-
dratic) control of SISO (single-input/single-output) systems.

Myth 1. A PID controller is simpler to implement and tune
than an LQ controller.

Myth 2. A PID controller with model-based tuning is as
good as model-based control for simple processes such as
SISO, first-order plus time delay.
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Myth 3. A well-tuned PID controller is more robust to
plant/model mismatch than an LQ controller.

Myth 3 (Alternate Version). LQ controllers are not very
robust to plant/model mismatch.

Mpyth 4. Integrating the tracking error as in PID control is
necessary to remove steady-state offset. Applying some anti-
windup strategy for this integrator is thus necessary when an
input saturates.

Mpyth 5. For simple processes (SISO, first-order plus time
delay) in the presence of input saturation, a PID controller with
a simple anti-windup strategy is as good as model predictive
control.

Myth 6. PID controllers are omnipresent because they
work well on most processes.

Like all myths, it is impossible to assign a single author or pin
down a precise history of these statements. Again, like all
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myths, many slightly different variations of these same basic
ideas are in currency. One may argue with the particular details
of any one of these statements, but these basic ideas have been
repeated by many people over many years. This particular
selection provides ample motivation for the rest of the article,
and we revisit these statements, each in turn, at the conclusion
of the paper.

Introduction

PID control for SISO systems shows up everywhere in
chemical process applications and process control education.
Tuning rules are presented in numerous texts and, surprisingly,
remain a topic of current control (research).’- In this article we
raise the issue of whether this popularity is attributable to any
concrete technological advantage of PID controllers, or
whether the popularity of PIDs is simply a historical accident
stemming from the success of analog PID controllers. The
main technical advantages ascribed to PID control are: PID is
simple, fast, and easy to implement in hardware and software;
it is easy to tune; it provides good nominal control perfor-
mance; and it is robust to model errors.

Model-based control methods, such as LQ control of uncon-
strained systems, and model predictive control (MPC) of con-
strained systems, on the other hand, are regarded by many in
process control as complex to implement and tune. The robust-
ness of LQ control to model error has been a topic of debate.?
Some claim that PID controllers outperform MPC controllers
in the rejection of unmeasured load disturbances.* MPC has
become the advanced controller of choice by industry mainly
for the economically important, large-scale, multivariable pro-
cesses in the plant. The rationale for MPC in these applications
is that the complexity of implementing MPC is justified only
for the important loops with large payoffs.

To address this perception of complexity, we propose a
constrained, SISO constrained, linear quadratic (CLQ) control-
ler with the following features: it is essentially as fast to
execute as PID (within a factor of 5 regardless of system
order), it is easy to implement in software and hardware, and it
displays both higher performance and better robustness than
those of PID controllers.

Other researchers have explored the following, related top-
ics. A SISO model predictive controller based on a first-order
plus time delay model, with input horizon of one, is proposed
in Mukati and Ogunnaike.> Soroush and Muske® show that a
particular MPC algorithm with input horizon of one, has PI or
PID form when the system is first order or second order
(without delay), respectively.

The rest of this article is organized as follows. In the third
section we present the proposed offset-free CLQ regulator for
single-input/single-output systems, and we discuss its proper-
ties. In the fourth section we discuss how the proposed con-
troller can be implemented in an efficient manner for applica-
tions on simple hardware and programming languages. In the
fifth section we present a number of examples to show the
advantages with respect to PID controllers, and in the last
section we summarize the main achievements of the proposed
controller. An abbreviated form of this paper was presented at
the DYCOPS 7 meeting.”

Notation. I denotes the identity matrix of dimension N
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and 1, denotes a column vector of length N with all elements
equal to 1. When the dimension is clear from the context the
subscript is omitted.

Offset-Free Constrained LQ Controller for SISO
Systems

Because most tuning rules for PID controllers require simple
transfer function process models, we assume such a model is
available. The offset-free CLQ control algorithm has three
main modules that use a state-space realization of the system
model:

® A state and disturbance estimator

® A constrained target calculation

® A constrained dynamic optimization

Model and estimator

We assume that a state-space discrete-time model of the
system to be regulated is known

Xpry = Ax + By,

Vi = Cxy (D

in which x € R" is the state vector; u € R is the input; y € R
is the output; and m is a nonnegative integer, the time delay.

Assumption 1 (General). The pair (A, B) is controllable,
the pair (C, A) is observable, and the following condition holds

I-A —B

rank[ C 0

]=n+1 )

The input u is assumed to be constrained as follows
Umin =su= Umax (3)

in which u;, < .-

Remark 1. Tt is important to note that any minimal dis-
crete-time state-space realization of a proper nonsingular
transfer function model satisfies Assumption 1. The input
rate of change constraints can be directly included in the
proposed framework, but are omitted for simplicity of pre-
sentation.

To guarantee offset-free control of the output y in the
presence of plant/model mismatch and/or unmeasured inte-
grating disturbances, the system model expressed in Eq. 1 is
augmented with an integrating disturbance according to the
general methodology proposed in Pannocchia and Rawl-
ings.® This methodology requires one to add a number of
integrating disturbances equal to the number of measured
variables (in this SISO case, one) in a way that the resulting
augmented system is detectable. To this aim infinitely many
choices are available, and in this work we choose the so-
called input disturbance model, that is, we add an integrat-
ing state d that enters the system at the same place as the
input u. The resulting augmented system is as follows
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Remark 2. The detectability condition for the augmented
system (Eq. 4), stated in Lemma 1 of Pannocchia and Rawl-
ings,® is guaranteed by Assumption 1. Several studies have
pointed out that such a disturbance model is an appropriate
choice for efficiently rejecting unmeasured disturbances,®!?
and it provides good robustness to plant/model mismatch.!!

The state x and the disturbance d are estimated from the plant
measurement y by means of a steady-state Kalman filter. At
each sampling time, an estimate of the state £, | ., and of the
disturbance 3,(‘ «_1 based on previous measurements and inputs
are available. Thus, the current filtered state and disturbance,
respectively, are

)eklk = )eklk—l + Lx(yk - ka\k—l)
ak\k = ak\k—l + Ly — ka\k—l) &)

in which the filter gains L, € R" and L, € R are computed
offline as described later in this paragraph. Given the input
U, (stored if m > 0, or computed as described in the next
paragraph, if m = 0), the state and disturbance estimates,
respectively, for the next sampling time are

xAk+l\k = A)ek\k + Buy_,, + Bak\k
akﬂ\k = ézk\k (6)

To compute the filter gains L, and L, let

- [A B . [aqd, ©
a-[o 3] o[ 1]

in which ¢, is a nonnegative scalar. Also let R, be a positive
scalar; then, the estimator steady-state Riccati equation is'?

c=[C 0]

I =0+ AIAT — AIIC(CIIC" + R,)'CIIAT

in which IT € R+ D>+ j5 3 symmetric semidefinite matrix.
Finally, the filter gain is

L AT AT A
L= [L;] =TC(CTIC" + R) ™! (7)

Strictly speaking, g, and R, should be regarded as the estimator
tuning parameters. The scalar ¢, represents the ratio between
the variance of the state noise and the variance of the distur-
bance noise, and an increase in g, makes the estimator less
“aggressive” in estimating the disturbance. The scalar R, rep-
resents, instead, the ratio between the variance of output noise
and the variance of the disturbance noise, and an increase in R,
makes the estimator less “sensitive” to output noise. In this
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paper, fixed values for ¢, (0.05) and R, (0.01) are used for all
examples. As a general rule, we recommend varying R, to
ensure low sensitivity to output noise.

Constrained target calculation

At each sampling time, given the current disturbance esti-
mate d «lk» ¥» we compute the steady-state targets for input and
state such that the output ultimately reaches the set point. If the
input is unconstrained, these targets are simply the solution to
the following square linear system

RS A e B

which exists because of Assumption 1. However, the solution
to this system may be such that the input target violates Eq. 3.
Moreover, for integrating processes it is possible that a steady
state does not exist because of the input constraints in Eq. 3.
For these reasons, we compute the targets from the following
quadratic program

(X4 1) = arg min % {(Cx —y)* + (I — A)x

(X,10)

= B(i + dy)]'T( — A)x — Ba + dy)ly ()
subject to
Umin = 17{ = Umax (9b)

in which 7 is a large positive number.

Remark 3. The large penalty m used in the second term of
Eq. 9a guarantees that (x, u,) denote a steady state, that is,
such that x, = Ax, + Bu, + Bﬁ,dk holds, whenever a steady
state exists. It is important to notice that, if the (x,, i,) solution
to Eq. 8 satisfies u,;, = U, = U, the quadratic program

expressed in Eq. 9 returns the same values as those in Eq. 8.

Constrained dynamic optimization problem: case of
reachable setpoint

GiAven the estimates of the current state and disturbance £,
and d, ., respectively, and given the current steady-state targets
(X, ), for the cases in which the desired set point is reachable
(that is, Cx; = y), we compute the control input by means of
the following constrained dynamic optimization problem

T
Wy Wy

N—1
1

. T 2
min = w; Ow; + s(v;, — v;_ + =
(o 2 7_% 5O F 5 = 1) 2 | Un—1 Uy-1
Yjsj=0 J=

(10a)
subject to

m
— o - _ ma i—1 A —
Wo = Xktmle — Xk = A X + 2 A" 'B(uy—; + dklk) - X
i=1

(10b)

Vo = Up—y = Uy
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(10c¢)
(10d)
in which N is a positive integer, s a positive scalar, and Q =
C"C. The matrix P € R"*V*@*D ig chosen as the symmetric
positive semidefinite solution of the following Riccati equation

P=0Q+A"PA— A"PB(B"PB + 5) 'BPA (11)

in which

R el e[8 8] e

Let v := (vy, vy, ..., Un_;) be a column vector of length N.
We can write Eq. 10 as a strictly convex QP

1
minivTHv+ U'E (13a)

subject to
1- (umin - ﬁk) =sv=1- (umax - ﬁk) (13b)

in which

H=R2% + D" RD ¢=RB2dAwy + D" RCv_,

(14)
and
A B 0 oo 0
A? AB B e 0
a= i me] o
AN AV'B AN?B ... B
0 0 0 1
-1 1 0 0
-1 1 --- 0
@ = B=|q - . | (5
0 S0 -1 1
0 0 0 s 0 0
5 0 . : g - 0 :
| 0 0 ] 0
0 0 P 0 0 s
(15b)

Let v = (v}, ..., vy_,) denote the optimal solution to Eq.
13. Then, the current control input is defined by using a
receding horizon implementation, that is

u, =, + vy (16)

Remark 4. 1t can be shown that the matrix P solution to Eq.
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11 is such that the quadratic terminal penalty in Eq. 10 corre-
sponds to the following infinite-horizon unconstrained cost-
to-go

1 ' S
2[ WN] P{ WN] ) mi“z[waQwﬁsw o)’

Un-1 UN-1 - ;
{v/),:N J=N

(17a)
subject to

Wi = Aw; + By, (17b)
Furthermore, the corresponding optimal unconstrained control
law associated to this cost-to-go is

Wi
U= K[ ] (18)
in which
K=K+ [01x 1] K= —(s+ B"PB) 'B"PA
(19)

Constrained dynamic optimization problem: case of
unreachable setpoint

When the setpoint is not reachable, that is, when the feasible
steady-state targets are such that

i=Cx #Yy (20)

the optimization problem (Eq. 10) needs to be modified be-
cause the corresponding optimal input would drive the con-
trolled variable to the reachable target y, as quickly as possible.
There are important cases in which this behavior is undesirable.
These situations occur when a “large” disturbance enters the
system, and the input constraints are such that the input as-
ymptotically saturates without completely rejecting the distur-
bance, and thus offset occurs. It is clear that, if the disturbance
continues to affect the system, steady-state offset is unavoid-
able, although even in such cases it is desirable to keep the
controlled variable close to the desired setpoint y as long as
possible. This goal can be achieved by modifying the optimi-
zation problem (Eq. 10) with a linear penalty,' as follows

1 N—1
min 2{ E ij(Qw/- +2q) + s(v, — v_,-])z]

{1’/}?’:70[ Jj=0
T
L] wy Wy
+2|:le] <P|:_UN1 +2p| (2la)

subject to (100)—(10d) (21b)

in which P is given in Eq. 11 and
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g= -9 p=u- A+ RN ]
2)

Notice that if y, = y (that is, the setpoint is reachable), we
obtain the same formulation as in Eq. 10.

Similarly to the previous case, let v:= (v, vy, . . ., Un_1) be
a column vector of length N. We can write Eq. 21 as the same
strictly convex QP in Eq. 13, in which H is still given in Eq. 14,
whereas € is

¢=RB2Awy + B'P + D" RCv_, (23)

in which @ = [¢" - - ¢ p"]". Let v* = (v§,..., v&§_))
denote the optimal solution to Eq. 13 with ¢ given in Eq. 23.
Then, the current control input is still defined by Eq. 16.

Remark 5. It is possible to show that the chosen linear and
quadratic terminal penalties in Eq. 21 correspond to the fol-
lowing infinite-horizon unconstrained cost-to-go

T

o

I wy Wy 1 .
5 Uy-1 P Un-1 T2 = 5 EN Wj(QWj + 2q)
J=
+s(v;— v_)?  (24a)
subject to
Wi
Wi = Aw; + By; v, =K " (24b)
i

in which K is given in Eq. 19. Also notice that Eq. 24 is
equivalent to Eq. 17 if y, = y.

Properties

If constraints are not present, the proposed controller reduces
to an infinite-horizon LQ controller with target calculation and
origin “shifting” (see Kwakernaak and Sivan,'? p. 504). Thus,
it is easy to show that it is nominally stable for any choice of
the tuning parameters.

It is also possible to derive a simple sufficiency test for
nominal constrained stability using ellipsoid invariant set the-
ory.'* This test, described below, can be used online to detect
whether the terminal state is not in the output admissible set
and to flag a warning for the operator. If one wishes to have a
guarantee of nominal stability, we can easily formulate the
regulator with the terminal constraint wy = 0. However, be-
cause N is chosen fairly small for computational speed, we find
the terminal state constraint controller not as robust as the one
presented here, and therefore do not recommend it for indus-
trial practice.

Suppose that P solution to Eq. 11 is positive definite' and
consider the following ellipsoid region

"If P is only semidefinite, a simple modification to_this test is to use P as the
solution to the following Lyapunov equation: P = R + (A + BK)"P(A + BK), where
R is positive definite.
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Oy = {§|§TP§ = az} (25)

in which « is a positive scalar to be determined. It immediately
follows from the definition of P that if £ € O, then (A +
BK)¢ € O, for any i = 0, 1, - - -, that is O, is positively
invariant for the system &,,, = (A + BK)£,.. Thus, we want to
compute « such that

gTPS = aZ j Umin — ﬁk = Kg = Umax — ’Zk (26)

in which K is given in Eq. 19. To compute «, consider the
symmetric Schur decomposition of P (see Golub and Van
Loan,' p. 393)

P=VAV' 27)

in which V € R"*"P*"* D is orthogonal and A € R”*H D>+ D
is diagonal with strictly positive elements. Let

1

N
(28)

H=[h h,]= KVA™"? B=

It is possible to show that the largest value of « (that is, the
largest ellipsoid), such that Eq. 26 holds, is given by

a = B min(ﬁk T Upin, Umax — ﬁk) (29)

Hence, at each sampling time, after having computed the
optimal input sequence v*, we can perform a sufficiency test
for nominal constrained stability by checking whether or not

T
|:WN:|P|: WN:|Sa2 (30)
Un—1 Un—1
holds.

Remark 6. Notice that, in general, the value of « is to be
computed at each sampling time because the input target u,
may change. To this aim, one can simply use Eq. 29, in which
B is computed offline by means of Eq. 28. Also notice that this
sufficiency test is meaningful only when constraints are not
active at steady state because in such a case we would have that
either u, = u,,;, or u, = U,,,, and thus a = 0.

Another important property of the proposed CLQ controller
is that it guarantees offset-free control whenever the closed-
loop system reaches a steady state in which the input is not
saturated. This property holds independently of the plant dy-
namics and is attributed to the presence of the integrating state
d in Eq. 4 (see Pannocchia and Rawlings,® Theorem 1). It is
important to remark that, unlike PID, the proposed controller
does not integrate the tracking error (that is, y — y,). In fact
from Eqgs. 5 and 6 one can write

‘Aikﬂ\k = 3k\k—1 + Ly, — ka\k—l)

from which it is clear that there is integration of the prediction
error (that is, y, — CX,_,). This approach is significantly
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different from integration of the tracking error as in PID
control, and it does not require any anti-windup strategy when
the input saturates.

Furthermore, unlike PID control, CLQ is a “two-degrees-of-
freedom” controller and it can simultaneously provide both
efficient setpoint tracking and disturbance rejection. This fea-
ture is ascribed to the state and disturbance estimator, which
can also be tuned to be insensitive to measurement noise by
adjusting R .

Efficient Implementation of CLQ

Two modules of CLQ—the target calculation and the con-
strained dynamic optimization—require one to solve a qua-
dratic program at each sampling time. For the proposed method
to be applicable to simple hardware and programming lan-
guages, we have developed efficient methods for solving these

QPs.
Constrained target calculation

The first step is to compute the solution to the unconstrained
problem (Eq. 8)

x*1 [I—A —B] '[Bdy
|~ ¢ o y
_|I—A —B B 0,5 ak|1< My My, aklk
- C 0 O 1 5) N M21 M22 5]
(31)

in which M,, € R", M, € R, M,, € R, and M,, € R" are
computed offline. If u;, = u* = u,,,,, then we set u, = u* and
X, = x*. Otherwise, we set

- - Unnin lf Ll* < Umin
K s t( ) {umax if u* > Umax ( )

and we find X, from the following unconstrained problem

X, = arg min % {(Cx —9)* + n[(I — A)x
— B(i, + dy)1'[(I — A)x — B, + dy)l} (33)

Notice that the QP in Eq. 33 has an analytical solution because
it is unconstrained. In fact, we can rewrite it as follows

1
X, = arg min E)_CT[CTC + (I — A — A)]x
= X'[C"y + (I — A)' Bty + dy)]
the solution of which is

X =[C"C+ (I — A —A)]'[Cy + n(I — A)'B(u,
+ 3k\k)] = Gﬁk\k + Gy + Giuy,  (34)
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in which G, € R", G, € R", and G; € R" are computed
offline.

Given the discussion above we present the following algo-
rithm for computing the state and input steady-state feasible
targets.

Algorithm 1 (Constrained target calculation). Given ‘?klk
and y.

1. Compute the unconstrained input target u* = M2107k|k +
M,,y.

2. If upiy = U™ = u,,,, setu, = u*, compute x, = M“ﬁf,dk +
M 5y and stop. Otherwise,

3. Set u, = sat(u*) and compute X, = Glc?,dk + G,y + Giuy.

Constrained dynamic optimization problem

Introduction. As shown in the previous section, the con-
strained dynamic optimization problem is written as a QP (Eq.
13) that needs to be solved at each sampling time. It is impor-
tant to notice that in Eq. 13 the matrix H does not change at
each sampling time, whereas the vector ¢ changes with time
because w, and v_, (and also ¢ and therefore % for the case of
unreachable setpoint) change. Moreover, the bounds on v may
change at each sampling time (because u#, may change), al-
though this problem can be overcome by defining a new vector

u=v+ lu, (35)

which allows one to rewrite Eq. 13 as follows

(36a)

min 3 u"Hu + u'c

u
subject to

(36b)

1umin su= lumax

in which ¢ = ¢ — Hu,. Notice that in Eq. 36 only c¢ varies at
each sampling time. Moreover, it is clear from Eqs. 16 and 35
that the control input u, is defined as the first element of the
optimal solution to Eq. 36.

For large multivariable systems the use of on-line optimiza-
tion seems unavoidable, whereas for relatively small systems
one can choose a multiparametric quadratic programming (mp-
QP) approach, as proposed in Ref. 16. This algorithm can be
applied to Eq. 36 to build a solution table and compute the
control input as an affine function of c. However, an alternative
and simpler method, specifically tailored to SISO systems with
constraints on the input only, is developed here. This new
method has two basic steps:

(1) The offline generation of a solution table using H, u,;,,
and u,,,: this step involves solving linear equations (that is,
matrix inversions), multiplications, and additions.

(2) The online table scanning given the current value of c:
this step involves only multiplications and additions and check-
ing conditionals. These same operations are required in PID
control.

The problem (Eq. 36) can be rewritten in a standard optimi-
zation notation as follows

April 2005 Vol. 51, No. 4 1183



1
min 3 u"Hu + u'c (37a)
subject to
Du=d (37b)
in which
_ _IN _ _1Numax
b= |: IN :| d_ |: 1Nl’tmin :| (38)

Because H is positive definite, the quadratic program (Egs.
37a and 37b) has a unique solution u*, which must satisfy the
following KKT first-order conditions (see Nocedal and
Wright,!7 p. 454)

Hu* + ¢ — A+ =0 (39a)
Au* = b, (39b)
Au*=b, (39¢)

AE =0 (39d)

in which A* € R; A, € R”", and b, € R’ are formed by
stacking the rows of D and d corresponding to the active
constraints at the optimal point, and A, € R®N "N and p2V !
are formed by stacking the remaining rows of D and d, respec-
tively. Notice that the following properties hold

I=N  rank(A,) =1 (40)

Also notice that if / > 0, then
AAL =1, (41)

Building the Table. Each component of u can be at the
lower bound, at the upper bound or somewhere in between.
Thus, we can construct all possible combinations of active and
inactive constraints, and such combinations are in number 3%.
Foreachi=1,2,...,3" we denote with A, and b, the rows of
D and d corresponding to the active constraints of the ith
possible solution. We denote with u; the solution of the fol-
lowing equality-constrained quadratic program

min = u"Hu + u’c

> (42a)

subject to
Au = b, (42b)

which is given by the solution of the following square linear
system (see Nocedal and Wright,'” p. 444)

1184
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H —All[w] [-c
oL )

The solution u; has the following form

u;,= Kic + B, (44)
in which K; € R¥*Y and B, € R" are computed from the
corresponding KKT system, using the “null space” method (see
Nocedal and Wright,'” p. 450), as described below.

Given the ith active set matrix and vector (4;, b;), we start by
building a vector u; such that

Ajt; = b, (45)
Because of Eq. 41, one such vector is
;= A’b, (46)

Then we express the solution of Eq. 42, u;, as u; = u; + p; and
rewrite Eq. 43 as follows

H AR RO

From the second row block of Eq. 47 we have that Ajp, = 0,
that is, p; is in the null space of A; (notice that if A; is square,
then p, = 0 and thus the solution u; is equal to u;). Let Z, €
RY*®¥~D be a matrix whose columns form a basis for the null
space of A;; then we can write p; as

Pi=Zir, (48)

in which r, € R¥ ' is to be computed. From the first row block
of Eq. 47 we can write

HZr,— AT\, = —(Hu, + ¢)
and then we multiply by Z7 on the left, obtaining
ZIHZr; = —Z(Hu; + c)
which can be solved to compute r,
r,= —(Z'HZ) ' ZI (Hu; + ¢) (49)

Thus, the solution u; is written as

u; — Zi(ZiTHZi)_IZiT(Hﬁi +¢)
(50)

w,=u;+p,=u;+2Zr;

Finally, the form in Eq. 44 is obtained by letting
K= —Z(Z/HZ)"'Z] B; = i; — Z{Z{HZ;)"'Z{ Hu (51
Finding the Solution. 'We now assume that a table contain-
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ing K, B; (and A, fori = 1,2, ..., 3" is known. We can now
compute u*, the optimal solution to Eq. 37 by “scanning” the
table in the following way.

Algorithm 2 (Constrained dynamic optimization). Given ¢
and starting with i = 1, repeat the following steps.

1. Compute the ith solution, u; = K,c + B,.

2. Check whether Du; = d. If this is not satisfied, increase i <
i + 1 and go to 1. Otherwise,

3. Compute the Lagrange multipliers for the active constraints
as

A= A(Hu; + c) (52)

4. If all elements of A; are nonnegative, set u* = u; and stop.

Otherwise, increase i < i + 1 and go to 1.

Remark 7. Notice that given the particular structure of A,
(each row of A; contains only a nonzero element, which is
either 1 or —1), computing from Eq. 52 simply requires one to
compute the elements of the gradient vector g, = Hu;, + ¢
corresponding to the active constraints. Also notice that Algo-
rithm 2 has a finite termination, because Eq. 37 is always
feasible, and thus one of the 3" possible solutions u; is the
optimal solution.

Remark 8. One could also solve the regulation problem
using the mp-QP approach presented in Bemporad et al.,'®
which generates offline the regions in state space correspond-
ing to different active sets, and searches online to determine in
which region the current state resides. The valuable insight
provided by this method is that it reveals the structure of the
regulator, a piecewise affine function of the state. Because the
state regions are not required for the control calculation, how-
ever, we dispense with the offline overhead of generating the
state regions in the proposed CLQ controller. Simply enumer-
ating all active sets and testing for optimality is simple and
does not require the use of standard efficient QP and LP solvers
for even the offline construction of the table. Because of its
simplicity, the proposed method generates 3 table entries for
every model, which may be larger than the minimum number
of state regions required for the same problem. For SISO
applications, however, the number of table entries is small and
the online execution is fast, that is, close to the PID execution
time.

lllustrative Examples

In this section we present a number of examples of common
processes to show that the proposed CLQ controller is simpler
to tune than a PID controller, is robust to model errors, is
insensitive to noise measurements, and guarantees superior
performance both for setpoint changes and disturbance rejec-
tions.

Because constraints are present, the common anti-windup
“velocity” algorithm for PID is used.!®

Algorithm 3 (PID with anti-windup). Initialize the control-
ler with u_,, e_,, e_».

1. Data at sampling time k: y;, u;_,, €x_1, €x_»-

2. Compute the tracking error.
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e =Yy = W

3. Compute the unconstrained input

K.T, K.T,

Auk = Kc(e,( - ek,l) + ,;,71 ey + T

(ex — 2e 1 + e4)

u, = u_, + Au,

4. Check saturation

Up < Uy lf Unnin = Uy = Umax
Up <= Upax lf Uy > Umax
Uy <= Upin lf Uy < Umin

5. Inject u, into the plant as input, update time k < k + 1 and
go to 1.

Notice that if 7, # 0, the derivative action is suppressed
when a setpoint change occurs, which is the common industrial
practice to avoid the “derivative kick.” As a performance index
we choose the following quadratic cost that weighs the tracking
error as well as the input movement

D=2 (y— 9>+ (up — u)? (53)

k=0

First-order plus time delay

The first example is a first-order plus time delay (FOPTD)
system

—2s

e
Gi(s) = 10s + 1

sampled with 7, = 0.25. The input is assumed to be constrained
|u| = 1.5, a horizon of N = 4 is used, and in all simulations
the setpoint is changed from O to 1 at time zero. At time 25 a
load disturbance (that is, a disturbance passed through the same
dynamics as the plant) of magnitude —0.25 enters the system;
then at time 50 the disturbance magnitude becomes —1 (which
makes the setpoint 1 unreachable); finally at time 75 the dis-
turbance magnitude becomes —0.25 again. Figure 1 shows the
simulation results in the nominal case for two CLQ controllers
and two PID controllers. The estimator is designed with g, =
0.05 and R, = 0.01 for both CLQ controllers, whereas the
regulator input penalty is s = 5 for CLQ 1 and s = 50 for CLQ
2. The tuning parameters for PID 1 are chosen according to
Luyben’s rules (see Luyben and Luyben,'® p. 97): K. = 2.51,
T, = 17.3, T, = 0. The tuning parameters for PID 2 are chosen
according to Skogestad’s IMC rules??: K. = 2.35, T, = 10, T,
= 0. Figure 2 shows the simulation results for CLQ 1 and PID
1 in the presence of random output noise (with variance ¢* =
0.001). Figure 3 shows a comparison of the performance index
® vs. the gain and delay relative plant/model mismatch, re-
spectively, for CLQ 1 and PID 1.
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Integrating system

The second example is an integrating system

—2s

Gy(s) = e

sampled with 7, = 0.25. The same input constraints, horizon,
setpoint change and disturbances, and estimator parameters as
in the first example are considered. CLQ 1 uses a regulator
input penalty of s = 2500, whereas CLQ 2 uses s = 10,000.
The tuning parameters for PID 1 are chosen according to
Luyben’s rules (see Luyben and Luyben,'® p. 97): K. = 0.23,
T, = 18.7, T, = 0. The tuning parameters for PID 2 are chosen
according to Skogestad’s IMC rules?’: K. = 0.23, T, = 17, T,
= (. Simulation results in the nominal case are reported in
Figure 4, whereas Figure 5 shows the simulation results in the
presence of random output noise (with variance o* = 0.001).
The performance index @ vs. the gain and delay relative
plant/model mismatch is reported in Figure 6.

Underdamped system

The last example is a second-order underdamped system

K
Gils) = 52+ 21és + 1
sampled with 7, = (.25, and with nominal parameters of K =
I, 7 =15, and £ = 0.2. The same input constraints, horizon,
setpoint change and disturbances, and estimator parameters as
those in the first example are assumed. CLQ 1 uses a regulator
input penalty of s = 5, whereas CLQ 2 uses s = 50. The tuning
parameters for PID 1 are chosen according to Luyben’s rules (see
Luyben and Luyben,' p. 97): K. = 7.29, T, = 16.8, T, = 1.21.
The tuning parameters for PID 2 are chosen following the same
IMC approach as in Skogestad®: K. = 040, 7, = 2, T, = 12.5.
For both PID controllers we filtered the output measurements
using an exponential filter with time constant 7, = 1.1. If the
output is not filtered, the response in the presence of output noise
is overly oscillatory because of the derivative action. On the other
hand, if no derivative action is used (that is, if a PI controller is
chosen), the nominal performance and the stability margins are

Vol. 51, No. 4 AIChE Journal
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poor. Simulation results for the nominal case are reported in
Figure 7, whereas Figure 8 shows the simulation results in the
presence of random output noise (with variance o = 0.001). The
performance index @ vs. the gain and damping factor relative
plant/model mismatch is reported in Figure 9.

Comments and discussion

The results presented in the previous paragraphs clearly
show that in all examples (as well as in several others not
shown for the sake of space) CLQ outperforms PID both on
setpoint changes and disturbance rejection. In the presence of
constraints CLQ understands better than PID “when” and “for
how long” to saturate the input. Notice that CLQ does not
require any anti-windup strategy.

Tuning CLQ is simple: mainly one has to choose only the input
penalty s, which quantifies the trade-off between tracking error
and input movement. The effect of this tuning parameter is intu-
itive: the smaller the value of s, the more aggressive the controller.
CLQ is robust to plant/model mismatch: one can obtain high-
performance closed-loop response in the nominal case and still
have robust performance and large stability margins. In Figures 3,
6, and 9 we have shown the performance index for CLQ and PID
controllers in a wide relative mismatch range up to 100%. In all
examples CLQ controllers outperform PID controllers even within
such a wide range of plant/model mismatch.

If one is especially concerned about robust stability, such as in
the FOPTD system one can increase s from 5 (shown in Figures
1-3) to 60 and the gain stability range for CLQ is 241% compared
to 203% for PID 1, the time-delay stability range for CLQ is 250%
(same as for PID 1), and the nominal performance remains 21%
better than PID’s nominal performance. Similar results can be
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Figure 5. Integrating system: noisy case.

obtained for the other systems. In other words, it is straightforward
to tune a CLQ controller to have simultaneously better nominal
performance and larger stability regions than a PID controller
tuned with accepted PID tuning rules.

CLQ can be easily tuned to be insensitive to measurement noise
by adjusting R,. If one detects high frequency oscillations in the
manipulated variable it is sufficient to increase R, to suppress this
undesirable behavior. In this way, it is not necessary to “slow
down ” the controller’s setpoint response (that is, to increase s)
when the measurement is noisy. PID instead suffers from large
input oscillations (see Figures 2 and 8), particularly when deriv-
ative action is used to improve nominal and robust performance.
For this reason, many industrial PID controllers are tuned with 7,
= 0, and the output measurement is often filtered.

1000 —— 10000

CLQ 1 (gain)
PID 1 (gain) ------
CLQ 1 (delay) —+—
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Figure 6. Integrating system: effect of plant/model mis-
match.
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Figure 7. Underdamped system: nominal case.

Finally, it is important to remark that CLQ is efficient and
the computational burden is comparable to that of PID. The
average CPU time required to compute the control input has
been 0.22 ms for CLQ and 0.05 ms for PID (on a 1.7-GHz
Athlon PC running Octave®). The maximum CPU time has
been 0.55 ms for CLQ and 0.10 ms for PID. The computational
efficiency comes about because only a small number of simple
operations (addition, multiplication, and comparison) are re-
quired at each sample time.

Conclusions

In this article, a novel, offset-free, constrained, linear qua-
dratic (CLQ) controller for a SISO system was presented. The
purpose of this work was to propose an alternative to digital
PID controllers that are commonly available on the distributed
control system (DCS).

CLQ has three main modules based on a state-space model
of the system: a state and disturbance estimator, a target cal-
culation, and a constrained dynamic optimization. Each module
is implemented in an efficient way so that the overall CLQ
algorithm has little computational cost and can be applied using
simple hardware and software. As shown, the proposed con-
troller outperforms PID controllers in all situations (setpoint
changes or disturbance rejections, nominal case, or in the
presence of relevant model errors, noise-free or noisy measure-
ments). Moreover, CLQ is simple to tune: there are two main
tuning parameters to choose, one in the estimator (R,) and one
in the regulator (s) whose effect on closed-loop performance is

2 Octave (http://www.octave.org) is freely distributed under the terms of the GNU
General Public License.
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intuitive. The proposed controller is “scalable,” in the sense
that it can be extended to larger multivariable systems in a
straightforward fashion. Other possible extensions are:

e the use of feed-forward to reject measured disturbances
even more efficiently.

e the coupling of several SISO CLQ controllers by appro-
priate exchange of information.

Finally, we revisit the six myths, and offer our assessment.

Myth 1. A PID controller is simpler to implement and tune
than an LQ controller. The validity of this myth rests largely
with the hardware and control software vendors. Certainly it is
not difficult to implement a constrained LQ controller if the
vendor has programmed the simple active-set table lookup
presented in this paper. Regarding tuning, it is not difficult to
look up tuning rules for a PID controller. However, it is
difficult to find PID tuning parameters that give performance
and robustness similar to those of an LQ controller. The LQ
controller is not difficult to tune. The effects of its two main
tuning parameters (s and R,) are clear.

Myth 2. A PID controller with model-based tuning is as good
as model-based control for simple processes such as SISO, first-
order plus time delay. We see no evidence to support this myth.
To the contrary, Figure 1 shows the opposite is true. If we restrict
the meaning of “simple process” to “first-order process,” then this
myth has a better chance of holding up.

Myth 3. A well-tuned PID controller is more robust to
plant/model mismatch than an LQ controller. Again, we see no
evidence to support this myth. Figures 3, 6, and 9 show the
opposite is true. We see no superior robustness properties for
PID control given any recommended tuning rules.

Myth 3 (Alternate Version). LQ controllers are not very
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Figure 8. Underdamped system: noisy case.
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robust to plant/model mismatch. As pointed out in previous
research,® one can construct processes for which the state
feedback regulator has good margins but output feedback with
the same regulator and a state estimator has arbitrarily poor
margins. We have yet to see examples that indicate this issue
has industrial significance.

Myth 4. Integrating the tracking error as in PID control is
necessary to remove steady-state offset. Applying some anti-
windup strategy for this integrator is thus necessary when an input
saturates. Integrating the tracking error is not required for offset
free control as shown in all of the examples in this paper. Inte-
grating the model error is a sharper idea, which also obviates the
need for an anti-windup strategy when the input saturates.

Myth 5. For simple processes (SISO, first-order plus time
delay) in the presence of input saturation, a PID controller
with a simple anti-windup strategy is as good as model pre-
dictive control. The constraint-handling properties of PID are
not competitive with MPC. Even in the simple SISO situation,
this difference can be noticeable, as shown in Figures 1 and 7.

Myth 6. PID controllers are omnipresent because they
work well on most processes. Seeing no evidence that PID
controllers work particularly well when compared to an alter-
native controller, we propose the following explanation rooted
more in human behavior than technological advantage. PID
controllers are everywhere because vendors programmed them
in the DCS when they replaced analog PID controllers.
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