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ABSTRACT.   The (extended) symplectic modular group   (Afl) r     is the
set of all   2/¡ x 2/1   integer matrices  M  such that

(mj'm = t j),   mj'm = J,   J =

1   being the   n x n  identity matrix.   Let   Sn = {M e A„ - Vn\M = - lM}   and
Tn = {M £ An -   \'n\M = 'm}.   We say   M - N   if there exists   K e T„   such
that   M = KN K.   This defines an equivalence relation on each of these sets sepa-

rately and we obtain a canonical form for this equivalence.
We use this canonical form to study two types of Riemann surfaces which

are conformally equivalent to their conjugates and obtain characterizations of their
period matrices.   We also obtain characterizations of the symplectic matrices which
the conformai equivalence induces on the first homology group.   One type of sur-
face dealt with is the symmetric Riemann surfaces, i.e. those surfaces which have
a conjugate holomorphic self-map of order   2.   The other type of surface studied we

we call pseudo-symmetric surfaces.   These are the hyperelliptic surfaces with the
property that the sheet interchange is the square of a conjugate holomorphic auto-
morphism.

1. Introduction.   In this paper we will solve a problem in number theory
that arises in the study of compact Riemann surfaces which have a conjugate holo-
morphic homeomorphism (see §3). The problem is one of finding a canonical
form for a set of matrices on which an equivalence relation is defined.

The symplectic modular group  Tn  is defined to be the set of all  2t7 x 2ti
integer matrices K such that

(1) KJn'K = JH
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208 ROBERT ZARROW

where '-[-Vi
and In  is the ti x ti  identity. The extended symplectic modular group  An  is
the set of all  2« x 2ti  matrices K such that

(2) KJ'K = ±J„

If we write K = [^R.], where Q, R, S and  T are nxn  integer matri-
ces, then it is easy to see K E r„  iff

(3) Q'T - R'S = In,   Q'R = R 'Q,   S'T = T'S.
Also K E An   iff

(4) Q'T - R'S = ± /„,   Q'R = R'Q,   S'T = T'S.

If K E r„, then

L-f5 föJ

and if A" G A„ - r„, then

i _ T- 'T    'R "1
L'S     -fßJ'

Furthermore, [An:r„] =2.
Now let

Sn = {M G A„ - r„|M = - fM},    r„ = {M G A„ - r„\M = fM}.

A simple calculation shows that if A, B, and C are nxn  integer matrices,
then the elements of Sn  are precisely those matrices of the form

r b â
t'A    C

where B = - 'B, C = - 'C, AB = -B'A, CA = - 'AC and A2 -BC = -/„.
Similarly the elements of Tn are precisely those matrices of the form

B    A
<A    C
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EXTENDED SYMPLECTIC MODULAR MATRICES 209

where B = 'B, C = 'C, AB = B'A, CA = 'AC and A2 - BC = /„.
Now we say M ~ N iff there exists K E r„ such that M = KN'K. It

is easy to see that this is an equivalence relation on each of these sets separately.
The following two theorems give a canonical form for this equivalence.

Theorem A.  (1) // 17 is odd, then Sn is empty.
(2) If n  is even, then every element of Sn  is equivalent to

¡: 'i

where n = 2k.

Theorem B. Every element of Tn  is equivalent to exactly one of the
matrices

r.

M(r, t) =

0

0

0

F.

0

0    F.

where r = 0, 1, 2, r < s, s + 2í = n,

■■ ■ [: :]

and

Ftm
Fi

Fi

2tx 2t.

Remark 1.1. The notation introduced in this section will be used through-
out the entire paper. We add the following. If 5 is a symmetric nxn integer
matrix then

G(S) n
If U is an ti x ti  unimodular matrix, thenLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



210 ROBERT ZARROW

[o   'u-x\
H(U) =

It is clear that both G(S) and H(U) are in  Vn. We also use a direct sum nota-
tion for symplectic matrices.  If^[ííK^
i' = l,2, then we denote

Mx + M2 =

Ax     0
0    A.

Cx     0
0     C,

Bx     0
0    5,

Dx    0
0     D-

It is easy to check that Mx + M2 E Am (Tm), where m = nx + n2.
All numbers, matrices and vectors dealt with in this paper may be assumed

to be integers or have integer entries unless it is stated otherwise. Also subscripts
which indicate the size of a matrix (e.g., "n"  in  "/„") are occasionally omitted
when it is clear what the size is.   By the expression "apply K to M" we mean
form the product KM'K.

Remark 1.2. This problem was suggested by a situation in the theory of
compact Riemann surfaces.

Let

Sn = {F E A„ - r„|F2 = -I2n},    Tn={FEAn- TJF2 = I2n}.
m

If A" is a compact Riemann surface of genus ti  which has a conjugate holomor-
phic homeomorphism of order  2, then the induced action on HX(X) with
respect to a canonical homology basis is a matrix in T„.   If «  is even, then it is
shown in [2] that there exist hyperelliptic surfaces with the property that the
sheet interchange is the square of a conjugate holomorphic homeomorphism.  In
this case the induced action on HX(X) with respect to a canonical homology
basis is represented by an element of S„.  It is natural to ask if every element
of S„  and of T„  arise in this way.  An affirmative answer is given in §3.

In order to obtain a normalization of the period matrices of these surfaces
we consider the equivalence E ~ F iff there exists a K E Vn such that E =
KFK~X. This is an equivalence relation on S„ and T„ separately. Further-
more, if
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EXTENDED SYMPLECTIC MODULAR MATRICES 211

1(E) l -'H: 1
then EE Sn (resp. T„) iff 1(E) E S„ (resp. Tn) and E - F iff 1(E) ~ 1(F).

Theorems A and B may thus be restated in the following form.

Theorem A'. 777e same statement as Theorem A with  "S„" replaced by

~>n   •

Theorem B'. Every element of T„  is equivalent to exactly one of the
matrices

0

Y(r, t) =

h    0
0    F, o 0

-h    o
-F,

The following corollary is also useful.

Corollary 1.3. If M E Sn u Tn  then M-M.

A proof of this is given àt the end of §2.
Remark 1.4. It should be said that Theorems A' and B' give descriptions

of certain cohomology sets. There is a nonabelian cohomology theory (e.g., [5] )
which we describe here.  Let  G  and A   be topological groups, A  having the
discrete topology and let  G  operate continuously on A   as a group of automor-
phisms.  If g E G, a G A, we denote the image of a  under g  as ag.  A map
9: G —*■ A is called a cocycle if 6(gh) = 6(g)H9(h). Two cocycles are cohomol-
ogous if there exists a E A   such that  d'(h) = ah9(h)a~x   for all A.  We denote
by HX(G, A) the set of cohomology classes.

We consider now two specific calculations of these cohomology sets.  Sup-
pose G = Z2  and A = Tn  and  Z2 acts on  T_  by Ks = D~lKD where
s is the generator of Z2, K E r„  and D = [^ _.}. Thus a cocycle is a map
9: Z2 -» T„   such that  9(1) = I and   [D9(s)] 2 = I and two cocycles are
cohomologous if there exists K E Vn  suchthat KD9(s)K~l = D9'(s).  Now
if we identify 9  with 9(s) and notice that every element of An   is of the form
DM, M E r„, then it is clear that the set of equivalence classes of elements of T„
is the same as the set HX(Z2, Tn).

Also if Prn  and PAn  are  Tn  and  A„   modulo their centers, then
Theorems A' and B' give a description of HX(Z2, Prn).  Thus let  Z2  act on
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212 ROBERT ZARROW

PTn  by Ks = C_,ATC where s  is as above, K E PTn  and  C is the class of
D, defined above.  By the same reasoning used before, we see that HX(Z2, /Tn)
may be identified with the set S = {L E PAn\L2 = /}   under the equivalence of
conjugation by elements of PTn. Now we have the map  S„ U T„ —*■ S. Notice
that two elements of Sn U T„  are equivalent iff their images in S are equiva-
lent. Thus Theorems A' and B' describe Hx(Z2,Prn).

2 Proofs of main theorems.  We begin with a preliminary result.

Theorem 2.1. If M E Sn U Tn  then ME [* *], where the lower right-
hand nxn block has nothing but zeros.

Proof. Case 1: ME Sn.  In this case the proof follows after a sequence
of steps.

Step 1.  If C is an  ti x ti  skew-symmetric matrix of rank r where  0 <
r < 77  then there exists a unimodular matrix  U such that

-f;:}UC'U =

where  C,   is r x r  and nonsingular.
The proof of this is completely elementary so we omit it.
Step 2. M  is equivalent to a matrix whose lower right-hand  ti x n  block

has a right-hand column and a bottom row consisting entirely of zeros.
Proof. Let

M
[■■■ :]

and let

[<Zl       'fi    • •     P7»!        r"-'l     1     r
+ ...+ +/2

h     hj l>-i    r«-U
where we choose  q¡, r¡, s¡, t¡  as follows.   First we find relatively prime  s¡  and
t( such that s¡ain + t¡cln — 0  and then we let q¡ and r¡ be such that q¡tt -
r(Si = 1.  Clearly K E Vn  and a direct claculation shows that KM'K has the
desired form.

Step 3.  Either M satisfies the conclusion of Theorem 2.1 or M is equiva-
lent to a matrix of the form
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EXTENDED SYMPLECTIC MODULAR MATRICES 213

Bx        B2 Ax 0
- %     B3 A2 A3

-'Ax -'A2 Cx 0

0 - *A3 0 0

where Ax, Bx, Cx   axe r x r. A3  and B3  axe n - r x n - r, B2, 'A2  ate
r x n - r.   Also 0 < r < n and Cx   is nonsingular.

Proof.  By Step 2 we may assume that r = rank C < n.  If r = 0 we
are through and if r > 0 then we apply a matrix H(U) for suitable  U to
obtain a matrix whose lower right-hand  nxn matrix block has the above form.
To finish we note that the facts that  C 'A  is symmetric and  Cx   is nonsingular
imply that the upper right r x n - r block is zero.

We are now ready to give a, proof of the theorem in Case 1.  Observe that
Sx   is empty and the theorem is true for S2  by Step 2. We proceed by induc-
tion. We may assume that M has the form given in Step 3.  It is easy to verify
that

r bi ai~\

and by the induction hypothesis there exists Kx   such that KXMX *KX   has a
lower right-hand rxr block consisting of zeros.  Now if we apply K = Kx +
In_r to M we are through.

Case 2: ME Tn. The matrix T = JM has order  2  and therefore  Q2n =
Vx © V2, where  T = + / on   Vx   and  T = - / on   V2.  If we consider the
bilinear form x • My  then we see that x • My = - x • JTy = ± x • Jy,
where the last inequality holds when y E Vx U V2. It now follows from the
fact that M is symmetric and / is skew-symmetric that the bilinear forms
x • My and x • Jy both vanish if x, y E Vx   or x, y E V2. Also the fact
that J(V¡) is orthogonal to  V¡ with respect to the usual inner product on Q2n
implies that  dim Vx = dim V2 = n.   Now if Lx = Vx HZ2"   then clearly
dim L, = ti.  It is easy to see that Z2n\Lx   has no torsion so that there exists
an LQ  such that  Z2" = L0 ® /,,. The bilinear forms both vanish and thus
there is a unimodular integral matrix   K   such that    KM'K    and   KJ'K
both have zeros in the lower   nxn   block.    It is easy now to find a uni-
modular integer   S, with zeros in the upper right-hand   nxn   block, such
that SKJ'K'S = J.   Hence if L = SK, then L E Tn  and LM'L has the
desired form.
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214 ROBERT ZARROW

Corollary 2.2. Sn  is empty if n is odd.

Proof. We know that

M ~\ and   A2 = -I.
[-'A    oj

Therefore (by taking determinants) ti   must be even.
Proof of Theorem A By the previous theorem we have that

~[-A'    oj
M ~ with A2 = -I.

We show first that there exists a unimodular  U such that  UAU~x = Jk,2k = n.
Let  e¡ be the usual basis of Z"  and let Aex = axex +• • • + anen.  Since A
is unimodular  (ax,- ■ •, an) = 1.  (This notation indicates g.c.d.)   Hence by
Dirichlet's theorem there exists an integer m  such that  (a2 + max, a3, • • • , a„)
= 1.  Thus after an elementary row and column operation we may assume  (a2,
• • •, an) = 1. If V0 is the Z-submodule generated by ex and Aex then
Z"/VQ has no torsion. To see this assume w E VQ and w/p G Z" - V0>
where p  is a prime number. Then  w = aex + ßAex  =(a + ßal)ex + ßa2e2 +
• • • + ßanen, a, ß G Z.  Since (a2,- • •, a„) = 1, p\ß  and hence p\a, a con-
tradiction. Thus   VQ   is a direct summand of Z".  We may continue in this way
and after rearranging the vectors in the new basis we obtain the desired result.
Thus after applying H(lf) we see that M is equivalent to a matrix of the form
[BJ0].  If we write

then it follows from the definition of Sn  that Z?, = B2  and B2 = 'B2.  It is
easy now to find a suitable symmetric matrix 5 so that after applying G(S) we
get the desired form.

Before we prove Theorem B we need some preliminary lemmas and calcula-
tions.

Lemma 2.3. Let M¡, N¡ G S„  (J„.) wiïA M¡ ~ N,. Then Mx +• • • +
Mn ~ yV, +• • • 4- Nn.

Proof. If K¡ E r„.  is such that KiMi 'K¡ = N¡ then we need only apply
Kx +■• • + Kn  to Mx +•■• + Mn  to finish.
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EXTENDED SYMPLECTIC MODULAR MATRICES 215

Lemma 2.4.  77ie group of matrices which permute the coordinates of the
points in R" is a subgroup of the unimodular group. In fact if U is such a
permutation matrix then  'U = U~l.

Proof. Trivial.

Lemma 2.5. If

B = pi    B211&2   *3J
is symmetric, with Bx   unimodular, then

[,'i~t !T ■*"*'-£ 1
Proof. Let

l-'B2Bx    /J
and apply H(U).

Lemma 2.6. We need several facts which we collect here.

(a) [: ;1 -C :]■
['b /„"i   r b - /„*]

I   ~ I I,    if B is symmetric with BIn     °J K °J
p2    Fxl   ^ p2    II

\fx    Oj   ~[_/2   oj'

2-'„.

(c)

(d)
[/,   oj      |f,   oj

*> M+M~M
L1 °J   U. °J   U °JLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



216 ROBERT ZARROW

Proof. In each case we apply an appropriate matrix to the left-hand side.
We list matrices below. Each of these matrices belongs to Fn for the appropriate 77.

(a)

(c)

[: -.1
1    0

0  -1

1  -1

1  -1

0

1    0

I 0  -1

(b)

(d)

t2B   'J'
-10      0      1

-10      0     0

0-100

_ 0       1     — 1    0

(e)

-1    1-1

1     0      1

1     1      0

0     1      0
-10    1

0     0-1
-11    1

-10     2

1     0    -1

Corollary 2.7. M(0, t)-M(0, t). (We recall that M(0, t) is defined
in the statement of Theorem B.)

Proof. This follows by Lemma 2.6(a) and Lemma 2.3.

Lemma 2.8. Give« a symmetric matrix B, there exist positive integers k
and j such that if

«~l   0]    -   *"[-'/   Vi'm, g r„,

then

Mx ~

Fj

and   M2 ~

-/

-/
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EXTENDED SYMPLECTIC MODULAR MATRICES 217

Proof. We prove this only for Mx   since a similar argument may be applied
for Af2. The proof is by induction.

For a suitable symmetric S, G(S)M'G(S) = [B¡ ¿]   has only O's and   l's
in the uper left-hand ti x ti  block. Thus we may assume that each entry of B
is either 0  or   1.

We consider two cases.
Case I. bjj = 1 for some i. By applying H(U) for a suitable permutation

matrix U (Lemma 2.4) we may assume that i = 1. Now by Lemma 2.5 we may
assume all other elements of the first row and column are zero. Now by the induc-
tion hypothesis and Lemma 2.3 we obtain the desired result.

Case 2. bu= 0, for all i.  If all the entries in the first row are 0  then by
the induction hypothesis, Lemma 2.3 and Lemma 2.4 we get the desired result.

If all the entries in the first row are not  0, then by applying H(U)  for a
suitable permutation matrix  U (Lemma 2.4) we see that

M, -

0 1

1 0

'B,

B,

Bi

By Lemma 2.5 we may take B2 = 0.  Lemma 2.8 now follows by the
induction hypothesis, Lemma 2.3 and Lemma 2.4.

N. B. To get the corresponding result for M2   it is crucial to observe that
k   and / depend only on the parity of the entries of B.

Corollary 2.9. Mx — M2.

Proof. By the previous theorem we see that this follows immediately from
Lemmas 2.6(a), (b) and 2.3.

Lemma 2.10. //

M =
B    F,

Fn     0
Gr2„,

thenLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



218 ROBERT ZARROW

M~

hm     0
0      0

Proof. We write B = [Bif], where Btj isa 2x2  matrix. The sym-
metry of BFn  implies

B„ =m [h  ba~\

11 " h 4
And the symmetry of B implies af/ = a¡( and btj = b¡¡. Now we define a
matrix S = [Sif], where 5f/ isa  2x2  matrix, by

nra*#-
^ -- ô,y     0

-ô»   »I

í < /,

i > j,

where  2s¡ = - a¡¡,      if a,,- is even,
2s¡ = 1 - al7, if a¡¡ is odd.

S is symmetric and

G(S)AffG(S) =
B + SFn + FnS

B+SFn+FnS= [B„ + StiFx + FxS(j]. Also, B„ + SifFx + Fx Sif = 0, if
í ¥= j, and Bu + SUFX + FXSU = I2  or 0. Thus, by applying Lemma 2.4,
Lemma 2.10 follows.

Proof of Theorem B. If M E Tn, then by Theorem 2.1 we may assume
M is of the form

[a  oj
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EXTENDED SYMPLECTIC MODULAR MATRICES 219

The case n = 1  is now easy. Thus we consider the case ti > 1.  It is a fact,
proved in [3], that for any matrix A, with A2 = /, there exists a unimodular
U such that

UAU~X =
-/.

Ft

Thus by applying H(U) we see that

M ~

B.

Now if

where Bx   is 2r x 21, then

Ft

■-[:.']

If r     °J
and by Lemma 2.10

hm   0

;V~
0      0

By Lemma 2.6(c) and (d) and Lemma 2.3License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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W~

2m

'2f

ht

0

= N'.

If K E T2t is such that KN'K = N', then if we first apply Ir+S + K to M
and then use Lemma 2.4 we see that

A/~

* 0

0        B[

Ir+2t       0

¡r+2t       0

o     -/.

And by the Corollary 2.9 and Lemma 2.3 this implies that

M

Now apply Lemma 2.8 and we see

- [: :]

M ~

['
But by Lemma 2.6(c) we get

M I/. °J   If/ °J   L'» °J
Now if k > 3, by repeated use of Lemma 2.6(e) we see that

E:3-
Ir     0

0     0
,      r = 0, l,or  2.
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Thus, by Lemma 2.3 and Lemma 2.4, M ~ M(r, v + /).
To finish the proof it remains to show that no two distinct matrices of the

form M(r, t) are equivalent.  Now if we define

N(r, t) =

then, by Lemma 2.6(d) and Lemma 2.3, M(r, t) ~ N(r, t). Thus the problem is
reduced to showing that N(r, f) *f N(u, v) if r ¥= u or  t =£ v. So suppose
there exists a K E T„, K = [Ö £], such that KN(r, t)'K = N(u, v), or equiva-
lent^, KN(r, t) = N(u, v)'K~x. After multiplying, it-is clear that we must have
■S" = 0  as well as the following:
0) QtT=T'Q = I„,

(2) 2R = T-Q

The natural map  Z —► Z2  induces a ring homomorphism from GL(t7, Z)
onto GL(/7, Z2).  If a G Z, A E GL(«, Z), denote their images under this map
by a', A' respectively.  However, without confusion, we denote the images of
1, 0, /;-, Fj by  1,0, /;, Ff. Thus (1) and (2) imply

0') Q'tT>    ,_    j'tQ'

(2')

Thus

0 = r -Q'\
Ft

-Q'\ YQ'.
FtLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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And by comparing the ranks of these two matrices we see that u - r =
2(v - t). Thus if u  and r are not equal we need only consider the case u = 2,
r = 0.  Now from (2') we see that

[0,«",0] = [t'n, t'x2," ', t'Xn] - [0,'-,q'Xs+2> ?.«+i>?i<+4> 1is+3>'"]<

where s = n -2t. Thus t\¡ = 0 for / = 1,• • •, s and

t'ij = cl'ij+i<   j = s +l,s +3,"-,      t'xj = q'xj_x,   j = s +2,s + 4,'--.

Thus S/=1 t'xjqxj = 0 and t'xjq'x, + t'xj+xq'xj+x =0  for / = s + 1, s + 3,
•••  and therefore  2?=1 t'xjq'xj =0.  But (l') implies that  2" , f' ^'   = 1,
a contradiction.  So we must have u = r and hence also  v = t.   Q.E.D.

Proof of Corollary 1.3. We prove equivalently that if M E Tn U Sn
then M ~ - M.  If M E Sn  this is trivial.  If M E Tn  then M ~ M(r, t).
Now M(r, t) = Mx + M2, where

Mx =n and   M2 —

Ir-S

Now

M, El".1
~-M

^,

by Lemma 2.6(b),

by applying G(IS).

Also M2 ~ - M2  by Lemma 2.6(a).  Hence, by Lemma 2.3, M(r, t) ~
-M(r, t).

3. Symmetric and pseudo-symmetric Riemann surfaces. In this section we
consider the problem mentioned in Remark 1.2. For future reference we define
the following matrix. "F-"«}
Clearly  W E S„, n = 2k.

Let X be a Riemann surface of genus n and let  2 denote a canonical
homology basis for X. That is, 1, = (Ax,- • •, An, Bxr " , Bn), a collectionLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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of 2ti homology classes of loops with A¡ x A¡ = B¡ x Ä;. = 0, A¡ x B¡ = ô(y.
Here   " x " denotes intersection number.  If / is any automorphism of X then
let tp(f, 2) denote the matrix of the induced action on Hx (X) with respect to
2.   It is well known that  y(f, 2) G Tn (resp. An - Tn) if / is orientation pre-
serving (resp. reversing).  If \¡/,,* • •, \pn  is a basis for the space of holomorphic
1-forms on X then the matrix Z = [/B. u^.] [fA   u/.] _I   is called a period
matrix of A'.  It may be shown that Z is independent of the choice of \px,
• • •, i/>„  and Z E Hn, the Siegel upper half-plane.  Also there is an action of
An   on Hn  given as follows.   Let M = [£^]A„;then

Z • M = (DZ + ß)(CZ + i4)_1    if M G A„,

= (DZ + /3)(CZ +A)'1    if M G A„ - r„.
Lemma 3.1. // / is a holomorphic or conjugate holomorphic automorphism

of X, then Z • <p(f, 2) = Z.

Proof. Given any basis  \¡/x, - • • , \¡Jn  of the holomorphic 1-forms it is true
that f*\¡Jxr • • , f*ty„  is also a basis if / is holomorphic.  If / is conjugate
holomorphic then /*i//j,- • •, f*ipn  is a basis.  Here /*<//,- denotes pullback of
\p¡ by /.  Now if we compute the period matrix of X with respect to these two
sets of bases and set them equal we get our result.

Definition 3.2. A reflection (resp. a pseudo-reflection) / of a Riemann
surface A' is a conjugate holomorphic automorphism / such that f2 = id
(resp. f2 induces - id on HX(X)).

Theorem 3.3. Suppose X is a symmetric (resp. pseudo-symmetric) Rie-
mann surface with a reflection f (resp. pseudo-reflection).  Then it is possible to
choose a canonical homology basis  2 sucA that ip(f, 2) = Y(r, t) (resp.
V(f, 2) = W). Hence Z ■ Y(r, t) = Z (resp. Z • W = Z). Conversely, if X is a Rie-
mann surface with a period matrix Z such that Z • Y(r, t) = Z (resp. Z - W= Z)
then there exists a canonical homology basis 2 and a reflection (resp. a pseudo-
reflection) f such that <p(f, 2) = Y(r, t) (resp. y(f, 2) = W).

Proof. We consider the case when X is symmetric.  Pick any canonical
homology basis  2', and let M = y(f, 2'). Clearly M E T„. Then by Theorem
B' there is a matrix K E r„  such that KMK~X = Y(r, t) for a unique
Y(r, t).  If we apply the matrix K to the homology classes of loops in  2'  then
we obtain a new canonical homology basis  2  such that (/, 2) = Y(r, t). A
similar argument holds in the pseudo-symmetric case (here we use Theorem A').

To obtain the converse we use Torelli's theorem.  Thus if Z • M = Z then
X has a conjugate holomorphic map / and a canonical homology basis  2'  such
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that <p(f, 2') =M or - M.  But by Corollary 1.3 there exists a K E Tn  such
that KMK~X = -M and hence for a suitable  2, <p(f, 2) = M.

Remark 3.4. It follows by Theorem A' that  S„  is empty if n is odd.
Hence there exist no pseudo-symmetric Riemann surfaces of odd genus. The exis-
tence of pseudo-symmetric Riemann surfaces of every even genus was established
by Singerman [4].

Theorem 3.5. If M E T„ (resp. Sn) then there exist a Riemann surface
X of genus n, a canonical homology basis  2, and a reflection f (resp. a
pseudo-reflection f) such that <p(f, 2) = M.

Proof. We consider the case M E Tn  first.  Let  A!" be a smooth compact
oriented surface of genus n  as shown in Figure 1.   We show there exists

with r=l) (with s-r=2)

Figure 1

an orientation reversing (smooth) automorphism / of order 2  which induces
Y(r, t) on HX(X).  First we dissect X into three parts Xx, X2, X3  and define
/ on each of these parts separately. We note Xx   consists of r handles (r = 0,
1, 2), X2  consists of 2i handles and X3  consists of s-r handles. On X2
and X3, f is just a vertical reflection.  In order to define / on Xx   we first
remark that a torus has an orientation reversing map of order  2, call it g, whose
fixed point set consists of exactly one Jordan curve. The quotient surface obtained
is a Moebius strip and, for a suitably chosen canonical homology base, the induced
action on HX(X) has the matrix   [J ¿]. To see this we think of the torus as the
quotient of the plane by the lattice generated by 1, r, where Im(r) > 0, Re(r)
= V¡.. The map z -+1 covers g. Now remove a disk which intersects the fixed
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point set of g and which g maps onto itself. Attach r = 0, 1, 2  copies of
the resulting surface to obtain Xx   and let / be the restriction of g. We may
now put a conformai structure on X so that / is conjugate holomorphic.  If 2'
consists of two loops around each handle as shown then clearly y(f, 2') =
Y(r, t). Now, given any M E An - T„  of order 2, by Theorem B' there exists
K E rn  such that KMK~X = Y(r, t). Hence for an appropriate choice of canon-
ical homology base  2, <p(f, 2) = M.

The case M E Sn  is simpler. As was previously remarked we know that «
must be even and that there exists a pseudo-symmetric surface of genus ti. Let
X be such a surface with pseudo-reflection / and let  2' be a canonical homol-
ogy base. Then t¿>(/, 2') G S„  and by Theorem A' there exists a K E r„
such that M = Kip(f, 2')/v-1. Thus for a suitable canonical homology base  2,
V(f, 2) = M.

It is now an easy matter to obtain the relationship between the topological
type of the quotient surface X/f and the equivalence class of tp(f, 2) in S„ or T„.

Theorem 3.6. (1) Let X be symmetric with reflection f.   Then
(a) X/f is a nonorientable surface with 2t + r cross-caps and s-

r + 1  boundary curves iff ¡p(f, 2) = Y(r, t) for suitable  2, and r > 0.
(b) X/f is an orientable surface with t   handles and s + 1 > 2

boundary curves iff <p(f, 2) = Y(0, t), for suitable 2.
(c) Assume s = 0 or  1.  77ien X/f is either an orientable surface

with t handles and s + 1  boundary curves or a nonorientable surface with s + 1
cross-caps iff <p(f, 2) = Y(0, t) for suitable 2.

(2) // X is pseudo-symmetric with pseudo-reflection f then X/f is the
projective plane.

Proof. Let X/f have the topological type of either (l)(a) or (b).  In
(l)(a) we may assume that X/f has r cross-caps, t handles and s - r + 1
boundary curves (see e.g. [1, p. 98]).  By the proof of Theorem 2 there exist
a smooth compact oriented surface X', an orientation reversing diffeomorphism
/' and a canonical homology base  2 '  such that  X'/f'  has the same topologi-
cal type as X/f and <p(/', 2') has the desired form. Now let A:  X'/f' —*
X/f be a diffeomorphism. We may put a Klein surface structure on X'/f' so
that A  is dianalytic (see [2] for definitions). Also we can put a Riemann sur-
face structure on X' so that /'  is a reflection and the projection X' -* X'/f'
is dianalytic.  It follows now by 1.9.3 of [2] that we may lift A  to a biholo-
morphic map A': X' —» X. Now let  2 = A'(2') and ¡p(f, 2) has the desired
form. This shows necessity in (l)(a) and (b).
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@    ^ ft     *) c
t  handles *"^~ thandlés
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t  handles *7~ t  handles

Figure 2

To show necessity in (l)(c) we consider X and 2 to be as shown in Figure 2,
where (a) and (|3) represent the cases r = 0 and r = 1 respectively. If g is a
rotation and A  is left-right reflection as shown, then <p(gh, 2') = - Y(0, t),
ip(h, 2') = Y(0, t).  But by Corollary 1.3, <p(gh, 2) = r(0, t)  for suitable  2.
Now we proceed as in (l)(a) and (b) to finish.

To show sufficiency in (l)(a), (b), (c) we first remark that it follows from
the discussion in [2] that for any surface X with reflection /, X/f is never an
orientable surface without boundary and that the set of all X/fs consists precisely
of the set of all other compact surfaces Y which satisfy x(X) = 2x(Y), where*
"x" is the Euler characteristic. By checking all the cases we see that X/f must
have the topological type described in either (l)(a), (b) or (c). To finish use the
fact that the matrices   Y(r, t) aie inequivalent in T„  (Theorem B').

To prove (2) we observe that / induces a reflection /'  on X/f2.  Since
X/f2  is a sphere, /'  is either a vertical reflection or the antipodal map [2, 1.9.4].
We may eliminate the first case since if /'  had a fixed curve then so would /
and hence so would f2.

Remark 3.7. We should mention that (l)(a), (b) and (c) of the previous
theorem yield an alternative proof of part of Theorem 3.3.
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