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A CANONICAL INTEGRATION TECHNIQUE

by R. Ruth

The class of differential equations studied here 1is that in
which the equations are derivable from a Hamiltonian using a

Hamiltonian's Equations. The exact solution of such a system
of equations leads to a symplectic map from the initial con-
ditiens to the present state of the system. However, &

characteristic feature of all explicit high oarder integration
metheds 1s that they are not exactly symplectic. One manifes-
tation of this is that the Jacobian of the transformation for
one time step differs from unity; thus, the system will be
damped (or excited) artificially. This can 1lead to incorrect
phase space behaviour. The purpose of this paper is to develop
explicit third-order symplectic maps (i.e. third-order inte-
gration steps that preserve exactly the canonical character of
the -equations of motion). These can replace the typical
methods for integration with the benefit that +they can be
iterated indefinitely since they are symplectic maps. Thus
they are especfally wvaluable for studying the Tong-time
behaviour of complicated nonlinear differential equations.
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There are many different ways to integrate dif-
ferential equations numerically. These various
methods are usually characterized by the accuracy of a
single step in time. Thus if in a smail time step, h,
the integration is performed so that it is accurate
thrcugh arder h", then the method is referred to as
an nth order integration method.

The class of differential equations of interest
here is that in which the equations are derivable from
a Hamiltoniar using Hamilton's equations, The exact
solution of such a system of differential eguations
leads to a symplectic map from the initial conditions
tc the present state of the system. A characteristic
feature of all explicit high order (n>2) integration
methods, however, {s that they are not exactly symplec-
tic. One manifestation of this is That the Jacobian of
the transformation for one time step differs slightly
from unity, and so the system will be damped (or
excited} artificially. In many applications the
salient features of the solutions appear only after
long times or large numbers of fterations; in these
applications spurious damping or excitation may lead to
misteading results.

The purpcse of this note is to develop an explicit
third order symplectic map (i.e. a third order integra-
tion step that preserves exactly the canonical char-
acter of the equations of motion) and to indicate the
method fer higher order maps. For a typical numerical
integration, this method can be used to 2liminate the
noncancnical effects while providing the accuracy
corresponding to a third order integration step.

There 13 in addition another benefit of this
approach. [f we fterate a map of a given order whether
ganonical or not, eventyally the absolute error in
X ané p gets Igrge In cases where spurious damping
occurs, x and p typically settle intc some stable fixed

point<. If the map is symplectic, this is not the
case, A symplectic map generates phase space behaviour
which s close to that of the original system with

errors in phase which eventually may add up after many
interastions to yield large absclute errors in % and p

Therefore, in the sympiectic case, it Ts possible
and sometimes attractive to replace the differential
equation by a symplectic map. 1s mag then becomes
the object of study and so can be iterated as muchk as
we 1ike. This is possible since the map is the solu-
tion of some physical HamiTtconianm problem which, in
some sense, is close to the original oroblem. For
other irtegration methods this is not the case and
iterations must be terminated at some -point,

The Problem

Consider a system of differential equations gover-
ned by the Hamiltonian,

+2 +>
Ho= pt/2 + Vix,t). (1)

This is just Newton's second Taw with the potential
V(%,t). The solution of the equations of motion is
given by the functions

;(;O,BO)t) and B(}GyEO’t): (2)

where ;g and EU are the initial conditions at time

t = 0. Due to the canonical character of the equations
of motions, Equation (2) constitutes a canonical trans-
formation {or a symplectic map) frem the initial condi-
tiens to the state at time t which we denote by

(xsp) = M(t){xg,pg ). (3)

* DPresently at CERN, Genéva, Switzerland.

Now the question is:; if the parameter t is small,
can this map be found approximately to some given order
fn t? If this can be done explicitly, then the process
can easily be iterated and the error cortrolled by
adjusting the step size, t. Of course, the typical
fntegration method does just this but sacrifices the
canonical character of the mag. This we propose to
avoid., Let the approximate n order symplectic map
be dangted by

(x:p) = M (t){xg.Po),s (4)

where t is the time step {assumed small) and n is the
order of the map, i.2.

[IM(t) - Mp(t)]]=0(em1), (5)

In(t?e next section we demonstrate a method for finding
Mp(t).

The Method

To illustrate the methed first start from low
order. If we somehow perform the transformation -in
Equation (3) so that H is expressed in terms of the
initial conditions, then the equations of motion are

LR g (6)

dt dt ’
or the new Hamiltonian, H', is identically zero (or at
least independent of x3,pg). This suggests that we
make canonical trarnsformations in such a way as ta make
H vanish. Thus the program s to make these successive
canonical transformations until we arrive at the inti-
tial conditions of the problem, or at least to another

set of coordinates which approximates (xg,pgq) through
some order in t.

Let {(x1,p1) be the new coordinates. Then the
convenfent form for the generating function of the
canenical transformation s that involving the new
coordinates and old mementa:’ —

(xypb+{%1,D1)
Gen. Functionm: Fy(xy,p,t) = -xyp + G{xy,p,t} (7}
x =2 -e ., et oaplg
ap P Bx| X1 (8)
aFy
By = H+ 23 =pa+gq,
' at t

where subseripts have been ysed to denote partial deri-

vatives. Equations (8) suggest that we select
6 = - 1p%/2 + V(x,0)}t (9)
s0 that
py = p - fix,0)t x = X, +pt, {10)

where the force, f, has been introduced,

flx,0) = - av(x,0)/ax. (11)
Subsituting into the Hamiltonian yields
Hi= V{xp+ t{py+f(x,0)t),t) - V(x;,0) (12}
and expanding on the small parameter t, we have
Hy =tV (x;,0) - tprfxg,0) + 0{t?). (13)

Since Hy
differential
also 0{t).

is 0{t), the right hand sides of the
aquations from Hamilton's Equations are
Therefore, the solution is

** Work supported by U.S. Dept. of Energy.



x, = const = 0(tf) py = const * 0{t*).  (14)
So if x; and pp are usgd as initial conditions, the
error introduced is O{t*)., Thus this approach has
yielded a first order symplectic map, ML),

Since this is such a low order method, it could
have been derived by inspection; however, it
i1lustrates the method which will be used in the next
and subsequent sections. Notice that if {x1, py) are
viewed as initial conditions in Fquation (10), then the
momentum p must be calculated first and then used to
evaluate x. This 15 a characteristic feature of the
method. In addition note that the transformation leads
back to the imitial cenditions;  thus, the momentum
equation must be inverted {trivial in this casel,

The Second Order Map

1t is possible tc continue from the results of the
previous section to obtain a second order map; however,
there is a well known method (the leap frog method)
which is exactly canonical, is second order and which
requires only one evaluation of the force. In order to
understand thaf method and to lay the groundwork for a
third order map, it is useful to modify the approach in
the previcus section. The modification consists of
performing two canonical transformations rather than

one. These are given by:
{x,p}=+{x1,P1): x *x +apt, pp o= p - tflxg,bt)
2
F=owxyp-2a EEE.- £V{x,,bt], (15)

{xy,p11+{x9p2): x; = xg + {l-ajmt, Pz =P1

- F = - xzpl - (l;i)plzt.

2
Thus, there is an intermediate step at which the

force is evaluated. At this time the parameters a and

b are undetermined; however, these can be used to
generate a second order map, Substituting the two
transformations into the Hamiltonian and expanding in

the small parameter, t, yields

Hy = t£{1-22)p,F(%,0) + t(1-2)V,(x2,0} + o(t?y. {18)

The purpose of the expansion in t is to identify the
coefficients of various powers in Hy. The transforma-
tion equations in Equation {13}, however, must be kept
exactly in order to preserve the canecnical character.
Now recall from the previous saction that if H is
of 0(t"Y, and if (pp,x) are %REd as initial cond-
itions, the resulting map 15 n order, Therefore,
if we choose a
a=b=1/2, (17}
then Hy s G(tz), and the total map is second order.
T6 summarize the preceding results shift the
natation (xp+xg,Pa+Pp), rewrite the transformations in
the reaverse grder and perform  the obvious
generalisation to many dimensiaons. Then the second
order map is given by the scheme following:

i Second Order I
4= p22 v VX,
time step = h,

>
-3V/3x
= (;O:EO:tO)

Mao : (%,B) = Ma(h)(%a.Po)
given by two step process:

X, = X + Bih/2

4] s
L+ tHR . trh/2), X = X+ Bh/2

N
L), f=
initial conditions

(18}

b
o+ ot
—

1]

E
E

']

This method is well known (the leap frog method}
and used freguently in circumstances whers anomolous
damping or excitation is undesirable. Note that it is
written somewhat differently than usual since it is
calculated for one full step. Since it is useful to
have higher order maps for savings im computaticn time
and for improved accuracy of the phase space behavior,
in the next section this method is extended to third
order.,

Third Order Maps

There are many possible generalisations to extend
the procedure described in the previous sections to
higher order. The first approach that comes to mind is
tgo include more intermediate steps or additional force
avaluations. A second approach is to begin from the
secand order Hamiltonian and make yet another cananical
transformation to eliminate another order in the t de-
pendence of H. Both of these approaches are possible
in prirciple and will work: however, there is one
difficuity. The functicnal dependence in x and p of
the tarms which are of higher order in t can be quite
compiicated. Recause of the nature of canonical
transformations, one is forced to invert an equatian
p{pg)+ps{pr). This can be done explicitly only in
the simplest cases. In more complicated cases the
functional form is implicit, and thus the utility of
such an approach can be extemely diminished due to the
lack of explicit formulae.

Fortunately, for the simple HKamiltonian in
Equation (1) there is a method of aveiding this. The
key to avoiding implicit expressions lies in two
points. The first is that an exact expression relating
new to old variables is only necessary fin trans-
formation equations. "It is fine %o substitute approx-
imate perturbative expressions finto the Hamiitonian
{this has been done already].  The second point is that
only one half of the eguations fram the generating
function need to be inverted. In our case this is the
momentum equation. With this in mind a combinaticon of
the two approaches mentioned above will be used in
erder to generate a third order map. First write a
somewhat more general two step transformation given by:

2
t
(x,0)*{x1,p1):  Flx1,p,t)=-%1p- az - bt¥(xy,ct)

py = p - btflxy,ct) x = x| + apt,

(19)

(x1,pp)>{x%2,02): F= - XzPl-(E%E)Dlzt-(l-b)tV(Xz,dt)
Py = pr - (1-b)tf{xy,dt) xp = %y + {l-alpit

Subsituting inte the Hamiltonian in Equation (1)
and exparding in the small parameter, i, we find (after
some algebra)

Hy = tpafixg,0)[2(1-a) -1 ] + ¥ [l-2bc-2(1-b)d]
wt2p, ¢ [3(1-2)7b/2-1/2]> t20, [1/2-30c?/2-3(1-0)0%/2]
s t2 fib2 Bcb(l-a)—g

+ t2F2[2(1-a) (1-b)b+b?{1-a)/2-ab=(1-b]] + 0(t7).

(20)

The philosophy of selecting the free parameters in
this case 15 the same as in previous sactiens with one

axception. Since there are more equations than
ynknowns, it is impcssible to eliminate all second
order terms at this step. However, another

transformation can remove the remaining terms, provided
that the equation for the momentum transformation is
trivial to invert. Anticipating this problem, first
aliminatz all terms in Equation (20) with powers of
p;. This yields 3 equations for 3 unknowns with the
sglutions,



b=3/4 a=1/3, ¢ =2/3. (21)

In addition the terms with time derivatives both vanish
with the choice

d = 0. {22)
With this choice of parameters Hp becomes
Hy = - t2F%(x2,0)/16 + 0(t%}, (23)

The transformatfon to eliminate the last O(tz) term is

Flxz,p2) = = xapa + 2% (x3,0)/48 (24)
24
Py = P2 - t3ffx(x3,o)/24 Xy = X3

However, since x is changed, we can simply combine the
previous transformation with the second one in Eq (19).

Therefore, 1if we rewrite with the change of
notation x,+xp, generalise to the multidimensicnal
case, and rewrite the transformations in the opposite
order, we find a third order symplectic map given by
the following scheme:

_JThird order!
¥ e >

H=p%/2 + Y{x,t) , f= - aV/ax

time step = h; initial conditions = (EO,EO,tQ)

Map; {;!B) = Ma(h} (;OsEO)x
given by two step process:

ey

{25)

h;
k=23
fn
1]
o

3 - e
0 ’-’% hF{%o,te) + %gﬁ(*o-to)-?(xo,toﬂ

-

X = _):0 + 2h§11”3

> >
=Xt o P

[ 4

A More General Hamiltonian

The previous sections have considered the
Hamiltonian in Egquation {1). 1In this section we treat
a somewhat more general case given by

Ho= g(B) + vk, t). (26)

Notice that a special case of Equation {26} is the
Hamiltonian for relativistic motion. In that case

a(P) = o 5.p £ ML, (27)

In addition Egquation {26) can be used for the case of
motion in a magnetic field which is described by only
one component of the vector potential ({say A,). In
this case the independent varfable is z rather than t.
For the Hamiltonfan in Equation (26}, the
"Teap-frog” algorithm yields results correact through
secord order provided that it is modified as foilows:

r________.._____.lMcn"e General Second OrderL“-—_-____-

Ho=g(B) + v(k,t), t o= av/ak
time step = h, initial condftions (Xq,Pg.tg)
Map: (%,B) = Ma(h)(%q,Pq) (28)
given by two step process: R
1} %1 = By Xy o= Xt E.EELEL)
- 2 dp
. >
2) BBy nbGtehi) ey DO90R)
P

Again, this method is expressed for one full time step
and thus may appear somewhat different than the typical
implementation in a computer code.

In addition, 1t 1is possible to obtain a thirg
¢rder map for the more general Hamiltenfan.

In this case it is necessary to perform a three step
canonical transformation in order to aveid implicit
expressions. Using the methods developed in the
previous sections, the third order map can be written
as

_ IMore Genera) Third Orderlem—

-+

Ho=g(B) + viX,t), T - av/a%
time step = h, initial conditions (io,ﬁo,to)

Map: (;,5) = Ma(h)fio,ﬁc) (29}
given by three step process:

1) By = B et (Rosto) k=R ¢ dihgg(ﬁl)
dp
2) 52 = El + Cgh?(il,t0+d1h)

% =X+ dzhgx(sz)
P

3) B = Py + oKy, tet{dy+dy ), X = Xy + dahzgiﬁJ
dp

The ¢'s and d's must satisfy the following equations,
Citeatcy=ly, dytdp+ds=l , codpdcy(di+da)=1/2
oy 2+ c3(di+d,)2=1/3 , dy+dy{c)4cy)2+d ey 2=1/3

Notice that there are five equations for six unknowns;

(30)

thus, there are many solutions. One particularly
simple solutien is obtained by setting dy=1".

c; = 7/24 Ca = 3/4 €3 = -1/24

dy = 2/3 dyg = =2/3 dy =1 (313

Notice that this three step third order map has no der-
ivative of the force. In that semse it is the simplest
fas well as the most general) obtained here.

Conclusions and Speculations

The purpose of this note has been two-fold;
firstly to present results for third order symplactic
maps, and secondly te illustrate, in some detail, the
method in order to point the way to higher order maps,
The third order maps cobtained are not unique.

The general Hamiltonfan will probably always lead
to implicit equations for the final state in terms of
the initial conditigns; however, there is one other
interesting Hamiltonian which may have an explicit high

order map,
Ho=[P-A(X,t)]%/2

where A& is just the vector potential
magnetic figld.

(32}

for an electro-
In this case the troublesome term is

D . A (33)

This Teads to matrix inversion even in the first order
case and for order higher than two, it may be
difficult to obtain explicit formulae. However, it is
probably possible to write down a second order map and
may be possible to find an explicit third order map.
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