
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 48, Number 1, March 1975

A CANONICAL TRANSFORMATION

NEAR A BOUNDARY POINT

L.SARASON1

ABSTRACT.       A local homogeneous canonical transformation is

constructed which straightens a curved boundary and freezes the

coefficients of the principal part of a pseudo-differential operator

in the neighborhood of a nonglancing ray.

Duistermaat and Hörmander [l] have studied the propogation along

bicharacteristics of wave front sets of solutions of certain partial differ-

ential equations, using Fourier integral operators to effect a canonical

transformation taking the given operator (locally) into d/dxy   Hörmander

[2] has also studied the problem with the aid of specially constructed

pseudo-differential operators.   Lax and Nirenberg [3] have applied the latter

method to the study of boundary value problems, but thus far their approach

has not handled the glancing ray case.  As a first step towards adapting the approach

of [l] to deal with boundary value problems, we construct a canonical

transformation, away from glancing rays, which simultaneously reduces the

boundary and the equation to a convenient form.   I wish to thank Ralph

Phillips for many helpful conversations.

Let pix, t; rf, t) be a real symbol which is positive homogeneous of

degree  222 > 0,  272 an integer, and with (x, t-, £ r) e R"~    x R x Rn~ 1 x R.

Let 0 4 (£°, t°)   satisfy dp(0, 0; rf°, T°)/dr 4 0.   Let Y be a smooth sur-

face in  R", passing through (0, 0),  and such that the normal to Y at  (0, 0)

points in the direction of the  t axis.

Theorem. There is a canonical map y. ix, t, çf, r) JL,iy, s, 77, o) £ R ,

defined in a conic neighborhood U of (0, 0, rf , r ), homogeneous of degree

one in (£, 7),   and such that for ix, t,  tf, r)  ill,

(i) (x, t) £ Y => s = 0,

(ii) pix, t; £ t) = piO, 0; r,, o)   d^   p (77, o).

Received by the editors November 23,  1973.

AMS (MOS) subject classifications (1970).   Primary 35A30.

1 Sponsored by the United States Army under Contract No. DA-3I-124-ARO-D-462.

Copyright © 1975, American Mathematical Society

189
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



190 L. SARASON

Proof.    For  y to be canonical means that the Poisson brackets of the

image points satisfy

\yv y¡\ = {yv s\ = [y., a\ = \s, 77.I = Í27., a\ = 0,

is, o\= 1, {y., T).\= 8..,

def

)u   dv \      / (922 r3v      eta f3v\

¿ =(i(1), hi2)).

Our construction of  y is a modification of that given by Duistermaat

and Hörmander [l] in free space.   The functions  77. will be constructed

successively on Y x R"  by assigning each on an initial manifold transverse

to the linear span of those  h      which are already known, and such that

n~        is tangential to  Y.   This last fact will enable us to construct  s  such"i

that  s = 0 on Y.   Once   77 is constructed,  a is determined by (ii).   To ex-

tend 77 and o off of Y, we shall use the equation h 77 = 0 together with (ii);

a simple application of the chain rule shows that this construction implies

the canonical relations  {77., o\ = 0.    Finally, we shall use the initial condi-

tion  (y, s)(0, 0, 77, o) = (y. s) together with the equations  h    (y, s) =

h iy, s) = 0 to determine  (y, s).

We now construct y. Let N. be a neighborhood of (0, 0) in Y, and

C. a conic neighborhood of iç , r ) in Rn such that for (x, t) £ N. and

0¿ (£ t) eCv

(1) in, Vf >r>p ¿ 0,

where  22  is the normal to Y at  (x, t).   On  A/.,  let  v (x, t) be a nonsingular

tangential vector field such that   (i£0, r°),   v (0, 0)) = £°,  and define

(2) 77j(x, t, £ r) = <(£ r), ^jU, i)),       U, t, & r) e /Vj x Cr

Because of (1),  ¿£  ' is not tangential to  N  ,  and hence we can extend the

definition of  77    off of N. x C.   by using (2) as an initial condition for

(3) lif!,*! *'»,!?!-0.

We define recursively triples  {N., v., 77.¡, 2 = 2, • • • , 22 - 1  as follows.
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Let  N. 3(0, 0) be a smooth  (22 - l)-dimensional surface in  N.    .,  transverse

to the span of the vectors   v., • • • , v.    .   and not orthogonal to (rf  , r ) un-

less   ç: = ¿ . ., = ' 11 ¡= ¿      , = 0.   Let  v. be a nonsineular vector field in

N. such that  ((f°, r°), 22.(0, 0)) = ¿f°.   Define

(4) 77. = ((£ r), v.ix, t)),       ix, t, çf, t) £ N. x Cj,

and extend  77.  by the equations'

(5) 1*7,-. >7,-l = 0,       / < ¿,

and

(6) It7z, p\ = 0.

The consistency of the construction of  77 using (5) and (6) follows from the

identity [H , H   ] = Hi      1.   For example, the equations  [77., 77, i = 0 are

satisfied by construction along a submanifold  M,, j < k,  and  {77., p\ =

{rj,, p\ = 0 along integral curves of  H    through  M       On these integral

curves, then,

{p, \nf VkU = H{r]^klp = [Hv, Hv]p - f/^ip, 27,1 - Hv{p, r,.] = 0,

so that  [77., 77, ! = 0 along these curves.

Remark.   If Y is the hyperplane  t - 0.  it suffices to set  77 = rf on

N. x C. and use (6) to extend the definition of 77..

The condition dpiO, 0; rf°, T°)/dr 4 0, together with the above construc-

tion, ensures that there is a conic neighborhood U of  (0, 0; ¿f , t ) in

which  cr is uniquely defined by (ii) if we set cr(0, 0; çf  , r ) = t .   Locally,

er is defined as a function of Z= (77, p),  from which we conclude that

l°> vA = K ° = Z ~h> V + gl„, Pi = 0.

According to [l], we can now determine   (y, s) in  if by assigning  (y, s)

on an  22-dimensional manifold transverse to the span of  h   , } = 1, • • « , « — 1,

and  h  ,  provided that these vectors together with the radial  vector

(0, 0; rf, r) are linearly independent.   Such a manifold is the subspace

x = 0, r = 0.   To see this, we need only observe that

*_ (0, 0, £ r) = (e     0, 0, ¿Wr3/),
7

where e. is a standard unit basis vector in  i?"      ,  and that the 72th com-

ponent of hT(0, 0, tf, t) is (cf. (ii))
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do, t   x     dpoidp dPo^j)      dPodp,     „   t   w
— (0, 0, £ r) =-{-i- - Y,--> =--(0, 0, £ r) ¿ 0.
dr do  ïdr dr¡.   âr I       do   dr

We assign initial conditions

(7) (y, s)i0, 0, £ r) = (0, 0).

Using (7) together with equations  H   (y, s) = (e.0), W  (y, s) = (0, 1),  serves

to define  (y, s) in   U.

There remains to show that (i) holds.   But  s  is invariant on the integral

curves of each   H    ,  and if  (x, t) £ N.,  then  h^   '= v. is tangent to Y.
r¡.' ;' v J b

Given  (x', /',  £', r' ) e 11 with  (x', t') £ N.,  we follow successively the

integral curves of H   , i = 1, • • • , n — 1,  through  (x*, ;\ rf!,  r') till  (x, t)

hits  N¿ + 1  at   (x¿ + \ 2-'+1) and (f, r) = (£l+1, r2^1),  with   /V^  defined as the

point  (0, 0).   We conclude that for some   P = (0, 0, £", r") e U s(x, t,  £ r) =

s(P) = 0 by (7).   Theorem 1 is proved.

As a corollary of the proof, we note that if Y is the hyperplane   t = 0,

then  y can be extended to a conical neighborhood of any cone   C =

(0, 0, V\Í0¡),  where   V  is a closed simply connected cone, and where

dp/dr4 0  on   C\i0!.   Since   y(0, 0.  cf, r) = (0, 0, rf, r),  condition (ii), to-

gether with a simple homotopy argument, allows us to drop the assumption

that   V be simply connected.

Remark.    If p has the parity of 272,  then  y extends by homogeneity

to a two-sided conic set.

Some applications and extensions will be reported on elsewhere.
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