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SUMMARY

An urban canopy model is developed for spatially averaged mean winds within and above urban areas.
The urban roughness elements are represented as a canopy-element drag carefully formulated in terms of
morphological parameters of the building arrays and a mean sectional drag coefficient for a single building.
Turbulent stresses are represented using a mixing-length model, with a mixing length that depends upon the
density of the canopy and distance from the ground, which captures processes known to occur in canopies.
The urban canopy model is sufficiently simple that it can be implemented in numerical weather-prediction models.

The urban canopy model compares well with wind tunnel measurements of the mean wind profile through a
homogeneous canopy of cubical roughness elements and with measurements of the effective roughness length of
cubical roughness elements. These comparisons give confidence that the basic approach of a canopy model can be
extended from fine-scale vegetation canopies to the canopies of large-scale roughness elements that characterize
urban areas.

The urban canopy model is also used to investigate the adjustment to inhomogeneous canopies. The canonical
case of adjustment of a rural boundary layer to a uniform urban canopy shows that the winds within the urban
canopy adjust after a distance x0 = 3Lc ln K , where Lc is the canopy drag length-scale, which characterizes the
canopy-element drag, and ln K depends weakly on canopy parameters and varies between about 0.5 and 2. Thus
the density and shape of buildings within a radius x0 only determine the local canopy winds. In this sense x0 gives
a dynamical definition of the size of a neighbourhood.

The urban canopy model compares well with observations of the deceleration of the wind associated with
adjustment of a rural boundary layer to a canopy of cubical roughness elements, but only when the sectional
drag coefficient is taken to be somewhat larger than expected. We attribute this discrepancy to displacement of
streamlines around the large-scale urban roughness elements, which yields a stress that decelerates the wind.
A challenge for future research is to incorporate this additional ‘dispersive stress’ into the urban canopy model.
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1. INTRODUCTION

Mixing and transport within urban areas is important for a number of applications.
Urban areas exert enhanced drag on the boundary layer above, which may have an effect
on mesoscale weather processes (e.g. Craig and Bornstein 2002). At the other end of
the scale, local winds within urban areas form part of local weather forecasts and are
required for building design applications (e.g. Panofsky and Dutton 1984). In addition,
urban air quality is becoming an issue of increasing concern (Vardoulakis et al. 2003).
The mixing and transport of pollutants in urban areas is controlled by processes that
range from the street scale, through the neighbourhood scale, up to the city scale and
beyond (Britter and Hanna 2003). A modelling system to forecast urban air quality must
therefore be based upon a dynamical model that accounts for the mixing and transport
processes through this wide range of scales. These applications motivate the need to find
an efficient methodology to calculate the mean winds and turbulence in and above urban
areas within numerical weather prediction (NWP).

The dynamical effect of urban areas is usually represented in NWP at present
through a simple roughness length. But this approach gives no information on the mixing
and transport within the urban canopy. In addition, a roughness length can be defined
only when the wind profile near the surface is logarithmic. When the density of the
roughness elements varies over short length-scales the boundary-layer flow constantly
evolves, and it may not be possible to even define a roughness length (Cheng and
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Castro 2002a). The same issue undoubtedly frustrates attempts to measure the roughness
length of urban areas, and may explain the wide scatter in measurements reported by
Grimmond and Oke (1999). At the same time it is not practical, and probably not
desirable, to compute the flow around every building in a large city such as London,
because such an approach would require exhaustive data on building geometry and
astronomical computer power. What is required then is a more sophisticated method of
representing the dynamical effects of urban areas than a roughness length, that (i) gives
estimates for the mean winds and turbulence within the urban area, (ii) does not depend
on a logarithmic wind profile and (iii) is simple enough to be affordable in NWP.

This paper describes an urban canopy model, which provides a methodology that
satisfies these requirements. The idea underlying the urban canopy model is to represent
the roughness elements within the urban area as a porous medium which is permeable
to the air flow. The focus is on the wind representative of a spatial area: we aim to
calculate the spatially averaged wind velocity. Now, each roughness element exerts a
resistive force, or drag, on the local air flow, whose effect on the spatially averaged wind
is represented here as a body force spread smoothly through the urban canopy region.
The strength of this approach is that it avoids the unnecessary detail, and huge cost, of
resolving the flow around each individual building, but it does capture the variations in
the mean wind as the density of the buildings changes. In this sense the urban canopy
model resolves neighbourhood variations in the mixing and transport.

This general approach has been developed for flow through fine-scale roughness
elements, such as in vegetation canopies (see the recent excellent review by Finnigan
(2000)). Intuitively, this porous medium approach is expected to be well suited to
canopies of fine-scale roughness elements, where there is a separation of scales between
the size of the canopy roughness elements and the canopy itself. Simple distributed
drag models of urban areas have been proposed in the literature (e.g. Brown 2000,
Martilli et al. 2002). But urban areas have large-scale roughness elements, which do
not obviously have the separation of scales, and so the basic approach remains to be
validated. Nor have previous formulations for urban areas been rigorously based and
so they may miss important processes. Finally, the dynamical implications of an urban
canopy model have yet to be fully explored. Further aims of this paper are therefore
to develop an urban canopy model with parametrizations suitable for large-scale urban
roughness elements, and to validate this urban canopy model using wind-tunnel and
field data for flow through large-scale roughness elements.

The urban canopy model is formulated in section 2. The model contains parametri-
zations for the turbulent mixing and the canopy-element drag that are carefully chosen
using results from wind-tunnel measurements with arrays of large-scale urban-like
roughness elements. In section 3 the urban canopy model is used to calculate the
flow produced when the atmospheric boundary layer has adjusted to a very long
homogeneous urban canopy. The results are compared with wind-tunnel measurements.
In section 4 the urban canopy model is used to examine the adjustment of a rural
boundary layer to an urban canopy. Belcher et al. (2003) (hereafter BJH) developed
a quasi-linear canopy model for this process. In the present paper the fully nonlinear
dynamical equations are solved numerically, to provide a more flexible model. The cal-
culations are compared with observations. Finally, conclusions are offered in section 5.

2. FORMULATION OF THE URBAN CANOPY MODEL

The urban canopy model is formalized by averaging the governing equations, firstly
over time, as is always done in turbulent boundary-layer flows, and secondly over a
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volume (Raupach and Shaw 1982; Finnigan 2000). The averaging volume is taken to
be very thin in the vertical, and large enough in the horizontal to include a number of
canopy elements, but not so large as to lose any spatial variation in the density of canopy
elements. If the canopy is a periodic array of elements, then the averaging volume is
taken to be the repeating unit. For a real urban area, with varying building density,
we assume therefore a scale separation between the spacing of individual buildings
over which the averaging is performed, and the variations in building density, which
is resolved by the model. The spatial average is then effectively a horizontal average
and yields vertical profiles of flow variables.

Under the two operations of time and space averages, prognostic variables then
have three components, which for the streamwise velocity u are

u = U + ũ + u′. (1)

Here U = 〈u〉 is the time- and space-averaged velocity, referred to here as the mean
velocity, ũ = u − U is the spatial variation of the time-mean flow around individual
roughness elements, u′ = u − U − ũ is the turbulent fluctuation, and overbar denotes
time average and angle brackets denote spatial average.

The aim is to calculate the mean wind vector Ui(x, y, z), which is obtained by
solving the time- and space-averaged momentum equations, which following Raupach
and Shaw (1982) and Finnigan (2000) are

DUi

Dt
+ 1

ρ

∂P

∂xi
= − ∂

∂xj
〈u′

iu
′
j 〉 − ∂

∂xj
〈̃uiũj 〉 − Di. (2)

The averaging procedure thus produces three new terms in the momentum equation.
There is a spatially averaged Reynolds stress 〈u′

iu
′
j 〉, which represents spatially averaged

momentum transport due to turbulent-velocity fluctuations; there is a dispersive stress
〈̃uiũj 〉, due to momentum transport by the spatial deviations from the spatially averaged
wind; and finally, within the canopy volume, there is a smoothly varying canopy-element
drag Di , which arises from spatially averaging the localized drag due to individual
roughness elements.

There is experimental evidence (Finnigan 1985; Cheng and Castro 2002b) that near
the top of the canopy the dispersive stress is very small compared to the Reynolds stress.
The dispersive stress may be a larger fraction near the bottom of the canopy (Bohm et al.
2000), but both stresses tend to be small there. Hence, as we shall see, the drag term is
important through the whole volume of the canopy, whereas the dispersive stress can
be neglected; although we shall see in section 4 that the finite volumes of the canopy
elements lead to a dispersive stress that is important upwind of the canopy.

In the present model, the dispersive stress is therefore neglected. The urban canopy
model is completed on parametrizing the drag and the turbulent stress. These aspects
are described next.

(a) Parametrization of the canopy-element drag
In the averaged momentum equation (2) the canopy-element drag Di arises through

spatially averaging the localized drag due to individual canopy elements. The canopy-
element drag is a body force per unit volume on the spatially averaged flow and can
be related to the drag of an individual canopy element in the following way. Consider
an array of N obstacles each with frontal area Af, height h and drag coefficient cd(z),
distributed over a total averaging area At. The force acting at height z on each element
is 1/2ρU2(z)cd(z)Af dz/h. (Notice how the engineering convention is followed here
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with the drag coefficient defined including a factor of half.) The thin averaging volume
at height z is given by (1 − β)At dz, where (1 − β) is the fractional volume occupied
by air in the canopy. Hence, the total force per unit volume acting on the air at height z
is

ρDi = 1

2
ρ
cd(z)

∑
Af

hAt(1 − β)
|U |Ui. (3)

The roughness density λf = ∑
Af/At is the total frontal area per unit ground area, and

hence expresses a measure of the packing density of the obstacles (e.g. Wooding et al.
1973). The canopy-element drag can then be expressed as

Di = 1

2

cd(z)λf

h(1 − β)
|U |Ui = |U |Ui

Lc
, (4)

where the canopy drag length-scale Lc is defined by

Lc = 2h

cd(z)

(1 − β)

λf
. (5)

This canopy drag length-scale is a fundamental dynamical length-scale of the canopy, as
we shall see. The illustrative breakdown presented shows that Lc is determined by the
geometry and layout and the obstacles, as expressed by the parameters λf, β and cd(z).
The drag coefficient cd(z) has a dependence on the shape of the obstacles. If different
shapes of obstacles are present in an averaging volume then the cd(z) that appears in the
equations represents a mean value. For urban areas it is appropriate to think of canopy
elements, i.e. buildings that have a horizontal cross-section that is uniform with height.
The canopy volume may be defined as hAt, where h is the plan area weighted average
building height h ≡ ∑

hAp/
∑

Ap, and Ap is the plan area of an individual building.
Then simple geometry shows that the volume fraction β occupied by the buildings is
equal to the plan area density λp, defined as the total plan area per unit ground area:
λp = ∑

Ap/At. Hence, the canopy drag length-scale Lc can be calculated from the
morphological parameters λf, λp and h together with the drag coefficient cd(z). For an
array of cubes λf = λp ≡ λ.

It is important to appreciate that cd(z) is the sectional drag coefficient that relates
the drag at height z to the average wind speed at that height (Macdonald 2000). The
sectional drag coefficient differs from the, conventionally used, depth-integrated drag
coefficient Cdh, which is defined to relate the total drag force FD, acting over the whole
depth of the canopy element, to the mean wind speed at one particular height. When this
height is taken to be the top of the canopy element z = h, this definition yields

FD = 1
2ρCdhU

2
hAf. (6)

In contrast, D defined in (3) is the drag per unit volume of air. The values of cd(z) and
Cdh are very different as we shall see. To determine cd(z) in practice requires knowledge
of the spatially averaged wind profile and the vertical profile of the drag within the
canopy. In the next subsection, recent wind-tunnel data for the flow within an array of
cubical obstacles is used to estimate cd(z).

(b) Estimation of the sectional drag coefficient
In order to completely determine the model it is necessary to prescribe cd(z).

It is not appropriate to use values for the depth-integrated drag coefficient Cdh, which
has been measured many times. Instead, as explained above, the urban canopy model
depends upon the sectional drag coefficient, which is not measured routinely.



WINDS THROUGH URBAN AREAS 1353

0              4              8             12            16            20

0

4

8

12

16

20

H

H

H

(a) (b)

Figure 1. (a) Velocity measurements at positions indicated by dots, and (b) pressure measurements at positions
indicated by circles, on the front and back faces of a cube, in experiment of Cheng and Castro (2002b).

The numbers in (b) represent distance (mm).

Cheng and Castro (2002b) performed experiments on simulated boundary-layer
flow over a staggered array of cubical canopy elements in a wind tunnel. The array
had an obstacle density of λ = 0.25 and was sufficiently extensive for equilibrium
conditions to prevail in the test section downstream. In these equilibrium conditions
spatial averaging can be performed over a repeating unit such as is shown in Fig. 1(a).
Cheng and Castro measured the velocity profiles at the positions indicated by the dots
using laser doppler anemometry probes. They also measured the pressure over the front
and back of a cube at different positions as indicated in Fig. 1(b). These measurements
are used here to compute the drag coefficient profile cd(z) as follows.

First the velocity and pressure values at each vertical level are averaged over the
repeating unit area to yield measures of the spatially averaged mean velocity U(z) and
the pressure drop �p(z) across a cube. The sectional drag coefficient cd(z) is then
computed from the following relation:

�p(z) = 1
2ρU

2(z)cd(z). (7)

The results of this computation are shown in Fig. 2. Unfortunately, the laser doppler
anemometry velocity measurements were inaccurate below about half the height h of
the cubes because of reflections of the laser beam off the sides of the cubes (Cheng,
personal communication), and reliable values for cd(z) cannot therefore be obtained
from these measurements for z < h/2. This is reflected in the outlying data point at the
height z = 0.3h in Fig. 2. If this last data point is therefore disregarded, it is seen that
the sectional drag coefficient increases from a little below 2 at the top of the obstacle to
about 3 below 0.75h, whence it seems to tend to a constant value.

This behaviour is consistent with what would be expected intuitively: smaller values
of cd(z) at the top of the cube arise because air flows both over and around the top of
the cube, thus relieving the drag; nearer the base, the air flows only around the cube
enhancing the drag. (Note that in analogy the drag coefficient for a cylinder is higher
than for a sphere (Batchelor 1967, p. 341).) The observations in Fig. 2 suggest that tall
square-section cuboids of height h and breadth b will have cd(z) ≈ 2 within a depth of
order 0.75b of the top, where these end effects occur, and then a constant cd(z) ≈ 3 over
the remaining depth. For practical purposes, we use here a height-averaged value for
the sectional drag coefficient, denoted by cd , instead of the full vertical profile cd(z).
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Figure 2. Sectional drag coefficient computed from measurements of Cheng and Castro (2002b). The lowest
level is disregarded.

An average value of cd = 2.6 can be computed from the above results. This value would
be appropriate for use in modelling turbulent shear flow over cubes. For tall cuboids, the
end effect becomes a small fraction of the total depth and we expect cd ≈ 3. This narrow
range of typical values for cd constrains the urban canopy model well.

These trends are well supported by data from ESDU (1986), where measured
values of the drag coefficient Cdh, based on the depth-integrated mean-squared velocity∫ h

0 U2(z) dz, show an increase from about 1.2 for cubes to about 2.8 for tall cuboids.
This drag coefficient Cdh is different from Cdh in that it takes into account the vertical
velocity profile. Macdonald (2000) shows that a drag coefficient Cdh defined in this way
has a value close to the mean sectional drag coefficient cd used here. The ESDU data
refers to an isolated cube in a near logarithmic velocity profile, and gives cd ≈ Cdh = 1.2
in that case. We find above that, in the relatively dense array used by Cheng and Castro
(2002b), where the velocity profile is not logarithmic, the value of cd = 2.6. This gives
an idea of the range of variation of the mean drag coefficient cd with ambient mean
velocity profile, and hence with canopy density. Again, for practical purposes we take a
value of cd = 2, which represents an average between the values of 1.2 and 2.6.

With this value of cd , (5) reduces to

Lc = 1 − λp

λf
h (8)

and therefore Lc is here modelled as a constant length-scale.

(c) Reynolds stress parametrization
The Prandtl mixing-length model is used here to represent the spatially averaged

turbulent stress, namely
〈u′

iu
′
i〉 = l2m|S|Sij , (9)

where Sij = (1/2)(∂Ui/∂xj + ∂Uj/∂xi) is the shear rate. Here the spatially averaged
mixing length lm represents a spatially averaged turbulence integral length-scale, which



WINDS THROUGH URBAN AREAS 1355

is expected to depend on characteristics of the canopy, such as the obstacle density.
The use of the mixing-length model here is justified with three arguments. Firstly,
Raupach et al. (1996) argue that within homogeneous plant canopies the mean wind
profile develops an inflexion point at the top of the canopy, which is then unstable to
mixing-layer instability. Large mixing-layer eddies then develop, which dominate the
mixing within the canopy, sometimes leading to counter-gradient transport of scalars
(Raupach et al. 1996). This mixing is observed to lead to an exponential mean wind
profile in both vegetation canopies (Finnigan 2000) and canopies of cubical urban-like
roughness elements (Macdonald 2000). Such an exponential mean wind profile can be
recovered pragmatically by representing the turbulent transport of momentum using a
mixing-length model with a constant mixing length. Secondly, Finnigan and Belcher
(2003) show that when the canopy is inhomogeneous in the streamwise direction, so
that the mean flow is adjusting, the leading-order effect of the turbulent stress on the
mean flow can be parametrized using a mixing-length model. Thirdly, the mixing-
length model forms the basis of parametrizing turbulence in many numerical weather-
prediction models, and so it is a simple and natural choice for this application.

The general form for the spatially averaged mixing length used here is motivated
by considering two extreme cases. Firstly, if the canopy is very sparse the turbulence
structure of the boundary layer is not much affected by the canopy. The turbulent eddies
are, however, blocked by the ground, so that lm is determined by distance from the
ground; thus lm = κz, where κ is the von Karman constant. Secondly, as argued by BJH,
when the canopy is denser the boundary-layer eddies above the canopy are blocked
by the strong shear layer that forms near the top of canopy. The mixing length above
the canopy is then lm = κ(z − d), where d is the displacement height of the canopy.
Raupach et al. (1996) show that the dominant eddies through the depth of a vegetation
canopy are then produced from mixing-layer instability of this shear layer at the top of
the canopy. The spatially averaged mixing length in the canopy is then expected to be
constant with height, say lc, and to be controlled by the thickness of the shear layer,
namely h − d . This argues for a constant mixing length in the canopy, lc ∝ (h − d),
when the canopy is dense.

The spatially averaged mixing length for a general canopy is represented here by
simply interpolating between these two behaviours of sparse and dense canopies. Since
the mixing is constrained by the smaller of the two length-scales, it is appropriate to
interpolate using a harmonic mean, namely

1

lm
= 1

κz
+ 1

lc
. (10)

Equation (10) also has the attractive feature that, even when the canopy is dense,
towards the ground surface z  lc, the spatially averaged mixing length reverts to being
controlled by distance from the surface lm ≈ κz. This makes physical sense because
the local mixing length near the ground surface is expected to follow lm = κz away
from regions of recirculating flow. On taking a spatial average, we expect therefore
that spatially averaged mixing length will again follow approximately the same form,
provided the recirculating flow regions are a small fraction of the whole flow. (We
recognize that when the canopy elements become very densely packed the flow near the
ground will become dominated by the recirculating flow in wake regions, and this model
may not be adequate.) Equation (10) thus yields a spatially averaged mixing length that
gives the correct behaviour for both sparse and dense canopies and towards the ground
surface.
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Figure 3. Mixing-length profiles employed in the urban canopy model for different values of the obstacle density
λ. Also shown are values of lc/h, the size of the limiting constant eddy viscosity.

Here, to generate a closed model, lc is fixed by requiring that at the top of the canopy
the mixing length within the canopy is sκ(h − d), i.e. a factor s times the mixing length
in the boundary layer immediately above the canopy. Hence lc is determined from

1

κh
+ 1

lc
= 1

sκ(h − d)
. (11)

We shall find in section 3(a) that the urban canopy model performs well with s = 1, so
that the mixing length is continuous at the top of the canopy.

The turbulence closure is completely specified once d is specified. Based on wind-
tunnel data from Hall et al. (1998) for regular arrays of cubes, Macdonald et al. (1998)
proposed the following empirical expression for the ratio d/h as a function of λp of the
array:

d

h
= 1 + A−λp(λp − 1), (12)

where the empirical parameter A is approximately equal to 4. The value A = 4 is used
here. This empirical relationship together with (10) and (11) gives the mixing length
lm within the canopy in terms of the morphological parameters λp and h. The mixing
length above the canopy is specified to be

lm = κ(z − d), (13)

which then also ranges correctly from the sparse canopy limit, when d ≈ 0, to the dense
canopy limit, when d ≈ h.

Figure 3 shows vertical profiles of the mixing length, obtained with s = 1, for three
different canopy densities, λ = 0.11, 0.25 and 0.44, which represent a typical range for
an urban area. Also shown are corresponding values of lc/h, the size of the limiting
constant eddy viscosity, to which lm/h would asymptote in the upper part of a very
deep canopy. Here, Fig. 3 shows that lm, is very different from lc throughout the depth
of the canopy. Hence, the mixing length lm is not constant with height within the canopy.
This reflects an important difference between an urban canopy and a vegetation canopy.
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TABLE 1. DETAILS OF SET-UP OF THE SIMULATIONS

Domain size (m) Grid size

Run Section L W H Nx Ny Nz Canopy height, h (m)

A 3(a), (b) − − 200 1 1 42 2.3
B 4(a) 1000 − 100 130 1 32 2.3
C 4(c), (2D) 1000 − 200 130 1 42 2.3
D 4(c), (3D) 1000 400 100 80 24 42 2.3

See text for explanation of symbols.

Vegetation canopies are generally much deeper, and hence the mixing length in such
canopies are constant throughout much of their depth. Note that the displacement–
height ratio d/h increases monotonically with λ according to (12). Figure 3 shows
how the increase in d with λ affects the mixing-length profile in two ways. Firstly, it
reduces the thickness of the shear layer at the top of the canopy h − d , which tends to
reduce lc. This means that in the upper portion of denser canopies the mixing length
tends to be reduced and constant with height, as in the curve with λ = 0.44. For sparser
canopies lc is larger and the mixing length is more controlled by the distance from the
ground, as in the curve for λ = 0.11 in Fig. 3. BJH suggest that when λ  u2∗/U2

h ≈ 0.1,
where u∗ is friction velocity, the canopy becomes sparse, in agreement with the model
here. Secondly, the increase of d/h with λ tends to sharpen the shear layer, which then
becomes more effective in blocking the boundary-layer eddies above the canopy. Thus,
the mixing length above the canopy tends to be reduced as the canopy density increases.
Hence the turbulence closure used here, whilst simple, reproduces processes known to
control mixing in canopies.

(d) Numerical solution of the model equations
The boundary-layer flow through the urban canopy model is computed here using

the Met Office BLASIUS model with the first-order closure modified to accommodate
the mixing-length scheme described in section 2(c). The canopy-element drag was also
included in the momentum equations within the canopy region. The code then solves
the ensemble-averaged momentum, continuity and thermodynamic equations using the
anelastic extension of the Boussinesq approximation (Wood 1992; Wood and Mason
1993). All simulations here were performed for conditions of neutral stratification. The
boundary conditions are an imposed constant velocity at the top of the domain, and
no slip at the bottom. For simulations of flow over a homogeneous canopy, periodic
lateral-boundary conditions are used. Simulations of boundary-layer adjustment to a
canopy are performed using an inflow boundary condition with a prescribed logarithmic
velocity profile, and a zero second derivative outflow boundary condition. The grids are
staggered and stretched in all three directions.

The urban canopy model is initialized by specifying the values of the morphological
parameters λf, λp and h and the mean drag coefficient cd . These then allow the model
parameters Lc, lc and d to be computed from (5), (11) and (12). The underlying surface
roughness z0 also needs to be specified. Values of λf, λp and h for typical European and
American cities can be found, for example, in Grimmond and Oke (1999).

Table 1 gives details of the set-up of the simulations performed in this paper. Four
types of run, denoted by A to D, are performed and the corresponding section in the
paper where they are discussed is also indicated. In Table 1, L is the length of the
domain in the streamwise direction, W is the domain width and H is the domain height.
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The number of grid points in the streamwise, cross-stream and vertical directions are
Nx , Ny and Ny , respectively.

3. FLOW WITHIN AND ABOVE A HOMOGENEOUS CANOPY

If a steady wind blows over a very long, homogeneous, canopy of roughness ele-
ments, an internal boundary layer develops above the canopy and sufficiently far down-
stream the flow fully adjusts to the canopy. In this section we investigate the veracity of
the urban canopy model when the flow is adjusted to a homogeneous canopy. First the
wind profile within the canopy is compared with wind tunnel measurements analysed
by Macdonald (2000). Second the effective roughness of the canopy is calculated with
the urban canopy model and compared with wind tunnel measurements analysed by
Macdonald et al. (1998).

(a) Flow within a homogeneous canopy
When the canopy is sufficiently extensive the winds both within and above come

into streamwise equilibrium: they are adjusted. Within the canopy the dynamical balance
is between the vertical stress gradient and the drag force, namely

∂

∂z
〈u′w′〉 = Dx, (14)

where 〈u′w′〉 = l2m(∂U/∂z)2 and Dx = U2/Lc. For a deep canopy, according to (10),
the mixing length is constant with height: lm = lc. Equation (14) then gives

∂

∂z

(
∂U

∂z

)2

= U2

l2cLc
. (15)

Recall that we use a constant, height-independent, Lc in the present model. Equa-
tion (15) then has an exponential solution (Cionco 1965; Macdonald 2000; BJH)

U = Uh e(z−h)/ ls, (16)

where Uh is the value of the wind speed at the top of the canopy, z = h, and the shear-
layer depth (BJH) is

ls = (2l2cLc)
1/3. (17)

Equations (11) and (12) yield lc ∝ h, so that (17) gives a = h/ls ∝ (h/Lc)
1/3.

Hence, when the canopy is deep, the dimensionless wind profile, Û = U/Uh, as a
function of the dimensionless height ẑ = z/h, depends on only one parameter, namely
Lc/h, which defines the density of the canopy. Physically, Lc determines the depth into
the canopy to which horizontal momentum is mixed before being removed by canopy
drag. Hence, Lc/h measures this length compared to the depth of the canopy h. When
the canopy is sparse, so that the ground surface changes the mixing length and the mean
wind profile, there is also a dependence on the roughness length of the ground, through
the parameter z0/h.

The dependence of the normalized, adjusted, wind profile on the parameter Lc/h
is illustrated in Fig. 4. These wind profiles have been computed using the urban canopy
model presented in this paper. The plots confirm that when plotted against ẑ, Û (ẑ)
depends only on the value of Lc/h. Indeed, profiles for canopies with different values
of Lc and h, but with the same value of Lc/h, collapse onto each other, as shown for
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Figure 4. Variation of normalized wind profiles with the canopy density Lc/h. Notice how profiles with the
same value of Lc/h collapse onto each other, even if Lc and h differ. The values of roughness density λ were
computed from Lc with cd = 2. We classify canopies with Lc/h > 5 as sparse and canopies with Lc/h < 5 as

dense. The ratio of underlying surface roughness to canopy height z0/h is 0.005.

the cases with h = 2.3 m, Lc = 12.0 m and h = 4.4 m, Lc = 22.9 m, both of which
have the same value of Lc/h = 5.3. (Notice the small differences in wind speed near
the surface, where the different values of z0/h play a weak role.) The wind profiles are
approximately exponential in the upper part of the canopy, but sparser canopies take on
a more logarithmic shape because of the linear mixing length closure near the surface
(10). This is shown by the curve with Lc/h = 15, which corresponds to λf = 0.0625.
Hence, the full solution is sufficiently flexible that it agrees with the analytical solution
for dense canopies, while yielding the correct behaviour in the sparse limit. Figure 4
also suggests that canopies with Lc/h > 5, which corresponds to λ < 0.15 if cd = 2, are
sparse and canopies with Lc/h < 5, which corresponds to λ > 0.15 if cd = 2, are dense.
Interestingly, most urban areas are then sparse (and hence the exponential solution
does not apply), whereas forest canopies are usually dense (and hence the exponential
solution does apply).

Macdonald (2000) used vertical profiles of the horizontal wind speed through a
canopy of cubes measured in a wind tunnel by Macdonald et al. (1998) to calculate
a vertical profile of the spatially averaged wind. He then showed that the spatially
averaged wind profiles can be approximated reasonably well by the exponential profile
(16) provided that λf < 0.3, the upper limit corresponding to the onset of skimming
flow. From these fits to data, Macdonald showed that the attenuation coefficient a varies
with the packing density of the cubes, and λf according to the approximately linear
relationship a = 9.6λ. These data are shown in Fig. 5.

Also shown in Fig. 5 is the variation of a with λf obtained from the analytical
exponential solution, which yields

a = h/ls = h/(2l2cLc)
1
3 , (18)

where lc = sκ(h − d) and d is obtained from (12). Two curves are shown. When s = 1,
so that the mixing length is continuous across the top of the canopy, the calculated values
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Figure 5. Attenuation coefficients a of exponential fits to wind profiles computed by urban canopy model (plus
signs), compared with data measured by Macdonald et al. (1998) (circles), a best-fit straight line a = 9.6λ to that

data (dotted line), and with analytical model (up and down triangles).

of a are smaller than the observations. However, when s = 1/2, so that, as argued by
Macdonald (2000), the mixing length within the canopy is one half the mixing length
immediately above the canopy, then the values of a calculated from this exponential
solution agree with the measurements much better.

Finally, also shown in Fig. 5 are the values of a obtained by fitting an exponential
solution to the wind profiles shown in Fig. 4, which were computed from the full urban
canopy model (with s = 1 and cd = 2). These values also agree reasonably well with the
measurements. (Similar values obtained with s = 1/2 (not shown) do not agree well.)
The urban canopy model agrees with the observations of a when s = 1 because the
profiles from the urban canopy model are significantly different from the analytical
exponential solution, mainly because for these values of λf the mixing length varies
through most of the depth of the canopy (see Fig. 3), rather than being constant with
height.

We conclude that the present urban canopy model gives reasonable agreement with
the wind profiles measured by Macdonald for flow adjusted to the canopy, over the range
of packing densities.

(b) The effective roughness length of a canopy
Measurements by Cheng and Castro (2002b) show that the spatially averaged flow

above the canopy may be described by an effective roughness length zeff
0 , right down to

the top of the roughness elements. Several methods have been proposed in the literature
for obtaining this effective roughness length from the geometry and distribution of the
roughness elements, with varying degrees of success (see e.g. Lettau 1969; Raupach
1992; Bottema 1996, 1997; Macdonald et al. 1998), as reviewed by Grimmond and Oke
(1999). The urban canopy model is now used to calculate the effective roughness length,
as it is clearly important that it yields good estimates for this parameter.

In the present approach, the canopy drag length-scale Lc is first computed as a
function of roughness density using (5). The flow above such a canopy is then solved
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numerically, and the effective roughness length zeff
0 extracted from the logarithmic

portion of the mean velocity profile. This is therefore a two-tiered approach which first
represents the obstacle array as a canopy, then solves for the flow over this canopy.
Using this procedure, the urban canopy model is here validated against wind-tunnel
data on roughness lengths of arrays of cubical obstacles (Hall et al. 1998). The drag
and turbulent stress are parametrized as described in section 2. Based on the above
estimation of the drag coefficient profile over cubes, a mean value of cd = 2 is used for
the sectional drag coefficient. The turbulent stress is parametrized using the displaced
mixing-length scheme. In this scheme, specification of d is necessary to close the model.
The effective roughness is quite sensitive to the value of d and it is therefore important
that reasonable values of d are used. Here, the empirical relationship of Macdonald et al.
is used, as given by (12).

Lettau (1969) proposed a very simple empirical relationship relating the surface
roughness z0 of a group of obstacles of mean height h to its frontal area density λf :

z0/h = 0.5λf. (19)

This formula works well for low obstacle densities, but fails when λf increases beyond
about 0.2. In particular, it predicts a linear increase of roughness with λf, whereas
experimental data shows a peak in roughness at about λf = 0.2. Macdonald et al. (1998)
developed a simple analytical model based on physical assumptions, and showed how
Lettau’s model could be generalized by incorporating the effect of obstacle density on
the displacement height, using the empirical expression (12). Their expression for z0
had the form

z0/h =
(

1 − d

h

)
exp

[
−

{
Cdh

2κ2

(
1 − d

h

)
λf

}− 1
2
]
, (20)

where κ is the von Karman constant. Using the value Cdh = 1.2, they obtained the curve
shown in Fig. 6, which agrees very well with wind tunnel roughness data for cubes (Hall
et al. 1996), also shown for comparison.

Using the same empirical expression for d given in (12), the roughness lengths
computed by the present urban canopy model are also shown in Fig. 6. The comparison
indicates that the urban canopy model predicts roughness lengths broadly in agreement
with the experimental data and with the simple analytical model of Macdonald et al.
In particular it faithfully reproduces the characteristic peak in z0/h at the correct value
of λf. In comparing these two models, we recall that the canopy approach adopted here
incorporates a drag formulation which is defined over the whole depth of the canopy.
Hence, it differs from the bulk drag approach adopted by Macdonald et al. We note,
however, that the value of cd = 2 used here and the value of Cdh = 1.2 used by these
authors are consistent with each other, since it was shown in the last section that a value
of cd = 2 could be deduced from Cheng and Castro’s measurements whilst they obtained
a value of Cdh = 1.1 from the same dataset. The model of Macdonald et al. has been
assessed as one of the better performing morphometric models for estimating roughness
lengths for real urban areas in the recent review of Grimmond and Oke (1999). Hence,
it is encouraging that the present urban canopy model gives comparable results to the
method of Macdonald et al.

Figure 7 shows values of z0/h obtained from these simulations plotted against the
canopy parameter Lc/h. This curve also shows a peak in z0/h. Given that the peak
appears at a value of Lc/h ≈ 5, canopies with this value of Lc/h have maximum non-
dimensional roughness z0/h and in this sense are optimally rough. The significance of
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Figure 6. Roughness lengths z0/h computed from the urban canopy model as a function of λf. Urban canopy
model uses a value of cd = 2.

10
1

10
0

10
1

10
2

Lc/h

10
3

10
2

10
1

10
0

z 0/
h

Figure 7. Roughness lengths z0/h computed from the urban canopy model as a function of Lc/h (see text).

this curve is that it should apply to arrays with obstacles of any shape, not just cubes.
This is in contrast to the z0/h vs. λf curve, where one would expect a different curve for
obstacles with a different aspect ratio, owing to different values of cd .

4. ADJUSTMENT OF A RURAL BOUNDARY LAYER TO AN URBAN CANOPY

In this section we consider the canonical problem of a logarithmic rural boundary
layer adjusting to a homogeneous canopy of urban roughness elements. BJH developed
a quasi-linear analytical model to consider this adjustment problem. They showed that,
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above the canopy, zeff
0 varies smoothly with fetch through an adjustment region from

the upstream roughness to the equilibrium roughness length of the canopy. BJH also
presented analytical calculations and scaling arguments for the adjustment within the
canopy. The analytical model of BJH is valid in the limit of a sparse canopy, when the
canopy induces small perturbations to the rural wind profile. Here we perform fully
nonlinear numerical simulations with the urban canopy model which are more generally
applicable to sparse as well as denser canopies.

(a) Adjustment of winds within an urban canopy
BJH argue on the basis of scaling arguments motivated by linear analysis that Lc

represents a length-scale for an incident wind profile to adjust to the canopy. They show
that the wind adjusts on a length-scale of order x0 given by the expression

x0 ∼ Lc ln K, (21)

where K = (Uh/u∗)(h/Lc). Here h is the canopy height and Uh is the mean wind speed
at the canopy top.

In the appendix, a different but related problem is considered which reinforces the
dynamical significance of Lc as an adjustment length-scale. An initial perturbation to an
equilibrium wind profile within a canopy is also shown to decay with a relaxation length-
scale of Lc downstream of the perturbation. Although the dynamics of this problem are
somewhat different from the first one it is interesting that Lc again plays the role of an
adjustment length-scale, albeit under somewhat restrictive initial perturbations.

Here the adjustment problem is again addressed, this time using the present nonlin-
ear urban canopy model. The scaling analysis of BJH is unable to give a value for the
scaling coefficient in (21). Hence, numerical experiments are now performed to validate
(21) and to compute the value of the scaling coefficient.

A number of numerical experiments are performed to simulate the nonlinear
adjustment of an initially logarithmic rural wind profile to an urban-type canopy. Three
of the runs, corresponding to Lc = 18.4, 13.1 and 7.8 m, are shown for illustration. The
canopy height h = 2.3 m. This height was chosen to correspond to the height of the
cubical obstacles used in the ‘field’ experiment of Davidson et al. (1995) discussed in
section 4(b). Although this canopy height is clearly much smaller than typical urban
building heights, the relevant dimensionless parameters, such as z0/h used here do
correspond to realistic values. Moreover, all results presented here are in dimensionless
form. For each of these runs, vertical profiles of mean horizontal wind speed, non-
dimensionalized by Uh, corresponding to fetches of Lc, 2Lc, 3Lc and 4Lc from the
leading edge of the canopy, are shown in Fig. 8. This figure shows that the adjustment is
quite rapid, occurring within a few Lc. In Fig. 9 the ratio x0/Lc is plotted against the log
factor ln K appearing in (21). In computing ln K , it is assumed that the incident wind
profile is logarithmic, so that Uh/u∗ = 1/κ ln(h/z0), where z0 is the upstream roughness
length. The range of values shown in Fig. 9 corresponds to λ values of between 0.11 and
0.31, as encountered in typical urban areas. A linear fit to the five data points is also
shown. It shows that, although there is some curvature apparent in the data, (21) holds
reasonably well as a first approximation and gives a value for the scaling coefficient of
approximately 3. As a rule of thumb, therefore, mean winds adjust within a distance

x0 = 3Lc ln K, (22)

where the log factor varies between 0.5 and 2 for typical urban parameters. Note,
however, that the log scaling must eventually break down for very sparse canopies, when
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Figure 8. Adjustment of mean wind profile in a canopy for three different values of the canopy drag length-scale
Lc: (a) 18.4 m, (b) 13.1 m and (c) 7.8 m. Mean wind speed is normalized by its value at the canopy top.
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Figure 10. Evolution of mean wind speed at top of canopy Uh corresponding to the values of Lc of Fig. (8).

the parameter h/Lc becomes very small and ln K then becomes negative. Hence, care
must be taken not to extrapolate (22) outside its range of validity. The length-scale x0
then gives a dynamical length-scale to a neighbourhood: the urban morphology within
a radius x0 determines the local canopy winds.

We note that the relatively rapid adjustment described above pertains to the wind
profile within the canopy normalized by Uh. However, Uh itself is proportional to the
local friction velocity in the boundary-layer flow above once the flow in the canopy has
adjusted. The wind at the top and above the canopy follows a much longer development
as the boundary layer above adjusts to the new enhanced roughness of the urban area.
This is indicated by the plots in Fig. 10, which show the development with fetch of the
wind speed at the top of the canopy normalized by the upstream wind speed at the same
height, Uh/U0. These plots show a residual slow decrease in Uh/U0 beyond x > x0.
Hence, the adjustment of the flow within the canopy is really an adjustment to the local
turbulent stress at the top of the canopy, which is itself evolving slowly downwind.

(b) The adjustment number Nc

It has been common practice in the literature to quantify wind adjustment through a
regular array in terms of the number of rows. It is proposed here that Lc is a better way
of characterizing the adjustment. It may be misleading to quote adjustment distances
as a given number of rows because that number will be different for arrays of different
obstacle densities. Nevertheless, it is sometimes useful to estimate roughly the number
of rows for mean winds to adjust through a regular array. This is here done for the case of
a cubical array as a function of the obstacle density. Consider cubes of side h separated
by a distance w in an aligned array, where w is the total separation, including the width
of the obstacles. Then Lc is given by (5) as

Lc/h = 2

cd

(
1 − λ

λ

)
, (23)
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where λ = λf = λp = (h/w)2. Defining a new dimensionless adjustment parameter
Nc ≡ Lc/w, we find

Nc = 2

cd

(
1√
λ

− √
λ

)
. (24)

The number of rows for the mean wind to adjust is then given by 3Nc ln K .
Figure 11 shows a plot of Nc as a function of λ for cd = 2. Macdonald et al. (2000)
performed wind tunnel simulations with arrays of cubes with, e.g. λ = 0.16, and h/z0 ≈
40. These figures imply that the flow is adjusted after 3Nc ln K ≈ 2 rows. This agrees
with the measurements of Macdonald et al. (2000), who observed little change in
vertical profiles of mean horizontal velocity within arrays after the second row.

(c) Wind deceleration through a canopy
Results from the urban canopy model are now compared with the measurements of

Davidson et al. (1995, 1996), who performed two sets of experiments using staggered
arrays of obstacles as shown in Fig. 12. The first was a field experiment with obsta-
cle dimensions w × b × h = 2.2 m × 2.45 m × 2.3 m, while the second was a wind
tunnel boundary-layer experiment with w = b = h = 0.12 m. Both experiments were
conducted under conditions of neutral stratification. The incident wind profile was log-
arithmic, with z0 = 11 mm, u∗ = 0.49 m s−1 (field) and z0 = 0.4 mm, u∗ = 0.21 m s−1

(wind tunnel). The obstacle density λf = λp was equal to 0.11. Davidson et al. measured
the time-mean streamwise velocities at half canopy height at several locations in the
cross-stream direction. Lateral averages were computed and are used here as measures
of the spatially averaged wind (Fig. 12).

Figure 13 shows the streamwise variation of U at half the obstacle height obtained
from the urban canopy model, together with comparisons with the measurements of
Davidson et al. (1995, 1996) and the quasi-linear model of BJH. The parameters used
in the simulations were taken from the field experiment only, since the results from the
wind tunnel collapse onto these when non-dimensionalized as in Fig. 13. This collapse
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Figure 13. Deceleration of mean wind at half the roughness element height through canopy of roughness
elements. Comparison of the urban canopy model with the measurements of Davidson et al. (1995, 1996).

The canopy lies between x/b = 0 and 18; b is defined in Fig. 12.

occurs because the relevant dimensionless parameters, namely h/L, L/Lc and z0/h
(where L is the total length of the canopy and h is its height) are approximately the same
in both experiments. Hence the simulations have h = 2.3 m, L = 44.1 m and an incident
logarithmic velocity profile with u∗ = 0.49 m s−1 and z0 = 0.011 m. The obstacle
density λp = 0.11, so that (12) yields d/h = 0.24.

The canopy drag length-scale Lc was tuned to give the best fit. With the mixing-
length scheme of the urban canopy model, (11), (12) and (13), this tuning yields
Lc = 11 m. For this choice of parameters, the urban canopy model gives good agreement
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Figure 14. Surface plot of spatially averaged mean wind speed at half canopy height through the Davidson et al.
(1995, 1996) array. Vertical axis: wind-speed U (m s−1); horizontal axes: streamwise and lateral position.

with the data. The overall shape of the deceleration curve is captured throughout. Also
shown in Fig. 13 is the corresponding curve from the quasi-linear theory of BJH,
which employed the simple mixing length scheme, namely lm = κz, with the value
of Lc = 7.8 m. For direct comparison a numerical simulation employing the simple
mixing-length scheme with the same value of Lc = 7.8 m is also shown. There is
excellent agreement between the nonlinear urban canopy model and the quasi-linear
theory within the canopy. The quasi-linear model underpredicts the wind speed in the
recovery region beyond the canopy, however.

The value of Lc = 11 used here with the urban canopy model corresponds to cd =
3.3. This value is smaller than the value of cd = 4.7, which corresponds to Lc = 7.8,
required to give good agreement with the simple mixing-length model. The reason is
that the mixing-length model in the urban canopy model yields greater mixing and so
the wind speed at z = h/2 is reduced to a level in agreement with the observations for a
smaller value of cd . Nevertheless, cd = 3.3 is higher than the mean value of 2 obtained
from measurements in section 2(b), although it is not far outside the expected range of
2–3.

Close examination of Fig. 13 reveals that, at the leading edge of the canopy, x = 0,
the urban canopy model gives U/U0 ≈ 0.85, whereas the measurements from the field
experiment give U/U0 ≈ 0.7. BJH argue that the deceleration at the leading edge of the
canopy is enhanced by the finite volumes of the canopy elements displacing streamlines
over and around the canopy elements, yielding a substantial dispersive stress. We
interpret the large value of cd as being at least partly due to the blocking effect by
the large canopy elements, which is also responsible for the large velocity reduction at
the leading edge of the canopy as indicated by the data in Fig. 13. It seems likely that
a quantitative model incorporating this ‘finite volume effect’ as well as the drag force
would yield good agreement with the data with a smaller, and perhaps more physically
plausible, value of cd .

Comparisons between two-dimensional (2D) and 3D simulations show that the
spatially averaged flow along the axis of the canopy is essentially 2D, so that the lateral
size of the canopy itself plays no significant role as far as the mean flow within the bulk
of the canopy is concerned. The essentially 2D structure of the 3D flow is evident from
the surface plot in Fig. 14. Here the spatially averaged mean wind at half canopy height
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is plotted as a function of both streamwise fetch and lateral distance. Sections through
this plot parallel to the streamwise axis at different lateral positions would appear very
similar, showing that there is little lateral variation in the mean wind-speed within the
canopy.

5. CONCLUSIONS

We have developed an urban canopy model to calculate the spatially averaged mean
winds within and above urban areas. The spatial averaging approach inherent in the
canopy formalism provides a natural way of handling the inhomogeneity of urban areas,
which presents serious conceptual and computational difficulties to other approaches.
The urban canopy model captures the variations in the spatially averaged mixing and
transport induced by changes in density and type of urban roughness elements, such
as in passing from rural to suburban to fully urban surfaces. The formal averaging
procedure upon which the urban canopy model is based is the same as that involved
in plant canopies. However, important differences exist in the way the drag and mixing
are parametrized. Particular care is taken to develop parametrizations which reflect the
differences between urban and vegetation canopies, and which take into account the fact
that buildings are large obstacles. This distiguishes the present urban canopy model both
from vegetation canopy models and other urban canopy models in the literature. The
urban roughness elements are represented by a canopy-element drag which is computed
from their morphological parameters and a mean sectional drag coefficient. The value
of the drag coefficient used is important; it is here derived from experimental data
for turbulent shear flow over surface-mounted cubes. Turbulent mixing is represented
using a mixing-length model with a mixing length that depends upon the density of
the canopy and distance from the ground, which captures processes known to occur in
canopies. Unlike vegetation, urban canopies are not ‘deep’. Hence, the mixing length
is not constant with height in the canopy. This has the effect that vertical profiles of
spatially averaged mean velocity are not exponential in urban canopies.

An attractive feature of the urban canopy model is that only a few parameters
are needed to initialize it, namely the morphological parameters λf, λp and h, and the
mean drag coefficient cd . The parameters λf, λp and h, are relatively straightforward to
estimate (see e.g. Grimmond and Oke 1999). Experimental measurements of cd(z) for a
variety of obstacle densities and arrangements are not currently available, but based
on existing data we believe that the mean coefficient cd is sufficiently constrained,
and recommend a value of 2 for modelling urban areas. The urban canopy model is
sufficiently simple that it can be implemented in NWP.

The urban canopy model compares well with wind tunnel and field measurements
of the profiles of spatially averaged wind above and within regular arrays of cubical
obstacles. These comparisons offer strong evidence that the basic canopy approach is
appropriate for modelling the spatially averaged flow through the groups of large-scale
roughness elements that make up urban areas.

An aspect of urban areas that significantly complicates both measurement and
modelling is the heterogeneity over a range of length-scales. Although the canopy
approach involves averaging over short scales, it can resolve the response of the spatially
averaged flow to changes in the density and type of roughness elements. Hence we have
used the present fully nonlinear urban canopy model to study the canonical problem of
adjustment of a rural boundary layer to an urban canopy. Numerical simulations support
the scaling proposed by BJH for the distance x0, required for the wind profile within the
canopy to adjust to the urban canopy, and suggest that

x0 = 3Lc ln K, (25)
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where ln K depends weakly on canopy parameters and varies between 0.5 and 2.
Hence the density and type of roughness elements within a radius x0 affect the local
winds within the urban canopy. In this sense x0 provides a dynamical definition of a
neighbourhood.

The present urban canopy model and the quasi-linear model of BJH agree well
with the measurements taken by Davidson et al. (1995, 1996) of adjustment of a rural
boundary layer to an urban canopy, but only when they have larger values of the drag
coefficient than the range of values of 2–3 estimated from measurements. The nonlin-
ear urban canopy model, which has a more complete mixing-length parametrization,
requires a value of 3.3, whereas the quasi-linear model of BJH requires an even larger
value of 4.7. Whilst the value of 3.3 is only a little higher than the measured range,
the measurements indicate that the wind decelerates more upwind of the canopy than
suggested by the urban canopy model. Following BJH we attribute this deceleration
to streamline deflection caused by the large volumes of the large-scale urban roughness
elements. This streamline deflection then yields a dispersive stress upwind of the canopy
that decelerates the spatially averaged wind. Hence, although the dispersive stress is
probably small once the flow has adjusted to the canopy, it is large just upwind of a
canopy, or in the vicinity of isolated large buildings. It remains an important task for
future work to incorporate this process into the urban canopy model.
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APPENDIX A

Decay of perturbations to an equilibrium profile within a canopy
In this appendix, we consider perturbations of an equilibrium wind profile within

a canopy and investigate how they decay with distance downstream. To simplify the
analysis, it is assumed that the canopy is homogeneous and two-dimensional. The
equations of motion for the perturbations can be derived from the momentum and
continuity equations for the full spatially averaged fields U and W by writing, for
example U = U0 + u. The equations for the perturbed quantities are then linearized
by neglecting products of perturbation quantities. Using units such that the fluid density
ρ = 1, this gives the following equations:

U0
∂u

∂x
+ w

∂U0

∂z
+ ∂p′

∂x
= ∂τ ′

∂z
− D′, (A.1)

U0
∂w

∂x
+ ∂p′

∂z
= ∂τ ′

∂x
, (A.2)

∂u

∂x
+ ∂w

∂z
= 0, (A.3)
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where U0 is the unperturbed equilibrium horizontal wind velocity, and u, w, τ ′, p′ and
D′ are the perturbations from the equilibrium values of the mean horizontal velocity,
vertical velocity, stress, pressure and drag force respectively. The pressure can be
eliminated from the above equations to give

U0

(
∂2w

∂z2
+ ∂2w

∂x2

)
− U ′′

0 w = ∂D′

∂z
+ ∂2τ ′

∂x2
− ∂2τ ′

∂z2
. (A.4)

With the stress and drag force parametrized by τ = l2m (∂U/∂z)2 and D = U2/Lc,
respectively, the perturbations τ ′ and D′ are given by

τ ′ = 2l2m
∂U0

∂z

∂u

∂z
, (A.5)

D′ = 2U0u/Lc. (A.6)

If we assume that the initial equilibrium profile U0(z) is exponential within the
canopy (see section 4), being given by

U0(z) = Uh exp{a(z/h − 1)}, (A.7)

and that the initial perturbation is simply proportional to U0,

u(0, z) = εU0(z), (A.8)

then (A.4) has a solution which decays exponentially with distance x downstream of the
perturbation:

u(x, z) = u(0, z) exp(−x/Lc), (A.9)

with a characteristic e-folding length-scale of magnitude Lc.
This simple result indicates that the parameter Lc acts as some kind of adjustment

length-scale, and reinforces the conclusions arrived at on the basis of scaling analysis in
BJH and the numerical simulations presented in the present paper.
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