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Abstract

In recent years, many new definitions of fractional derivatives have been proposed
and used to develop mathematical models for a wide variety of real-world systems
containing memory, history, or nonlocal effects. The main purpose of the present
paper is to develop and analyze a Caputo–Fabrizio fractional derivative model for the
HIV/AIDS epidemic which includes an antiretroviral treatment compartment. The
existence and uniqueness of the system of solutions of the model are established
using a fixed-point theorem and an iterative method. The model is shown to have a
disease-free and an endemic equilibrium point. Conditions are derived for the
existence of the endemic equilibrium point and for the local asymptotic stability of
the disease-free equilibrium point. The results confirm that the disease-free
equilibrium point becomes increasingly stable as the fractional order is reduced.
Numerical simulations are carried out using a three-step Adams–Bashforth predictor
method for a range of fractional orders to illustrate the effects of varying the fractional
order and to support the theoretical results.
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1 Introduction

Human immunodeficiency virus (HIV), which leads to acquired immunodeficiency syn-

drome (AIDS), destroys the human body’s ability to fight infections. The disease is very

dangerous and can be fatal if untreated. Since the first AIDS case was discovered in 1981

[1], HIV has spread worldwide and over 35 million people have died from AIDS-related

illness. At the end of 2016, approximately 36.7million peoplewere livingwithHIV, and ap-

proximately 1.8 million new infections were occurring globally each year [2]. According to

UNAIDS data reported in June 2016 [3], around 18.2 million people living with HIV were

receiving antiretroviral therapy (ART). The US Center for Disease control and Preven-

tion (CDC) [4] reported in 2017 that without treatment of HIV/AIDS with antiretroviral

medicine, HIV infection advances through several stages and individuals with AIDS typ-

ically survive about 3 years. Antiretroviral HIV/AIDS therapy involves the simultaneous

management of two or more antiviral drugs which can assist patients to live longer and

restore their immune system [5]. In 2016, the regions worst affected by HIV/AIDS were

located in eastern and southern Africa with nearly 10.3 million people being treated for
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HIV. This number has more than doubled since 2010, while AIDS-related deaths in these

regions have decreased by 38% since 2010. Some official reports indicate that between

2000 and 2016 in Africa, HIV-related deaths fell by one-third and the ART helped in sav-

ing 13.1 million lives [2]. Although the antiretroviral therapy cannot completely eliminate

the virus, it can reduce the level sufficiently to prevent transmission from an HIV+ person

to an uninfected person. Effective ART can also help prevent mother-to-child transmis-

sion of HIV, and thus significantly decrease the risk of transmission to future generations

[6, 7]. Although antiretroviral therapies have been successful in decreasing the mortality

rate in some regions, it is still necessary to increase antiretroviral therapies in other re-

gions. Many HIV/AIDS epidemic models have been proposed to predict and control the

spread of the disease (see, e.g., [3, 8–11] and the references cited therein).

In recent decades, many physical problems have been modeled using the fractional cal-

culus. Themain reasons given for using fractional derivativemodels are thatmany systems

showmemory, history, or nonlocal effects, which can be difficult tomodel using integer or-

der derivatives. The basic theory and applications of fractional calculus and fractional dif-

ferential equations can nowbe found inmany studies (see, e.g., [12–16]). Althoughmost of

the early studies were based on the use of the Riemann–Liouville fractional order deriva-

tive or the Caputo fractional order derivative, it has been pointed out recently that these

derivatives have the problem that their kernels have a singularity that occurs at the end

point of an interval of definition. As a result, many new definitions of fractional derivatives

have now been proposed in the literature (see, e.g., [17–25]). The fundamental differences

among the fractional derivatives are their different kernels which can be selected to meet

the requirements of different applications. For example, the main differences between the

Caputo fractional derivative [13], the Caputo–Fabrizio derivative [19], and the Atangana–

Baleanu fractional derivative [26] are that the Caputo derivative is defined using a power

law, the Caputo–Fabrizio derivative is defined using an exponential decay law, and the

Atangana–Baleanu derivative is defined using a Mittag–Leffler law. Examples of the ap-

plications of the new fractional operators to real world problems have been given in a num-

ber of recent papers. For example, Tateishi et al. [21] have compared the classical and new

fractional time-derivatives in a study of anomalous diffusion. Also, Atangana et al. have

compared theCaputo–Fabrizio fractional derivative and theAtangana–Baleanu fractional

derivative in modeling fractional delay differential equations [27] and in modeling chaotic

systems [26]. They found that the power law derivative of the Riemann–Liouville frac-

tional derivative or the Caputo–Fabrizio fractional derivative provides noisy information

due to its specificmemory properties. However, the Caputo–Fabrizio fractional derivative

gives less noise than the power law one while the Atangana–Baleanu fractional derivative

provides an excellent description.

In the present paper, we apply the Caputo–Fabrizio fractional derivative with an expo-

nential decay kernel to a novel HIV/AIDS epidemic model that includes an antiretroviral

treatment compartment. The existence and uniqueness of the solution of the fractional

model are established using fixed-point theory and an iterative method. The organization

of this paper is as follows. The definition of the Caputo–Fabrizio fractional derivative and

some of its important properties are given in Sect. 2. The fractional model for HIV/AIDS

with treatment compartment is described in Sect. 3. In Sect. 4, the existence and unique-

ness of the solutions of the model are discussed. In Sect. 5, we determine the equilibrium

points of the model and give conditions for local asymptotic stability. Section 6 describes
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the numerical method used for solving the model and gives results of numerical simula-

tions. Lastly, some conclusions are presented in Sect. 7.

2 Preliminaries

Because of the singularity in the kernel of the Caputo fractional derivative [28, 29] at the

end point of the interval of integration, the Caputo fractional derivative is not always a

suitable kernel to accurately describe the memory effect in a real system. Caputo and Fab-

rizio [19] have recently proposed a new fractional derivative without any singularity in its

kernel. The kernel of the new fractional derivative has the form of an exponential func-

tion. More recently, Losada and Nieto [20] derived the fractional integral associated with

the new fractional Caputo–Fabrizio fractional derivative. In this section, we summarize

the definitions and properties for the Caputo–Fabrizio (CF) fractional operators required

in this paper.

Let H1(a,b) = {f |f ∈ L2(a,b) and f ′ ∈ L2(a,b)}, where L2(a,b) is the space of square inte-

grable functions on the interval (a,b).

Definition 1 Let f ∈H1(a,b) and ρ ∈ (0, 1). Then the Caputo–Fabrizio fractional deriva-

tive [19] is defined as

CFD
ρ
t

(
f (t)

)
=
M(ρ)

1 – ρ

∫ t

a

f ′(x) exp

[
–ρ

t – x

1 – ρ

]
dx, (1)

whereM(ρ) is a normalization function such thatM(0) =M(1) = 1.However, if f /∈H1(a,b),

then the derivative is defined as

CFD
ρ
t

(
f (t)

)
=

ρM(ρ)

1 – ρ

∫ t

a

(
f (t) – f (x)

)
exp

[
–ρ

t – x

1 – ρ

]
dx. (2)

Remark 1 ([19]) If we let σ = 1–ρ

ρ
∈ (0,∞), then ρ = 1

1+σ
∈ (0, 1). In consequence, Eq. (2)

can be reduced to

CFD
ρ
t

(
f (t)

)
=
N(σ )

σ

∫ t

a

f ′(x) exp

[
–
t – x

σ

]
dx, (3)

whereN(σ ) is the normalization term corresponding toM(ρ) such thatN(0) =N(∞) = 1.

Remark 2 ([19]) We have the following property:

lim
σ→0

1

σ
exp

[
–
t – x

σ

]
= δ(x – t), where δ(x – t) is the Dirac delta function. (4)

The above Caputo–Fabrizio fractional derivative was later modified by Losada and Nieto

[20] as

CFD
ρ
t

(
f (t)

)
=
(2 – ρ)M(ρ)

2(1 – ρ)

∫ t

a

f ′(x) exp

[
–ρ

t – x

1 – ρ

]
dx. (5)

The fractional integral corresponding to the derivative in Eq. (5) was defined by Nieto and

Losada [20] as follows.
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Definition 2 Let 0 < ρ < 1. The fractional integral of order ρ of a function f is defined by

CFI
ρ
t

(
f (t)

)
=

2(1 – ρ)

(2 – ρ)M(ρ)
f (t) +

2ρ

(2 – ρ)M(ρ)

∫ t

0

f (x)dx, t ≥ 0. (6)

Remark 3 ([20]) From the definition in Eq. (6), the fractional integral of Caputo–Fabrizio

type of a function f of order 0 < ρ < 1 is a mean between the function f and its integral of

order one, i.e.,

2(1 – ρ)

(2 – ρ)M(ρ)
+

2ρ

(2 – ρ)M(ρ)
= 1, (7)

and thereforeM(ρ) = 2
2–ρ

, 0 < ρ < 1.

UsingM(ρ) = 2
2–ρ

, Losada and Nieto proposed the new Caputo derivative and its corre-

sponding integral as follows.

Definition 3 ([20]) Let 0 < ρ < 1. The fractional Caputo–Fabrizio derivative of order ρ of

a function f is given by

CFD
ρ
t

(
f (t)

)
=

1

1 – ρ

∫ t

a

f ′(x) exp

[
–ρ

t – x

1 – ρ

]
dx, t ≥ 0, (8)

and its fractional integral is defined as

CFI
ρ
t

(
f (t)

)
= (1 – ρ)f (t) + ρ

∫ t

0

f (x)dx, t ≥ 0. (9)

3 Caputo–Fabrizio fractional model for HIV/AIDS with treatment compartment

In this section, we consider theHIV/AIDS epidemicmodel with a treatment compartment

proposed by Huo et al. [1]. In this model, it is assumed that the total population N(t) at

time t is divided into five compartments, namely, S(t) represents the number of suscep-

tible patients, I(t) represents the number of HIV-positive individuals who are infectious

(i.e., who are not receiving antiretroviral ARV treatment or for whom the treatment is

not effective), A(t) represents the number of individuals with full-blown AIDS who are

not receiving ARV treatment or for whom the treatment is not effective, T(t) represents

the total number of individuals being treated with ARV and for whom the treatment is

effective, and R(t) represents the number of individuals who have changed their sexual

habits sufficiently so that they are immune to HIV infection by sexual contact. Yusuf and

Benyah [30] determined that the individuals in the R(t) class are people who have safe sex-

ual habits and maintain those habits for the rest of their lives. Hence, the total population

is N(t) = S(t) + I(t) +A(t) + R(t) +T(t) and the original integer-order model adopted from
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[1] can be written as

dS

dt
= Λ – βIS –µ1S – dS,

dI

dt
= βIS + α1T – dI – k1I – k2I,

dA

dt
= k1I – (δ1 + d)A + α2T ,

dT

dt
= k2I – α1T – (d + δ2 + α2)T ,

dR

dt
= µ1S – dR.

(10)

All parameters in themodel are assumed to be positive constants and the definitions are

as follows. Λ is the recruitment rate of susceptible people into the population, β denotes

the contact rate between the susceptible and the infectious people, µ1 is the rate at which

susceptible individuals change their sexual habits per unit time, d is the natural death rate,

α1 is the rate at which treated individuals leave compartment T(t) and return to the infec-

tious compartment, k1 represents the rate at which individuals leave the infectious class

and become individuals with full-blown AIDS, k2 denotes the rate at which individuals

with HIV receive treatment, δ1 and δ2 are the disease-induced death rates for individuals

in compartments A(t) and T(t), respectively, and α2 represents the rate at which treated

individuals leave the treated class and enter the AIDS compartment A(t).

To obtain our fractional derivative model, we replace the first-order time derivatives of

the left-hand side of (10) by the fractional Caputo–Fabrizio derivative defined in Eq. (5).

Our new Caputo–Fabrizio fractional model for HIV/AIDS with the treatment compart-

ment can therefore be written as follows:

CFD
ρ1
t S = Λ – βIS –µ1S – dS,

CFD
ρ2
t I = βIS + α1T – dI – k1I – k2I,

CFD
ρ3
t A = k1I – (δ1 + d)A + α2T ,

CFD
ρ4
t T = k2I – α1T – (d + δ2 + α2)T ,

CFD
ρ5
t R = µ1S – dR,

(11)

with initial conditions

S(0) = S0, I(0) = I0, A(0) = A0, T(0) = T0, R(0) = R0. (12)

In the theoretical treatment, we will assume that the fractional orders (0 < ρi < 1, i =

1, 2, . . . , 5) for each of the five populations can be different.

4 Existence and uniqueness of solutions of themodel

In this section, we investigate the existence and uniqueness of the solutions of theCaputo–

Fabrizio fractionalmodel forHIV/AIDS in Eq. (11) with initial conditions (12). Using fixed

point theory (see, e.g., [31, 32]), we can prove existence of solutions for the model as fol-

lows.
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Applying the Caputo–Fabrizio fractional integral operator in Eq. (6) to both sides of

Eq. (11), we obtain

S(t) – S(0) = CFI
ρ1
t [Λ – βIS –µ1S – dS],

I(t) – I(0) = CFI
ρ2
t [βIS + α1T – dI – k1I – k2I],

A(t) –A(0) = CFI
ρ3
t

[
k1I – (δ1 + d)A + α2T

]
,

T(t) – T(0) = CFI
ρ4
t

[
k2I – α1T – (d + δ2 + α2)T

]
,

R(t) – R(0) = CFI
ρ5
t [µ1S – dR].

(13)

Then, for computational convenience, we define the following kernels:

K1(t,S) = Λ – βI(t)S(t) –µ1S(t) – dS(t),

K2(t, I) = βI(t)S(t) + α1T(t) – dI(t) – k1I(t) – k2I(t),

K3(t,A) = k1I(t) – (δ1 + d)A(t) + α2T(t),

K4(t,T) = k2I(t) – α1T(t) – (d + δ2 + α2)T(t),

K5(t,R) = µ1S(t) – dR(t),

(14)

and the functions

Ω(ρ) =
2(1 – ρ)

(2 – ρ)M(ρ)
and ω(ρ) =

2ρ

(2 – ρ)M(ρ)
. (15)

In proving the following theorems, we will assume that S, I,A,T , and R are nonnegative

bounded functions, i.e., ‖S(t)‖ ≤ θ1,‖I(t)‖ ≤ θ2,‖A(t)‖ ≤ θ3,‖T(t)‖ ≤ θ4, and ‖R(t)‖ ≤ θ5

where θ1, θ2, θ3, θ4, and θ5 are some positive constants. Denote

γ1 = βθ2 +µ1 + d, γ2 = βθ1 + d + k1 + k2, γ3 = δ1 + d,

γ4 = α1 + d + δ2 + α2, γ5 = d.
(16)

Applying the definition of the Caputo–Fabrizio fractional integral in Eq. (6) to Eq. (13),

we obtain

S(t) – S(0) =Ω(ρ1)K1(t,S) +ω(ρ1)

∫ t

0

K1(y,S)dy,

I(t) – I(0) = Ω(ρ2)K2(t, I) +ω(ρ2)

∫ t

0

K2(y, I)dy,

A(t) –A(0) = Ω(ρ3)K3(t,A) +ω(ρ3)

∫ t

0

K3(y,A)dy,

T(t) – T(0) = Ω(ρ4)K4(t,T) +ω(ρ4)

∫ t

0

K4(y,T)dy,

R(t) – R(0) = Ω(ρ5)K5(t,R) +ω(ρ5)

∫ t

0

K5(y,R)dy.

(17)
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Theorem 4 If the following inequality holds

0≤ M = max{γ1,γ2,γ3,γ4,γ5} < 1, (18)

then the kernels K1,K2,K3,K4, and K5 satisfy Lipschitz conditions and are contractionmap-

pings.

Proof We consider the kernel K1. Let S and S1 be any two functions, then we have

∥∥K1(t,S) –K1(t,S1)
∥∥ =

∥∥–βI(t)
(
S(t) – S1(t)

)
–µ1

(
S(t) – S1(t)

)

– d
(
S(t) – S1(t)

)∥∥. (19)

Using the triangle inequality for norms on the right-hand side of Eq. (19), we obtain

∥∥K1(t,S) –K1(t,S1)
∥∥ ≤

∥∥βI(t)
(
S(t) – S1(t)

)∥∥ +
∥∥µ1

(
S(t) – S1(t)

)∥∥

+
∥∥d

(
S(t) – S1(t)

)∥∥

≤
(
β
∥∥I(t)

∥∥ +µ1 + d
)∥∥S(t) – S1(t)

∥∥

≤ (βθ2 +µ1 + d)
∥∥S(t) – S1(t)

∥∥

= γ1
∥∥S(t) – S1(t)

∥∥, (20)

where γ1 is defined in Eq. (16). Similar results for the kernels K2,K3,K4, and K5 can be

obtained using {I, I1}, {A,A1}, {T ,T1}, and {R,R1}, respectively, as follows:

∥∥K2(t, I) –K2(t, I1)
∥∥ ≤ γ2

∥∥I(t) – I1(t)
∥∥,

∥∥K3(t,A) –K3(t,A1)
∥∥ ≤ γ3

∥∥A(t) –A1(t)
∥∥,

∥∥K4(t,T) –K4(t,T1)
∥∥ ≤ γ4

∥∥T(t) – T1(t)
∥∥,

∥∥K5(t,R) –K5(t,R1)
∥∥ ≤ γ5

∥∥R(t) – R1(t)
∥∥,

where γ2,γ3,γ4, and γ5 are defined in Eq. (16). Therefore, the Lipschitz conditions are

satisfied for K1,K2,K3,K4, and K5. In addition, since 0≤ M = max{γ1,γ2,γ3,γ4,γ5} < 1, the

kernels are contractions. �

From Eq. (17), the state variables can be displayed in terms of the kernels as follows:

S(t) = S(0) +Ω(ρ1)K1(t,S) +ω(ρ1)

∫ t

0

K1(y,S)dy,

I(t) = I(0) +Ω(ρ2)K2(t, I) +ω(ρ2)

∫ t

0

K2(y, I)dy,

A(t) = A(0) +Ω(ρ3)K3(t,A) +ω(ρ3)

∫ t

0

K3(y,A)dy,

T(t) = T(0) +Ω(ρ4)K4(t,T) +ω(ρ4)

∫ t

0

K4(y,T)dy,

R(t) = R(0) +Ω(ρ5)K5(t,R) +ω(ρ5)

∫ t

0

K5(y,R)dy.

(21)
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Using Eq. (21), we now introduce the following recursive formulas:

Sn(t) = Ω(ρ1)K1(t,Sn–1) +ω(ρ1)

∫ t

0

K1(y,Sn–1)dy,

In(t) = Ω(ρ2)K2(t, In–1) +ω(ρ2)

∫ t

0

K2(y, In–1)dy,

An(t) = Ω(ρ3)K3(t,An–1) +ω(ρ3)

∫ t

0

K3(y,An–1)dy, (22)

Tn(t) = Ω(ρ4)K4(t,Tn–1) +ω(ρ4)

∫ t

0

K4(y,Tn–1)dy,

Rn(t) = Ω(ρ5)K5(t,Rn–1) +ω(ρ5)

∫ t

0

K5(y,Rn–1)dy.

The initial components of the above recursive formulas are determined by the given initial

conditions as follows:

S0(t) = S(0), I0(t) = I(0), A0(t) = A(0),

T0(t) = T(0), R0(t) = R(0).
(23)

The differences between the consecutive terms for the recursive formulas can be written

as

φn(t) = Sn(t) – Sn–1(t) = Ω(ρ1)
(
K1(t,Sn–1) –K1(t,Sn–2)

)

+ω(ρ1)

∫ t

0

(
K1(y,Sn–1) –K1(y,Sn–2)

)
dy,

ψn(t) = In(t) – In–1(t) = Ω(ρ2)
(
K2(t, In–1) –K2(t, In–2)

)

+ω(ρ2)

∫ t

0

(
K2(y, In–1) –K2(y, In–2)

)
dy,

ξn(t) = An(t) –An–1(t) = Ω(ρ3)
(
K3(t,An–1) –K3(t,An–2)

)

+ω(ρ3)

∫ t

0

(
K3(y,An–1) –K3(y,An–2)

)
dy,

χn(t) = Tn(t) – Tn–1(t) = Ω(ρ4)
(
K4(t,Tn–1) –K4(t,Tn–2)

)

+ω(ρ4)

∫ t

0

(
K4(y,Tn–1) –K4(y,Tn–2)

)
dy,

ηn(t) = Rn(t) – Rn–1(t) = Ω(ρ5)
(
K5(t,Rn–1) –K5(t,Rn–2)

)

+ω(ρ5)

∫ t

0

(
K5(y,Rn–1) –K5(y,Rn–2)

)
dy.

(24)

Note that:

Sn(t) =

n∑

i=1

φi(t), In(t) =

n∑

i=1

ψi(t), An(t) =

n∑

i=1

ξi(t),

Tn(t) =

n∑

i=1

χi(t), Rn(t) =

n∑

i=1

ηi(t).

(25)
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Next, we formulate the recursive inequalities for the differences φn(t), ψn(t), ξn(t),χn(t),

and ηn(t) as follows:

∥∥φn(t)
∥∥ =

∥∥Sn(t) – Sn–1(t)
∥∥

=

∥∥∥∥Ω(ρ1)
(
K1(t,Sn–1) –K1(t,Sn–2)

)

+ω(ρ1)

∫ t

0

(
K1(y,Sn–1) –K1(y,Sn–2)

)
dy

∥∥∥∥. (26)

Applying the triangle inequality for norms to Eq. (26), we obtain

∥∥Sn(t) – Sn–1(t)
∥∥ ≤ Ω(ρ1)

∥∥K1(t,Sn–1) –K1(t,Sn–2)
∥∥

+ω(ρ1)

∫ t

0

∥∥K1(y,Sn–1) –K1(y,Sn–2)
∥∥dy.

Then, since the kernel K1 satisfies the Lipschitz condition with Lipschitz constant γ1, we

have

∥∥Sn(t) – Sn–1(t)
∥∥ ≤ Ω(ρ1)γ1‖Sn–1 – Sn–2‖

+ω(ρ1)γ1

∫ t

0

‖Sn–1 – Sn–2‖dy.

Thus, we obtain

∥∥φn(t)
∥∥ ≤ Ω(ρ1)γ1

∥∥φn–1(t)
∥∥ +ω(ρ1)γ1

∫ t

0

∥∥φn–1(y)
∥∥dy. (27)

In a similar manner, we can obtain the following results:

∥∥ψn(t)
∥∥ ≤ Ω(ρ2)γ2

∥∥ψn–1(t)
∥∥ +ω(ρ2)γ2

∫ t

0

∥∥ψn–1(y)
∥∥dy,

∥∥ξn(t)
∥∥ ≤ Ω(ρ3)γ3

∥∥ξn–1(t)
∥∥ +ω(ρ3)γ3

∫ t

0

∥∥ξn–1(y)
∥∥dy,

∥∥χn(t)
∥∥ ≤ Ω(ρ4)γ4

∥∥χn–1(t)
∥∥ +ω(ρ4)γ4

∫ t

0

∥∥χn–1(y)
∥∥dy,

∥∥ηn(t)
∥∥ ≤ Ω(ρ5)γ5

∥∥ηn–1(t)
∥∥ +ω(ρ5)γ5

∫ t

0

∥∥ηn–1(y)
∥∥dy.

(28)

Theorem 5 If there exists a time t0 > 0 such that the following inequalities hold:

Ω(ρi)γi +ω(ρi)γit0 < 1, for i = 1, 2, . . . , 5, (29)

then a system of solutions exists for the fractional HIV model (11)–(12).

Proof Since the functions S(t), I(t),A(t),T(t), and R(t) are assumed to be bounded and

each of the kernels satisfies a Lipschitz condition, the following relations can be obtained
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using Eqs. (27)–(28) recursively:

∥∥φn(t)
∥∥ ≤

∥∥S(0)
∥∥[

Ω(ρ1)γ1 +ω(ρ1)γ1t
]n
,

∥∥ψn(t)
∥∥ ≤

∥∥I(0)
∥∥[

Ω(ρ2)γ2 +ω(ρ2)γ2t
]n
,

∥∥ξn(t)
∥∥ ≤

∥∥A(0)
∥∥[

Ω(ρ3)γ3 +ω(ρ3)γ3t
]n
, (30)

∥∥χn(t)
∥∥ ≤

∥∥T(0)
∥∥[

Ω(ρ4)γ4 +ω(ρ4)γ4t
]n
,

∥∥ηn(t)
∥∥ ≤

∥∥R(0)
∥∥[

Ω(ρ5)γ5 +ω(ρ5)γ5t
]n
.

Equation (30) shows the existence and smoothness of the functions defined in Eq. (25).

To complete the proof, we prove that the functions Sn(t), In(t), An(t), Tn(t), Rn(t) con-

verge to a system of solutions of (11)–(12). We define Bn(t),Cn(t),Dn(t),En(t), and Fn(t) as

the remainder terms after n iterations, i.e.,

S(t) – S(0) = Sn(t) – Bn(t),

I(t) – I(0) = In(t) –Cn(t),

A(t) –A(0) = An(t) –Dn(t), (31)

T(t) – T(0) = Tn(t) – En(t),

R(t) – R(0) = Rn(t) – Fn(t).

Then, using the triangle inequality and the Lipschitz condition for K1, we have

∥∥Bn(t)
∥∥ =

∥∥∥∥Ω(ρ1)
(
K1(t,S) –K1(t,Sn–1)

)

+ω(ρ1)

∫ t

0

(
K1(y,S) –K1(y,Sn–1)

)
dy

∥∥∥∥

≤ Ω(ρ1)
∥∥K1(t,S) –K1(t,Sn–1)

∥∥

+ω(ρ1)

∫ t

0

∥∥K1(y,S) –K1(y,Sn–1)
∥∥dy,

≤ Ω(ρ1)γ1‖S – Sn–1‖ +ω(ρ1)γ1‖S – Sn–1‖t.

Applying the above process recursively, we obtain

∥∥Bn(t)
∥∥ ≤

[(
Ω(ρ1) +ω(ρ1)t

)
γ1

]n+1
θ1. (32)

Then at t0, we obtain

∥∥Bn(t)
∥∥ ≤

[(
Ω(ρ1) +ω(ρ1)t0

)
γ1

]n+1
θ1. (33)

Taking the limit on Eq. (33) as n → ∞ and then using condition (29), we obtain ‖Bn(t)‖ →

0. Using the same process as described above, we have the following relations:

∥∥Cn(t)
∥∥ ≤

[(
Ω(ρ2) +ω(ρ2)t0

)
γ2

]n+1
θ2, (34)
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∥∥Dn(t)
∥∥ ≤

[(
Ω(ρ3) +ω(ρ3)t0

)
γ3

]n+1
θ3, (35)

∥∥En(t)
∥∥ ≤

[(
Ω(ρ4) +ω(ρ4)t0

)
γ4

]n+1
θ4, (36)

∥∥Fn(t)
∥∥ ≤

[(
Ω(ρ5) +ω(ρ5)t0

)
γ5

]n+1
θ5. (37)

Similarly, taking the limit on Eqs. (34)–(37) as n → ∞ and then using condition (29), we

have ‖Cn(t)‖ → 0,‖Dn(t)‖ → 0,‖En(t)‖ → 0, and ‖Fn(t)‖ → 0. Therefore, the existence of

the system of solutions of system (11)–(12) is proved. �

We now give conditions for the system of solutions to be unique.

Theorem 6 System (11) along with the initial conditions (12) has a unique system of solu-

tions if the following conditions hold:

(
1 –Ω(ρi)γi –ω(ρi)γit

)
> 0 for i = 1, 2, 3, 4, 5. (38)

Proof Assume that {S1(t), I1(t),A1(t),T1(t),R1(t)} is another set of solutions ofmodel (11)–

(12) in addition to the solution set {S(t), I(t),A(t),T(t),R(t)} proved to exist in Theorems

4 and 5. Then

S(t) – S1(t) = Ω(ρ1)
(
K1(t,S) –K1(t,S1)

)

+ω(ρ1)

∫ t

0

(
K1(y,S) –K1(y,S1)

)
dy. (39)

Taking the norm on both sides of Eq. (39) and using the triangle inequality, we obtain

∥∥S(t) – S1(t)
∥∥ ≤ Ω(ρ1)

∥∥K1(t,S) –K1(t,S1)
∥∥

+ω(ρ1)

∫ t

0

∥∥K1(y,S) –K1(y,S1)
∥∥dy. (40)

Using the Lipschitz condition for the kernel K1, we find

∥∥S(t) – S1(t)
∥∥ ≤ Ω(ρ1)γ1

∥∥S(t) – S1(t)
∥∥ +ω(ρ1)γ1t

∥∥S(t) – S1(t)
∥∥. (41)

Then, rearranging Eq. (41), we obtain

∥∥S(t) – S1(t)
∥∥(
1 –Ω(ρ1)γ1 –ω(ρ1)γ1t

)
≤ 0. (42)

Finally, applying condition (38) for i = 1 to Eq. (42), we obtain

∥∥S(t) – S1(t)
∥∥ = 0, (43)

and therefore S(t) = S1(t).

Applying a similar procedure to each of the following pairs (I(t), I1(t)), (A(t),A1(t)),

(T(t),T1(t)), and (R(t),R1(t)) with inequality (38) for i = 2, 3, 4, 5, respectively, we obtain

I(t) = I1(t), A(t) = A1(t), T(t) = T1(t), R(t) = R1(t). (44)
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Thus, the uniqueness of the system of solutions of the fractional order system is proved.�

In summary, the existence of the solutions of the model described in Eqs. (11) and (12)

can be obtained by requiring that 0 ≤ M = max{γ1,γ2,γ3,γ4,γ5} < 1, where γ1,γ2,γ3,γ4,

and γ5 are the Lipschitz constants of the kernels K1,K2,K3,K4, and K5, respectively. More-

over, the uniqueness of the system of solutions of the considered system can be established

using the inequalities in Eq. (38).

5 Equilibrium points of themodel and asymptotic stability

We can determine the equilibrium points of the fractional order system (11) by equating

its right-hand side to zero. Solving the resulting algebraic system, we obtain two equilib-

rium points, namely, a disease-free and an endemic equilibrium point, which are the same

as the equilibrium points given in [1]. Let E0 = (S0, I0,A0,T0,R0) denote the disease-free

equilibrium point of the model and E∗ = (S∗, I∗,A∗,T∗,R∗) denote the endemic equilib-

rium point of the model. From [1], we have the disease-free equilibrium point given by

E0 =
(
S0, I0,A0,T0,R0

)
=

(
Λ

µ1 + d
, 0, 0, 0,

Λµ1

d(d +µ1)

)
, (45)

and the endemic equilibrium point given by

S∗ =
Λ

βI∗ +µ1 + d
, I∗ =

(R0 – 1)(µ1 + d)

β
, A∗ =

k1I
∗ + α2T

∗

d + δ1
,

T∗ =
k2I

∗

α1 + d + δ2 + α2

, R∗ =
µ1Λ

d(βI∗ +µ1 + d)
,

(46)

where the basic reproduction number R0, which can be obtained using the next generation

matrix method [33, 34], is written as

R0 =
βΛ(d + δ2 + α1 + α2)

(µ1 + d)[(d + k1 + k2)(d + δ2 + α1 + α2) – α1k2]
. (47)

It can be noticed that the unique endemic equilibrium point E∗ exists if R0 > 1.

Consider the following fractional-order linear system described by the Caputo–Fabrizio

derivative:

CFD
ρ
t x(t) = Ax(t), (48)

where x(t) ∈ Rn,A ∈ Rn×n, and 0 < ρ < 1.

Definition 7 ([35]) The characteristic equation of system (48) is

det
(
s
(
I – (1 – ρ)A

)
– ρA

)
= 0. (49)

Theorem 8 ([35]) If (I – (1 – ρ)A) is invertible, then system (48) is asymptotically stable

if and only if the real parts of the roots to the characteristic equation of system (48) are

negative.
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The linearization matrix of model (11) evaluated at the disease-free equilibrium point

E0 is

J
(
E0

)
=

⎡
⎢⎢⎢⎢⎢⎢⎣

–d –µ1 – βΛ

µ1+d
0 0 0

0 βΛ

µ1+d
– d – k1 – k2 0 α1 0

0 k1 –δ1 – d α2 0

0 k2 0 –α1 – d – δ2 – α2 0

µ1 0 0 0 –d

⎤
⎥⎥⎥⎥⎥⎥⎦
. (50)

If model (11) has a commensurate order, i.e., ρ1 = ρ2 = ρ3 = ρ4 = ρ5 = ρ ∈ (0, 1), then the

characteristic equation of the linearized system of model (11) at E0 is

det
(
s
(
I – (1 – ρ)J

(
E0

))
– ρJ

(
E0

))
= 0. (51)

Theorem 9 The disease-free equilibrium point E0 of model (11) with a commensurate or-

der ρ ∈ (0, 1) is asymptotically stable if and only if real parts of the roots of the characteristic

equation (51) are negative.

Proof Equation (51) is a quintic polynomial equation. Then we denote its five roots by

s1, s2, s3, s4, and s5. However, it is not difficult to find the first three roots of Eq. (51). They

are as follows:

s1 =
ρd

(ρ – 1)d – 1
, s2 =

ρ(δ1 + d)

(ρ – 1)d + (ρ – 1)δ1 – 1
,

s3 =
ρ(µ1 + d)

(ρ – 1)d + (ρ – 1)µ1 – 1
.

It is obvious to see that s1, s2, and s3 are negative because 0 < ρ < 1. The rest two roots of

Eq. (51), i.e., s4, s5 can be found from the following equation:

det

([
a –s(1 – ρ)α1 – ρα1

–s(1 – ρ)k2 – ρk2 b

])
= 0, (52)

where

a = s

(
1 – (1 – ρ)

(
βΛ

µ1 + d
– d – k1 – k2

))
– ρ

(
βΛ

µ1 + d
– d – k1 – k2

)
,

b = s
(
1 – (1 – ρ)(–α1 – d – δ2 – α2)

)
– ρ(–α1 – d – δ2 – α2).

(53)

If real parts of the two roots of Eq. (52) are negative, i.e., Re(s4) < 0 and Re(s5) < 0, then the

equilibrium point E0 of model (11) is asymptotically stable by Theorem 8. �

6 Three-step Adams–Bashforth scheme and numerical simulations

In recent years, there have been many new analytical methods developed for solving the

wide variety of nonlinear fractional derivative models that have been used as models of

real world problems. The new analytical methods include the homotopy analysis Sumudu

transform technique (HASTM) [36], the homotopy analysis transform method (HATM)
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[37] and the local fractional homotopy perturbation Laplace transform method (LFH-

PLTM) [38]. In addition, many numerical methods for obtaining approximate solutions of

fractional differential equations have been developed. These methods are typically based

on discretization of the independent variable and include modifications of the integer-

order methods such as the Adams–Bashforth–Moulton type predictor-corrector meth-

ods [39], finite difference methods [40], and finite element methods [41]. In this paper,

we will use a three-step fractional Adams–Bashforth scheme to obtain numerical solu-

tions for the Caputo–Fabrizio fractional model (11). In this section, we will first describe

the three-step fractional Adams–Bashforth scheme and then apply it to obtain numerical

solutions for the fractional HIV/AIDS model in Eqs. (11)–(12) for a range of fractional

orders and a range of reasonable parameter values.

In describing the numerical method, we will use the original definition of the Caputo–

Fabrizio fractional derivative in Eq. (5) rather than the Losada and Nieto definition in

Eq. (1).

Consider the Caputo–Fabrizio fractional differential equation

CFD
ρ
t

(
u(t)

)
= f

(
t,u(t)

)
, 0 < ρ < 1, (54)

where CFD
ρ
t (·) is the Caputo–Fabrizio fractional derivative defined in Eq. (1). Applying the

following fractional integral:

CFI
ρ
t

(
f (t)

)
=
1 – ρ

M(ρ)
f (t) +

ρ

M(ρ)

∫ t

0

f (x)dx, (55)

to both sides of Eq. (54), we obtain

CFI
ρ
t
CFD

ρ
t

(
u(t)

)
=CF I

ρ
t

(
f
(
t,u(t)

))
,

u(t) – u(0) =CF I
ρ
t

(
f
(
t,u(t)

))

=
(1 – ρ)

M(ρ)
f
(
t,u(t)

)
+

ρ

M(ρ)

∫ t

0

f
(
s,u(s)

)
ds. (56)

We then discretize the time interval [0, t] in steps of h and obtain the sequence t0 = 0, tk+1 =

tk + h,k = 0, 1, 2, . . . ,n – 1, tn = t. From Eq. (56), we can construct the following recursive

formulas:

u(tk+1) – u(0) =
(1 – ρ)

M(ρ)
f
(
tk ,u(tk)

)
+

ρ

M(ρ)

∫ tk+1

0

f
(
t,u(t)

)
dt (57)

and

u(tk) – u(0) =
(1 – ρ)

M(ρ)
f
(
tk–1,u(tk–1)

)
+

ρ

M(ρ)

∫ tk

0

f
(
t,u(t)

)
dt. (58)

Subtracting Eq. (58) from Eq. (57), we obtain

u(tk+1) – u(tk) =
(1 – ρ)

M(ρ)

[
f (tk ,uk) – f (tk–1,uk–1)

]
+

ρ

M(ρ)

∫ tk+1

tk

f
(
t,u(t)

)
dt. (59)
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We now derive a three-step Adams–Bashforth type predictor formula, by approximat-

ing the integral
∫ tk+1
tk

f (t,u(t))dt in the above equation by the approximation
∫ tk+1
tk

P2(t)dt,

where P2(t) is the Lagrange interpolating polynomial of degree two passing through the

following three points (tk–2, f (tk–2,u(tk–2))), (tk–1, f (tk–1,u(tk–1))), and (tk , f (tk ,u(tk))). That

is,

P2(t) =

2∑

i=0

f (tk–i,uk–i)Li(t), (60)

where the Li(t) are the Lagrange basis polynomials on the three points (tk–2, tk–1, tk). Us-

ing the change of variable s =
tk+1–t

h
, substituting for the Lagrange basis polynomials and

integrating, we obtain

∫ tk+1

tk

f
(
t,u(t)

)
ds = h

∫ 1

0

[
(s – 2)(s – 3)

(1 – 2)(1 – 3)
f (tk ,uk) +

(s – 1)(s – 3)

(2 – 1)(2 – 3)
f (tk–1,uk–1)

+
(s – 2)(s – 1)

(3 – 2)(3 – 1)
f (tk–2,uk–2)

]
ds,

= h

[
23

12
f (tk ,uk) –

4

3
f (tk–1,uk–1) +

5

12
f (tk–2,uk–2)

]
, (61)

where uk–2 = u(tk–2),uk–1 = u(tk–1), and uk = u(tk). Then, inserting Eq. (61) into Eq. (59),

we obtain the iterative formula as follows:

uk+1 = uk +
1

M(ρ)

[
(1 – ρ) +

23hρ

12

]
f (tk ,uk)

–
1

M(ρ)

[
(1 – ρ) +

4

3
hρ

]
f (tk–1,uk–1) +

5hρ

12M(ρ)
f (tk–2,uk–2). (62)

For the special case ρ = 1, Eq. (62) reduces to the classical Adams–Bashforth three-step

predictor formula.

The truncation error for the three-step formula can be estimated by using the error

estimate for the Lagrange interpolating polynomial, namely,

f
(
t,u(t)

)
= P2(t) + E2(t),

E2(t) =
f (3)(ξk ,u(ξk))

3!
(t – tk)(t – tk–1)(t – tk–2), ξk ∈ (tk–2, tk).

(63)

Then we have

∫ tk+1

tk

E2(t)dt =

∫ tk+1

tk

f (3)(ξk ,u(ξk))

3!
(t – tk)(t – tk–1)(t – tk–2)dt

≈ –
h4f (3)(µk ,u(µk))

6(3!)

∫ 1

0

(s – 1)(s – 2)(s – 3)ds

=
3

8
h4f (3)

(
µk ,u(µk)

)
, (64)

where µk ∈ (tk–2, tk+1), and we have used a mean value theorem to approximate the inte-

gral.
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Denoting the entire right-hand side of Eq. (62) by ũk , then we have uk+1 = ũk +
3
8
h4f (3)(µk ,u(µk)). Therefore, the local truncation error of the use of formula (62) is de-

termined by

uk+1 – ũk

h
=

ρ

M(ρ)
·

3
8
h4f (3)(µk ,u(µk))

h
,

=
3

8M(ρ)
ρh3f (3)

(
µk ,u(µk)

)
. (65)

Next, we use the three-step fractional Adams–Bashforth scheme in Eq. (62) to obtain

numerical solutions of the fractional model (11)–(12). For the numerical simulations, we

will assume that all fractional derivatives in system (11) have the same order, i.e., ρ1 = ρ2 =

ρ3 = ρ4 = ρ5 = ρ . We can then write the system in the vector form:

CFD
ρ
t

(
u(t)

)
= f

(
t,u(t)

)
, 0 < ρ < 1, (66)

where

u(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

S(t)

I(t)

A(t)

T(t)

R(t)

⎤
⎥⎥⎥⎥⎥⎥⎦
, f

(
t,u(t)

)
=

⎡
⎢⎢⎢⎢⎢⎢⎣

f1(t,u(t))

f2(t,u(t))

f3(t,u(t))

f4(t,u(t))

f5(t,u(t))

⎤
⎥⎥⎥⎥⎥⎥⎦
. (67)

The scalar functions fi, i = 1, 2, . . . , 5, are defined from the right-hand sides of system (11),

i.e., f1(t,u(t)) = Λ – βIS – µ1S – dS, f2(t,u(t)) = βIS + α1T – dI – k1I – k2I , f3(t,u(t)) =

k1I – (δ1 + d)A + α2T , f4(t,u(t)) = k2I – α1T – (d + δ2 + α2)T , and f5(t,u(t)) = µ1S – dR.

Applying the fractional integral in Eq. (55) to both sides of Eq. (66), we obtain

u(t) – u(0) = CFI
ρ
t (f

(
t,u(t)

)

=
(1 – ρ)

M(ρ)
f
(
t,u(t)

)
+

ρ

M(ρ)

∫ t

0

f
(
s,u(s)

)
ds. (68)

Applying the scheme in Eq. (62) to Eq. (68), we obtain the following iterative formula:

uk+1 = uk +
1

M(ρ)

[
(1 – ρ) +

23hρ

12

]
f(tk ,uk)

–
1

M(ρ)

[
(1 – ρ) +

4

3
hρ

]
f(tk–1,uk–1) +

5hρ

12M(ρ)
f(tk–2,uk–2), (69)

where uk+1 = u(tk+1),uk = u(tk),uk–1 = u(tk–1),uk–2 = u(tk–2), and u0 = u(t0) = [S(t0), I(t0),

A(t0),T(t0),R(t0)]
T .

The following parameter values and initial conditions [1] have been used for our sim-

ulations: Λ = 0.55,β = 0.03,d = 0.0196, k1 = 0.15,k2 = 0.35,α1 = 0.08,α2 = 0.03, δ1 =

0.0909, δ2 = 0.0667,µ1 = 0.03, S(0) = 35, I(0) = 24, A(0) = 15,T(0) = 8, and R(0) = 0. Hence,

we have E0 = (S0, I0,A0,T0,R0) = (11.0887, 0, 0, 0, 16.9725) and R0 = 0.8825 < 1. For the

computational convenience, we set the fractional orders in system (11) as ρ1 = ρ2 = ρ3 =

ρ4 = ρ5 = ρ and we chooseM(ρ) = 1.
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Figure 1 The time series plots for all state variables in model (11) when (a) ρ = 0.95, (b) ρ = 0.9, (c) ρ = 0.85

The numerical simulations, which are generated using scheme (69), are designed to

show the behaviors for ρ = 0.95, 0.9, 0.85. Using the above parameter values and the se-

lected fractional orders, the roots of the characteristic equation (51) depending on the

fractional orders can be solved numerically as follows. For ρ = 0.95, the roots of Eq. (51) are

s1 = –0.4700, s2 = –0.1860, s3 = –0.2298, s4 = –0.1043, s5 = –0.3350. For ρ = 0.9, the roots

of Eq. (51) are s1 = –0.4441, s2 = –0.1760, s3 = –0.2174, s4 = –0.9836, s5 = –0.3119. The

roots of Eq. (51) for ρ = 0.85 are s1 = –0.4184, s2 = –0.1661, s3 = –0.2051, s4 = –0.9239, s5 =

–0.2895. Hence, the equilibrium point E0 of model (11) is asymptotically stable for ρ =

0.95, 0.9, 0.85.

Figures 1(a)–(c) show time series plots for all state variables, S(t), I(t),A(t),T(t), and

R(t), in model (11) for the fractional orders ρ = 0.95, 0.9, 0.85, respectively. We can ob-

serve from these plots that the curves of each state variable have the same trend when ρ

is changed. However, their values are slightly different. From Fig. 2, each state solution is

plotted with respect to ρ = 0.95, 0.9, 0.85. We can observe from Fig. 2(a) that the curves of

S(t) are increasing after a certain time and they finally converge to the equilibrium point

S0 = 11.0887. Figure 2(b) shows that all graphs of I(t) decrease with time and tend to the

equilibrium point I0 = 0. Similar behavior occurs for the curves of A(t) and T(t) which are

plotted in Fig. 2(c) and (d), respectively. However, the graphs of R(t) are increasing in time

and will tend to the equilibrium point R0 = 16.9725 at longer times. The effect of changing

ρ on each state variable can be observed more clearly in Fig. 2 because the trends of the

curves are different for different periods of time. In summary, we notice from Fig. 2 that

each state solution converges faster to its equilibrium point as ρ is increased. Figures 1–2

show that the obtained numerical solutions are converging to the disease-free equilibrium
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Figure 2 The time series plots for each state variable in model (11) when compared for ρ = 0.95, 0.9, 0.85 (a) t
v.s. S(t), (b) t v.s. I(t), (c) t v.s. A(t), (d) t v.s. T (t), (e) t v.s. R(t)

point E0 = (11.0887, 0, 0, 0, 16.9725). This means that the number of HIV-positive individ-

uals who are infectious, the number of individuals with full-blown AIDS, and the total

number of individuals being treated with ARV are tending to zero as t → ∞. In other

words, HIV-infectious and full-blown AIDS people eventually disappear from the system

and there are no HIV/AIDS patients who need the treatment.

7 Conclusions

In this article, a Caputo–Fabrizio fractional differential equation model for HIV/AIDS

with an antiretroviral treatment compartment has been investigated. This fractional

model is based on the use of the non-singular exponentially decreasing kernels appear-

ing in the Caputo–Fabrizio fractional derivative. Using fixed point theory and an iterative

method, the existence and uniqueness of the system of solutions for the model have been
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demonstrated. We have determined the equilibrium points of the model and the condi-

tions for local asymptotic stability of the disease-free equilibrium point. A three-step frac-

tional Adams–Bashforth scheme has been derived and used to obtain numerical solutions

of the fractional system. Finally, we have compared the numerical simulations with respect

to different values of the fractional order ρ . The paper gives an example of the use of the

Caputo–Fabrizio fractional derivative as a model for real world problems that include his-

tory, memory, or nonlocal effects.
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