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Look at the accident photo in FIGURE 1. How fast was the white car going? The

question has more than academic interest to the author, who once had the experience

of being “T-boned” in a car crash. The focus of this article is on the key to unlocking

this mystery—a little known gem called Eves’s theorem, which is a kind of Swiss

Army knife of projective geometry. We’ll not only use it to find the speed of the car,

we’ll use it to revisit classic theorems, illustrate the concept of the geometric mean,

and look at windows and other everyday objects in new ways.

Figure 1 Snapshot of an accident scene. How fast was the white car going?

But first, we refine the car crash question by providing a story to go with the picture,

and a little basic physics.

Speed from skid marks

The story goes as follows. The white car and the gray car were headed toward each

other in opposite lanes, when the gray car made a left turn in front of the white car
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to enter a parking lot. Upon seeing the gray car making the turn, the driver of the

white car slammed on its brakes, locking up its wheels, while managing to hold the

car straight in a skid. Unfortunately, the driver of the white car was not able to come

to a full stop before striking the gray car in the side as shown. Shortly afterward, a

witness snapped the photo in FIGURE 1, just far back enough to show an entire skid

mark. The road was repaved a few days later, leaving the photo as the only evidence

of the skid marks.

This became important when a dispute arose between the drivers. The driver of the

gray car claimed that the white car, a 1969 Dodge Charger, was exceeding the posted

speed limit of 35 mi/hr, a claim which the driver of the Charger denied. In addition to

the evidence of the photograph, an accident investigator inspected the damaged cars

and estimated the speed of the white car at 25 mi/hr at the moment of impact.

There is good news for the driver of the white car: we will give a reasonable analysis

that puts an upper bound of 33 mi/hr on the speed of the car at the moment the skid

began. We will describe one method of determining the speed—although methods vary

in practice—but our greatest emphasis is on showing how Eves’s theorem can be used

to determine the length of the skid, which is of prime importance in any such analysis.

A little Web searching shows that there are many engineering firms that specialize in

accident reconstruction, including skid mark analysis (at least one company provides

a “skid speed calculator” [5]). We begin by reviewing the problem-solving principles

most commonly used when the length of at least one skid mark is known; then we use

a rather uncommon method to determine the length of a skid mark in the photograph.

The top part of FIGURE 2 shows a side view of the white car, a 1969 Dodge Charger,

along with its skid marks and the specification of its wheelbase (axle-to-axle distance)

of 117 inches, or 9.75 feet. The bottom part of FIGURE 2 shows a bird’s-eye view of

the skid marks, along with a dashed triangle �ACE, whose purpose we explain later.

The skid mark of the right front tire of the white car ends at point C , but its starting

point is obscured by the skid mark of the right rear tire. The skid mark of the right rear

tire begins at point A and ends at point B. The distance |BC| is therefore equal to the

wheelbase of 9.75 feet. The skid mark of the right rear tire has length |AB|. This is the

only unobscured skid mark in the witness’s photograph.

CBA

E

9.75 ft

DF

direction of travel

(white car)

CBA

9.75 ft

(wheelbase)

bird’s eye view

of skid marks

side view

of skid marks

Figure 2 A side view and a bird’s-eye view of the skid marks.
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Although we don’t know the lengths of the other skid marks, it is reasonable to

assume they all have length |AB|. Let the car have mass m, let vA denote the car’s

speed when the right rear tire was at point A, and let vB denote the car’s speed when

the right rear tire was at point B. From our earlier information we have an estimate of

the impact speed, vB ≈ 25 mi/hr, but for the time being we will work with length and

time units of feet and seconds. We assume that the road is level, and that during the

skid the only external horizontal force acting on the car is the constant deceleration

force µmg, where µ ≥ 0 is the dimensionless coefficient of sliding friction between

tires and road, and g(≈ 32.174 ft/s2) is the acceleration of gravity.

We take the common approach of idealizing the car as a point mass m in rectilinear

motion with constant acceleration (see [4, pp. 101–102] for example). We assume

readers are familiar with two equations from that theory, namely,

v − v0 = at and x − x0 = v0t +
1

2
at2,

where x and v are the position and velocity at time t of a particle moving on the x-axis

with constant acceleration a, and x0 and v0 are the position and velocity at time t = 0.

By eliminating t between these two equations, we get

v2
0 = v2 − 2a(x − x0). (1)

This is also a basic equation in the theory of rectilinear motion (see [4, Eq. (3-16)] or

[6, Eq. (3-17)].)

To express (1) in terms of our variables, let the x-axis coincide with the line AB

in FIGURE 2, with the origin fixed anywhere, and the positive direction to the right.

Denote the x-coordinates of A and B by xA and xB , respectively. We model the car

as a point mass m that moves from xA at time t = 0 to xB at time t , under a constant

acceleration −µg. Referring to (1), let x0 = xA, x = xB , v0 = vA, v = vB , and a =
−µg. Equation (1) then becomes

v2
A = v2

B + 2µg(xB − xA),

or equivalently,

v2
A = v2

B + 2µg|AB|. (2)

For computational convenience, it is common to express equation (2) in a hybrid

form, with vA and vB expressed as respective miles-per-hour speeds v̂A and v̂B , and

|AB| expressed in feet. The conversion factor is k = (3600 s/hr)/(5280 ft/mi), so we

multiply equation (2) by k2 to obtain

v̂2
A = v̂2

B + 2k2µg|AB|. (3)

At this point we need a value for 2k2µg. Since we are interested in an upper-limit value

of v̂A, we use µ = 1, a widely accepted upper bound for this application. We compute

2k2µg ≤ 2

�

3600

5280

�2

(1)(32.174) ≈ 29.91,

which we round up to 30, again in the interest of obtaining an upper limit. (Readers

will find that this constant 30, whose units are mi2ft−1hr−2, appears in many of the

basic skid mark analyses on the Internet.) Substituting 30 for 2k2µg in (3) and then

taking the square root of both sides, we obtain

v̂A <

�

v̂2
B + 30|AB|.
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Using the investigator’s estimate of v̂B ≈ 25 mi/hr, this becomes

v̂A <
�

625 + 30|AB|, (4)

where again, v̂A is in units of miles per hour, and |AB| is in feet. The inequality (4)

gives an upper bound v̂A on the speed of the white car when the skid began, based on

the length |AB| of the skid mark visible in the photo.

Everything depends on the length of that skid mark.

Skid marks from Eves’s theorem

In the next section we discuss Eves’s theorem in detail. In this section we emphasize

how easy it makes finding the skid mark length |AB|, and hence the speed of the car.

In FIGURE 2 we have drawn a dashed triangle �ACE, where A and C are as de-

scribed earlier, and E is an arbitrary point on the far side of the skid marks from AC.

Side AC contains the point B mentioned earlier, and D and F are the points where the

respective sides CE and EA meet the outside edge of the car’s left skid mark. Since the

skid marks are parallel, we have |CD|/|DE| = |FA|/|EF|, hence

|AB|

|BC|

|CD|

|DE|

|EF|

|FA|
=

|AB|

9.75 ft
· 1 =

|AB|

9.75 ft
. (5)

The expression on the left hand side of (5) is an example of a circular product [7].

Given a closed polygon with a point in the interior of each side, one forms a circular

product by alternately dividing and multiplying consecutive segment lengths, proceed-

ing clockwise or anticlockwise around the polygon. As discussed in the next section,

Eves’s theorem implies that circular products are projectively invariant, which means

that if the points A, B, C . . . are mapped projectively (as in say, a photograph) to dis-

tinct, respective points A�, B �, C �, . . . , then the corresponding circular product will

have the same value. Specifically, we locate in FIGURE 3 the corresponding points

A�, B �, C �, . . . as they would appear in the photograph. We need not worry about locat-

ing E � perfectly, because it must correspond to some preimage point E as in FIGURE 2.

A�

B �

C �

E �

D �

F �

Figure 3 The corresponding image of the triangle in FIGURE 2, as it would appear in
the accident photo. For clarity we show the entire side C �E �, rather than having part of it
disappear under the car.
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Having done this, we now use a ruler to measure directly on the photograph in FIG-

URE 3, and estimate the numerical value of the corresponding circular product. The

author did this on a larger image and computed value of just under 1.5 (readers’ results

will of course vary). Using (5) and the invariance of circular products, we then have

|AB|

9.75 ft
=

|AB|

|BC|

|CD|

|DE|

|EF|

|FA|
=

|A� B �|

|B �C �|

|C � D�|

|D�E �|

|E �F �|

|F � A�|
< 1.5.

Hence, rounding up again, we obtain

|AB| < (9.75 ft)(1.5) < 15 ft.

Finally, we substitute this result into (4) and round up once more to estimate the

white car’s speed v̂A at the beginning of the skid:

v̂A <
�

625 + 30(15) < 33 mi/hr.

We therefore conclude that the white car was probably not exceeding the posted speed

limit of 35 mi/hr when the skid began.

If, on the other hand, we were to work on behalf of the driver of the gray car, we

would estimate a lower bound for vA, hoping that it would be significantly greater

than 35 mi/hr. This is a bit trickier; for example, we would want to estimate a lower

bound on the coefficient of friction. Choosing a value of 0 would be unconvincing, so

we would need to be more realistic in this case. A realistic estimate of the coefficient

of friction depends on the condition of the road surface, the weather, the brand of

tires, the condition of the tires, and other factors. Because our emphasis was on the

determination of skid mark lengths from a photograph—a key factor in either case—

we chose the simpler problem of estimating an upper bound on vA.

The science of determining 3-D information from the 2-D images in photographs

is called photogrammetry. Many firms that do accident reconstruction use specially

made photogrammetry software to determine skid mark lengths from photographs. In

the preceding problem, Eves’s theorem allowed us to determine the skid mark length,

and thus the car’s speed, by simply drawing a triangle on the image of the skid marks

and measuring between certain marker points. Unlike other methods for solving such

problems (for example, see [3]), we did not need to determine the horizon line, van-

ishing points, or the viewpoint of the photograph.

Eves’s theorem—a Swiss Army knife

Having discussed one application of Eves’s theorem, it is time to back up a bit and

properly discuss the theorem itself. It is a rare occurrence when an important theorem

in a field of mathematics goes largely unnoticed (even by many experts in the field)

and more amazingly, makes its debut in the pages of a geometry textbook for students

with a background in high school mathematics. Nevertheless, that is the case with

Eves’s theorem. Howard W. Eves (1911–2004) was for many years a professor at the

University of Maine and editor of the Elementary Problems section of the American

Mathematical Monthly. In section 6.1 of his book A Survey of Geometry [1], Eves

presented this simple but powerful theorem, which can be understood and appreciated

by anyone. As the distinguished geometer G. C. Shephard wrote [7, p. 1280],

We feel that Eves’ theorem has never been given the recognition it deserves and

should be regarded as one of the fundamental results of projective geometry.
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Before stating the theorem, we discuss some terminology. Given two planes π, π �

in space and a point O not on either of them, the map that assigns to each point P ∈ π

the point P � ∈ π
� such that P , P �, and O are collinear is called a perspectivity with

center O . (When OP is parallel to π
� it is customary to map P to a point at infinity,

but we will not need to worry about this in our examples.) The point P � is called the

perspective image of P . Similarly we can talk about the perspective image in π
� of an

entire set in π . The two special cases we have in mind are shown in FIGURE 4.

In FIGURE 4(a) the gray arrows in planes π and π
� are related by a perspectivity

with center O that lies on the opposite side of π
� from the arrow in π . We think of a

light ray emanating from each point P of the arrow in π , traveling to a viewer’s eye at

O in a straight line, and on its way piercing the plane π
� at the corresponding point P �,

like passing through a window and leaving an appropriately colored dot on the glass.

The arrow on plane π
� is the perspective image of that on π . This is the model for

perspective drawing and painting developed in the Renaissance. The idea is that if the

arrow on π suddenly disappeared, the viewer at O would be unaware of it, because the

light rays from the colored dots on π
� would still be coming from the same directions

as before. Hence (theoretically at least) the painted image on π
� is perfectly realistic,

as long as the viewer’s eye stays at the viewpoint O .

O

P �

P

P �

P

O

(a) (b)

�

�

Figure 4 Perspectivities model perspective drawing (a) and photography (b).

FIGURE 4(b) is a simplified model of the photographic process. Here O lies be-

tween each pair of corresponding points P, P �, causing the perspective image on π
� to

be inverted. In this model, we think of O as the hole of a pinhole camera, and the line

PP � as a light ray passing through it. The arrow on π is an object in the real world,

and the inverted image on π
� (the screen of the pinhole camera) is its photographic

image. Although the structure and function of a lens camera is more complex, to a

good approximation the end result is the same—an upside-down perspective image

of the given object. Thus for our purposes, we can model both perspective drawing

and photography of plane figures with appropriate perspectivities. A composition of

perspectivities—for example, a photograph of a photograph—is called a projectivity.

We should note that in either case in FIGURE 4, if the planes π and π
� are parallel,

then the figures in the two planes—the object and its image—are similar. That is, the

drawing or photograph is an undistorted likeness of the object, except possibly for

resizing. This is the case of the bird’s eye view of the skid marks in FIGURE 2.

More generally, however, perspective images are not similar to the real world ob-

jects they portray, and it may take some work to recover geometric information about

the original object. Eves’s theorem shows that there are certain numerical regularities
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in geometric objects that are not changed by the photographic process, such as the

circular products associated with the triangles in FIGURES 2 and 3.

There is one other term to explain before stating Eves’s theorem. Eves’s theorem

deals with expressions like the circular product on the left hand side of equation (5),

except that each distance such as |AB| is considered to be a directed distance, meaning

that a positive direction is arbitrarily assigned to the line AB, so that |AB| and |BA| have

the same magnitude but opposite signs. This arbitrariness disappears in the expressions

under consideration, because every directed distance is divided by, or is divided into,

one that is collinear with it. We can therefore think of dealing with signed ratios of

collinear pairs of directed distances, a ratio being positive if the two distances are par-

allel and negative if they are antiparallel. If all collinear pairs have the same direction,

then we can simply work with ordinary distances. In [1] Eves himself does not explain

the origin of the term “h-expression” which follows (but one might think of using it as

a mnemonic: “h” for “Howard”).

DEFINITION. A product of ratios of directed distances, where all the indicated

points lie in one plane, is called an h-expression if it has the following properties:

(1) In each ratio the points that occur are collinear.

(2) Each point appears in the numerator of the product exactly as many times as it

does in the denominator.

EVES’S THEOREM. The value of an h-expression is invariant under any projectivity.

Observe that the circular product in (5) is an h-expression, which justifies its treat-

ment as a projective invariant in the car problem. Similarly, the well-known cross ratio

of four points on a line is an h-expression, hence its projective invariance is a spe-

cial case of Eves’s theorem. Shephard made this observation in [7], along with some

original applications of the theorem.

This is a significant fact—that the projective invariance of the cross ratio is just a

special case of Eves’s theorem. We therefore briefly review the cross ratio, and give a

simple application of it. The cross ratio (AB, CD) of four collinear points A, B, C, D

is given by

(AB, CD) =
|AC|

|CB|

|BD|

|DA|
, (6)

where each quantity such as |AC| is a directed distance. The reader can easily check

that (6) is an h-expression. It’s important to note that the value of the cross ratio de-

pends not just on the location of the four points, but also on the order of the labels

A, B, C, D. Although there are 4!(= 24) ways to apply the labels to four given points,

it’s well known that the cross ratio runs through either 3 or 6 different values as the

labels are permuted, depending on the points the labels are being applied to.

For practice, we apply the cross ratio to the perspective drawing of a fence in FIG-

URE 5. Suppose that in some units of length, the distances between the images of

the tops of the fenceposts are as indicated in the figure: |A� B �| = 10 and |B �C �| = 6.

Writing x = |C � D�| as in the figure, we ask: what is the value of x?

To answer the question, we let the positive direction be to the right along the fence

rail in FIGURE 5, and we use (6) to compute

(A� B �, C � D�) =
|A�C �|

|C � B �|

|B � D�|

|D� A�|
=

16

−6
·

x + 6

−(x + 16)
=

8x + 48

3x + 48
. (7)

Next we focus on the side view of the fence in FIGURE 6. We label the tops of the

fence posts A, B, C, D, and consider the respective points A�, B �, C �, D� in FIGURE 5



334 MATHEMATICS MAGAZINE

10
6

xA�
B � C � D �

Figure 5 If |A�B�| = 10 and |B�C �| = 6, then what is |C �D�|?

to be their perspective images. Assuming that the fence posts are equally spaced, we

indicate in FIGURE 6 that |AB| = |BC| = |CD| = w for some positive number w.

Again letting the positive direction be to the right, we have by (6),

(AB, CD) =
|AC|

|CB|

|BD|

|DA|
=

2w

−w
·

2w

−3w
=

4

3
. (8)

The projective invariance of the cross ratio implies that the results of (7) and (8) are

equal, hence

8x + 48

3x + 48
=

4

3
.

Solving this for x , we get x = 4. (Observe that if only the first three fence posts were

drawn in FIGURE 5, we could locate and draw the rest of them by recursively applying

this method to the last two known distances between their tops.)

A

w

B

w

C

w

D

Figure 6 Side view showing equal spacing of the fence posts.

Of course Professor Eves was not unaware of the utility of his theorem. For ex-

ample, he showed [1, p. 290] how to apply the theorem to the proof of the classic

theorems of Ceva and Menelaus. Ceva’s theorem says that if points D, E, F lie on

the respective sides BC, CA, AB of a triangle �ABC as in FIGURE 7(a), the lines

AD, BE, CF are concurrent at a point G if and only if the corresponding circular prod-

uct around the triangle satisfies

|AF|

|FB|

|BD|

|DC|

|CE|

|EA|
= 1.
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Menelaus’ theorem says that the previously mentioned points D, E, F are collinear as

in FIGURE 7(b) if and only if

|AF|

|FB|

|BD|

|DC|

|CE|

|EA|
= −1.

A F B

C

D
E

G

FA B

C

D

E

(a) (b)

Figure 7 Diagrams for the theorems of Ceva (a) and Menelaus (b).

To give an example of how Eves’s theorem applies, Eves proved [1, p. 288] that

given a configuration like that in FIGURE 7(a), there exists a perspectivity that maps

the points A, B, . . . to respective points A�, B �, . . . , such that G � is the centroid of

�A� B �C �. Since the lines A� D�, B �E �, C �F � are concurrent at G �, the points D�, E �, F �

are midpoints of their respective sides. The “only if” part of Ceva’s theorem then

follows from an application of Eves’s theorem; given the concurrency at G in FIG-

URE 7(a), we have

|AF|

|FB|

|BD|

|DC|

|CE|

|EA|
=

|A�F �|

|F � B �|

|B � D�|

|D�C �|

|C �E �|

|E � A�|
= (1)(1)(1) = 1.

For projective geometry enthusiasts, we give the following hint for using Eves’s

theorem to prove the “only if” part of Menelaus’ theorem. Suppose the points D, E, F

are collinear in FIGURE 7(b). Then what line can be projectively mapped to infinity to

give the result

|A�F �|

|F � B �|
=

|B � D�|

|D�C �|
=

|C �E �|

|E � A�|
= −1?

The geometric mean in perspective

It is well known that the geometric mean GM(x1, . . . , xn) of n nonnegative numbers

x1, . . . , xn is defined as

GM(x1, . . . , xn) =

�

n
�

i=1

xi

�1/n

.

Unfortunately for visual thinkers, most of the common pedagogical examples of the

geometric mean don’t admit a visual interpretation for values of n greater than 2 or 3.

Eves’s theorem makes it easy to construct an example of the geometric mean that in-

cludes a picture for each value of n greater than 2. FIGURE 8(a) shows a perspective

image of one regular pentagon inscribed in another, with a little thickness added to
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suggest say, a decorative tile. Suppose we want to use this picture to construct the

undistorted bird’s-eye view in FIGURE 8(b), in which the vertices of the smaller pen-

tagon divide each side of the larger one into lengths p and q. Given the perspective

view in (a), we could make a scale drawing of the bird’s-eye view in FIGURE 8(b) if

we could just determine the value of the edge ratio p/q. By Eves’s theorem, the cir-

cular product
�5

i=1(pi/qi ) associated with FIGURE 8(a) must be equal to the circular

product (p/q)5 associated with FIGURE 8(b), hence the edge ratio p/q satisfies

p

q
= GM

�

p1

q1

, . . . ,
p5

q5

�

.

p q

p4
q4

p1

q1

p2

q2

p3

q3

p5

q5

(a) (b)

Figure 8 A perspective view (a) and an undistorted bird’s-eye view (b) of one regular
pentagon inscribed in another. The edge ratio p/q is the geometric mean of the five
corresponding edge ratios in the perspective view.

More generally, suppose that for n ≥ 3 we have a regular n-gon inscribed in a

larger one, so that each vertex of the smaller n-gon divides a side of the larger one into

lengths p and q. Then, given a perspective drawing or photograph of the configuration

in which the image of the i th side of the outer n-gon is divided into corresponding

nonzero lengths pi , qi for i = 1, . . . , n, the “true” edge ratio p/q is the geometric

mean of those in the perspective image:

p

q
= GM

�

p1

q1

, . . . ,
pn

qn

�

. (9)

Experimenting with Eves’s theorem

A nice feature of Eves’s theorem is that it is evident in many of the photographs we see

every day in magazines, newspapers, and on the Internet. That’s because it is possible

to associate h-expressions with many everyday objects such as tile floors, brick walls,

windows, parking lot markings, athletic fields, and much more. The exact values of

the h-expressions are easy to deduce from the designs of the objects. The goal of such

an experiment is to see if the predicted value does indeed result when we make careful

measurements on a given photograph. All we need is a photograph of such an object

from an interesting angle, a ruler marked in fine graduations such as millimeters, and

a little mathematical curiosity.
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As a simple example, FIGURE 9 shows a photograph of a large window at a retail

store. The inset of the figure is a qualitative front view of the window; the segments

HD and BF, which represent the dividers between the windowpanes, are parallel to the

sides AC and CE, respectively. It should be easy for the reader to verify that

|AB|

|BC|

|CD|

|DE|

|EF|

|FG|

|GH|

|HA|
= 1,

since |AB| = |FG|, and so on. In the photograph, the perspective images of these points

are labeled with primed versions of the same letters, and according to Eves’s theorem,

we must have

|A� B �|

|B �C �|

|C � D�|

|D�E �|

|E �F �|

|F �G �|

|G � H �|

|H � A�|
=

|AB|

|BC|

|CD|

|DE|

|EF|

|FG|

|GH|

|HA|
= 1.

A�

A CB

G EF

DH

B �

C �

D �

E �

F �

G �

H �

Figure 9 Photograph of a window, and a front view (inset).

We invite the reader to carefully measure the indicated lengths along the dashed

lines with, say a ruler marked in millimeters, and then perform the above computation.

(Since we must deal with mathematical lines, we drew the dashed lines to represent

certain edges of the window frame and the windowpane dividers.) If such measure-

ments are done carefully enough, the result should be reasonably close to 1. Is it?

Exercise Look around you right now. How many objects do you see that you could

apply Eves’s theorem to?
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Conclusion

It is interesting to note that among the pictorial examples of the geometric mean ap-

pearing in the literature are some nice ones presented in Professor Eves’s last published

paper, which appeared in this MAGAZINE [2]. We hope the applications presented

here, made possible by his theorem, are ones he would have enjoyed.
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