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Abstract: To address Cu(II) and Cr(VI) water pollution, a carbonized zeolite/chitosan (C-ZLCH)
composite adsorbent was produced via pyrolysis at 500 ◦C for two hours. C-ZLCH was characterized
using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), Fourier transform
infrared spectroscopy (FTIR), dynamic light scattering (DLS), and zeta potential measurements. The
batch experiments were performed by varying the initial pH, concentration, and contact time. The
optimal pH values for Cu(II) and Cr(VI) were 8.1 and 9.6, respectively. The highest adsorption
capacities for Cu(II) and Cr(VI) were 111.35 mg/g at 60 min and 104.75 mg/g at 90 min, respectively.
The effects of chemicals such as sodium (Na+), glucose, ammonium (NH4

+), and acid red 88 (AR88)
were also studied. Statistical analysis showed that sodium had no significant effect on Cu(II) removal,
in contrast to Cr(VI) removal. However, there was a significant effect of the presence of glucose, am-
monium, and AR88 on both Cu(II) and Cr(VI) removal. The adsorption isotherm and kinetic models
were fitted using Langmuir and pseudo-second-order models for Cu(II) and Cr(VI), respectively.

Keywords: adsorption; chitosan; Cu(II) removal; Cr(VI) removal; isotherm studies; kinetic studies;
carbonized zeolite/chitosan; zeolite

1. Background

The aquatic environment is constantly polluted due to population increases and human
activities such as industrialization [1]. Heavy metal contamination, a primary environ-
mental concern, is mainly generated by industrial effluents (electroplating, metal finishing,
ceramic, and textile industries), including Cu(II) and Cr(VI). Heavy metal ion decontam-
ination is challenging because of its environmental stability and non-biodegradability.
Long-term exposure to toxic heavy metals may cause serious health issues, including brain
impairment, anemia, bone abnormalities, and cancer [2]. Therefore, practical approaches
for capturing heavy metal pollution are urgently required. Researchers have thoroughly
investigated heavy metal removal technologies such as ion exchange [3], chemical precipi-
tation, reduction, electrochemical [4], adsorption [5–7], and membrane separation [8,9]. Of
these, adsorption is among the best strategies because it is simple to use, convenient, and
inexpensive [10].

A wide range of adsorbent materials, including activated carbon from coconuts [11],
olive stones [12], silica composites [13], and African palm fruits [14], have been used to
remove heavy metals from water. As a result, research has concentrated on develop-
ing biodegradable and natural adsorbents such as chitosan [15]. Chitosan is a cationic
biopolymer formed by deacetylation of chitin, the second most prevalent polymer [16].
However, it has some disadvantages including poor recovery, low mechanical strength,
swelling, and chemical resistance [17]. Furthermore, because it may dissolve in acidic
solutions, chitosan is particularly sensitive to pH, which restricts its application because of
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the excessive protonation of its amino groups, thereby reducing its adequate adsorption
capacities [18]. Cross-linking compounds such as epichlorohydrin [19–21], attapulgite [22],
and glutaraldehyde [23] have been utilized to address these issues.

Zeolites are hydrated aluminosilicate minerals with micropores and strong mechanical
resistance, which can be utilized to support the chitosan structure. They were constructed
using an interconnected tetrahedral alumina (AlO4) structure and silica (SiO4). Some
authors have used chitosan/zeolite composites to effectively eliminate pollutants, such as
dyes [24,25], ammonium [16], fluoride [26], and heavy metals [27].

However, some researchers have succeeded in improving the mechanical strength
of chitosan using hydrothermal [28] and pyrolysis [29] methods. However, pyrolysis is
the best option because of its zero waste, high carbon yield, and reduced emissions dur-
ing processing. In the hydrothermal method, processing takes a long time, has a low
carbon yield, is costly to autoclave, and retains the residue during processing. Based on
the aforementioned results, the carbonization of zeolite/chitosan (C-ZLCH) by pyrolysis
is an appropriate solution to overcome the stability problem of chitosan. Scanning elec-
tron microscopy (SEM), energy-dispersive spectroscopy (EDS), Fourier transform infrared
spectroscopy (FTIR), dynamic light scattering (DLS), and zeta potential measurements
were used to characterize the C-ZLCH. The removal of Cu(II) and Cr(VI) from the water
was investigated using adsorption isotherms and kinetics. Cu(II) and Cr(VI) removal was
examined in the presence of coexisting chemical substances (organic and inorganic), such
as sodium (Na+), glucose, ammonium (NH4

+), and acid red 88 (AR88) dye.

2. Materials and Methods
2.1. Materials and Chemicals

Zeolite (ZL) and chitosan (CH) were supplied by Tosoh Co., Ltd., 4560 Kaisei-Cho,
Shunan City, Yamaguchi Prefecture, 746-8501, Japan, and Acros Organics, Belgium, re-
spectively. Sodium hydroxide (NaOH), acetic acid (CH3COOH), sodium chloride (NaCl),
glucose, ammonium chloride (NH4Cl), potassium dichromate (K2Cr2O7), copper solution
(1000 mg/L), hydrochloric acid (HCl), and Acid Red 88 (AR88) were purchased from Kanto
Chemical Co., Inc., Tokyo, Japan.

2.2. Synthesis of C-ZLCH

Chitosan (1 g) was mixed with 100 mL of 1% CH3COOH for 24 h at ambient temper-
ature with a magnetic stirrer (Mag-mixer MG600) (solution A). Solution A (25 mL) was
mixed with the zeolite (0.5 g) for two hours at 30 ◦C. The mixture was incubated for 30 min
with 1 M NaOH (25 mL). The mixture was filtered (qualitative paper filter no. 5C), and
dried at 60 ◦C for 48 h (ZLCH). ZLCH was then carbonized in a muffle furnace (FO100,
Yamato, Japan) at 500 ◦C for two hours and cooled in a desiccator for 24 h. The mixture
was then ground and sieved. This adsorbent is called C-ZLCH.

2.3. Batch Adsorption Experiments

The studies of the adsorption of Cu(II) and Cr(VI) ions were conducted three times, and
average results appeared in the figure with a bio-shaker (V-BR-36) at 30 ◦C. The effects of pH
(2.0, 4.3, 6.7, 8.1, and 9.6), initial metal ion [Cu(II) and Cr(VI)] concentrations (10, 15, 20, and
25 mg/L), and contact time (30, 60, 90, 150, 180, 1020, and 1440 min) were evaluated. The ad-
sorbed amount and percent adsorption were calculated using Equations (1) and (2), respectively.

m/Mt =
m0 −me

W
V (1)

Percent adsorption =
mo −me

mo
×100 (2)

where

m is the adsorption capacities (mg/g),



Materials 2023, 16, 2532 3 of 13

Mt is the adsorption capacities at the time (mg/g),
Percent adsorption is the metal ions (Cu(II) and Cr(VI)) removal efficiency (%),
mo is the initial metal concentration (mg/L),
me is the metal ion equilibrium at the time (mg/L),
W is the adsorbent weight (C-ZLCH) (g), and
V is the volume solution in the batch (L).

2.4. Characterization

Cu(II) and Cr(VI) ions were determined using a heavy metal test kit with a spec-
trophotometer (Kyoritsu Chemical-Check Lab., Corp, Yokohama, Japan). The zeta potential
was measured using Zetasizer Ver. 7.13, Malvern Panalytical Ltd., Kobe, Japan. The SEM
images and elemental distribution of C-ZLCH were analyzed using SEM-EDS (JIED-2300,
Shimadzu, Kyoto, Japan). The functional groups of C-ZLCH before and after Cu(II) and
Cr(VI) adsorption were analyzed using ATR-FTIR (Thermo Scientific Nicolet iS10, Waltham,
MA, USA). Particle size distribution was measured using dynamic light scattering (DLS)
(Horiba LB-550, Horiba Advanced Techno, Co., Ltd, Kyoto, Japan). DLS and FTIR spectra
were processed using Origin 2022b.

2.5. Statistical Analysis

All the results were documented using Microsoft Excel. The effects of chemicals and
dyes on Cu(II) and Cr(VI) removal were examined using a completely randomized design
(CRD). Data were analyzed using ANOVA with Tukey’s test (p ≤ 0.05) using Minitab 21.3.1.

3. Results and Discussion
3.1. Characteristics of the Adsorbent (C-ZLCH)

Figure 1a,b show the SEM images and EDS spectra of C-ZLCH, respectively. As
can be seen that the surface has a rough texture and adhesive surface. The EDS data
showed that aluminum and silica were present in the zeolite material at 7.99 wt% and
30.84 wt%, respectively. However, sodium (12.69 wt%) appeared because of the alkaline-
treated adsorbent preparation using sodium hydroxide. Figure 1c shows that the surface
of C-ZLCH was negatively charged at all pH values from 2 to 10, with an average size of
5.5 µm (Figure 1d).
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etate species easily decomposes when reacted on copper even at room temperature to 
evolve CO2 as in the thermal reaction [31]. A decrease in the peak intensity after Cu(II) 
adsorption from 1455 to 1417 cm−1 suggests chemical interactions between copper and and 
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vibrations of the Si-O (bridging) and Si-O- (non-bridging) bonds [33]. 
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Figure 1. Characterization of C-ZLCH. (a) SEM photograph. (b) EDS spectra. (c) Zeta potential.
(d) Particle size distribution.

3.2. FTIR Spectra of C-ZLCH before and after Cu(II) and Cr(VI) Adsorption

The FTIR data for C-ZLCH before and after Cu(II) and Cr(VI) adsorption are shown in
Figure 2. The adsorption peaks at 3338 cm−1 increased after Cu(II) and Cr(VI) adsorption at
3379 and 3403 cm−1, respectively. This indicates that the stretching vibrations of –OH and
–NH from chitosan interact with the metal ions [5]. A decrease peak occurred after the Cr(VI)
adsorption process from 1647 to 1627 cm−1, which corresponds to carboxylic groups [30],
and disappeared after the Cu(II) adsorption process, because carboxyl in acetate species
easily decomposes when reacted on copper even at room temperature to evolve CO2 as
in the thermal reaction [31]. A decrease in the peak intensity after Cu(II) adsorption from
1455 to 1417 cm−1 suggests chemical interactions between copper and and C–H bending
vibrations [32]. The peaks at 999 and 992 cm−1 correspond to Si-O-Si or Al-O-Al [25]. The
peaks at 702 cm−1, 701 cm−1, and 699 cm−1 correspond to the asymmetric vibrations of the
Si-O (bridging) and Si-O- (non-bridging) bonds [33].
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3.3. Initial pH Effects

The pH is the most critical parameter influencing the adsorbate (metal ions) and
adsorbent (C-ZLCH) surface charges on Cu(II) and Cr(VI) adsorption [34]. The effect of
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pH on Cu(II) and Cr(VI) ion adsorption by C-ZLCH was examined by varying the pH
from 2 to 9.6 (Figure 3). The Cu(II) adsorption increased from pH 4.3 to 6.7, reached a peak
at pH 8.1, and then decreased slightly to pH 9.6. Negatively charged C-ZLCH surfaces
enhanced the removal of Cu(II) via electrostatic interactions. Furthermore, Al3+ interacts
with hydroxyl compounds under alkaline conditions, which is responsible for the cationic
exchange between the zeolite and Cu(II) ions in solution [35,36]. Reaction mechanisms in
Equation (3).

3Cu(OH)2 + 2Al → 3Cu + 2Al(OH)3 (3)
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Figure 3. Effect of initial pH on Cu(II) and Cr(VI) adsorption. (C-ZLCH: 0.01 g, initial metal ion:
10 mg/L, volume (mL): 50, temperature: 30 ◦C, and time: 30 min).

Cr(VI) removal peaked at pH 6.7 before dropping to pH 9.6. One possible reason is that
under acidic conditions, the hydrogen molecules (H+) in the solution can dissolve –NH2 to
form NH3 on the surface of C-ZLCH, which increases the exposure of the particle surface
active site, thus improving the removal efficiency of Cr(VI). Under alkaline conditions, there
is competition between hydroxyl -OH- and Cr(VI) species (Cr2O7

2−), thus decreasing the
adsorption capacities [37,38]. Our findings for Cu(II) and Cr(VI) removal were comparable
to those in [39–42].

3.4. Initial Concentration Effect

The influence of initial Cu(II) and Cr(VI) concentrations was investigated in the 10–25 mg/L
range, 0.01 g/50 mL of C-ZLCH adsorbent, at pH 8.1 and 6.7, respectively. Figure 4 demon-
strates that Cu(II) and Cr(VI) adsorption capacities increased from 47.15 to 85.23 mg/g and
25.53 to 31.93 mg/g, respectively. This is because of the high driving force of metal ions
and the increase in the number of molecules, which enhances the amount adsorbed onto
C-ZLCH [43–47].
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Figure 4. Effect of initial concentration on metal ions adsorption. (C-ZLCH: 0.01 g, volume (mL):
50, pH: 8.1 for Cu(II), pH: 6.7 for Cr(VI), temperature: 30 ◦C, and time: 30 min).

3.5. Adsorption Isotherm Studies

Adsorption isotherms are essential for describing the adsorbent capability and interac-
tion between the adsorbate (metal ions) and adsorbent (C-ZLCH). The obtained isotherm
parameters are helpful for the proper analysis and design of adsorption systems. The
experiment was conducted as follows: 0.01 g was mixed with 50 mL of the metal ion at
different initial concentrations, ranging from 10–25 mg/L. The equilibrium concentration
of each metal ion was calculated, and the corresponding equilibrium adsorption capacities
were obtained. To explore the adsorption process, experimental equilibrium data were
evaluated using different isotherm models, including the Langmuir (Equation (4)) and
Freundlich (Equation (6)) models [25,40–45].

me/m= (
me

mmax
) + 1/(K1mmax) (4)

m is the amount of the adsorbent (mg/g),
Kl is the equilibrium constant of adsorption (L/mg),
mmax is the maximal adsorption capacities (mg/g), and
me is the equilibrium concentration (mg/L).

The essential characteristics of the Langmuir isotherm may be represented in terms of
equilibrium, a dimensionless constant also known as the separation factor (RL) in Equation (4).

RL= (
1

1 + bmo
) (5)

mo is the initial concentration (mg/L), and
RL is the separation factor, indicating the adsorption is either 0 < RL (favorable), RL > 1
(unfavorable) and RL = 1 (linear).

The Freundlich model assumes heterogeneous surfaces and multilayer sorption. The
linear equation is as follows:

Ln m = ln Kf +
1
n
× lnme (6)
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Kf is the adsorption capacities (mg/g).
1/n is the intensity of adsorption.

The isotherm model curves, are shown in Figure 5, and the corresponding fitting
results are listed in Table 1. Among the two models, the Langmuir model provided the best
fit, because the linear correlation coefficients (R2) were 0.99 and 0.98 for Cu(II) and Cr(VI)
adsorption, respectively. More importantly, the Langmuir and Freundlich parameters, RL
and 1/n, indicate a metal ion adsorption type of <1. These results suggest favorable Cu(II)
and Cr(VI) adsorption.
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Table 1. Isotherm model parameters for Cu(II) and Cr(VI) adsorption onto C-ZLCH.

Adsorption Isotherm Isotherm Constant
Metal Ions

Cu(II) Cr(VI)

Langmuir

mmax 88.64 34.57
KL 226.64 14.51
R2 0.99 0.98
RL 0.00004 0.00068

Freundlich
Kf 13015.09 950.66

1/n 0.17 0.15
R2 0.70 0.79

3.6. Adsorption Kinetic Studies

The effect of time (30–1440 min) on the adsorption capacities of Cu(II) and Cr(VI) was
studied. Figure 6 shows that the adsorption capacities of Cu(II) and Cr(VI) increased from
30 to 60 min and then gradually increased up to 90 min for Cr(VI). This is because C-ZLCH
contains abundant functional groups (amino, methyl, and hydroxyl groups) and active
sites, leading to the rapid adsorption of Cu(II) and Cr(VI). Subsequently, the adsorption
capacities decreased and increased for both Cu(II) and Cr(VI) because the adsorption or
desorption of metal ions occurred, leading to the reaction [48]. Finally, Cu(II) and Cr(VI)
adsorption reached equilibrium at 60 and 90 min with adsorption capacities of 111.35 and
104.75 mg/g, respectively.
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Figure 6. Effect of contact time on metal ions adsorption. (C-ZLCH: 0.01 g, volume: 50 mL, metal
ions concentration: 25 mg/L, pH: 8.1 for Cu(II), 6.7 for Cr(VI), temperature: 30 ◦C, and time: 30 min).

Adsorption kinetic studies are indispensable because they can provide information regard-
ing the adsorption mechanism, which is essential for describing process efficiency [25,49,50].
This study used two kinetic models: pseudo-first order (Equation (7)) and pseudo-second order
(Equation (8)). The linear form is calculated using the following equation:

log (m−mt) = log m−K1t (7)

t/mt= 1/(K2m2 ) + t/m (8)

where

K1 is the rate constant of pseudo-first-order kinetic model (min−1), and
K2 is the rate constant of pseudo-second-order kinetic model (g/mg min−1)
t is the time (min).

The fitting curves of the isotherm models are shown in Figure 7 and the corresponding
results are listed in Table 2. As can be seen that the linear correlation coefficient R2 value of
the pseudo-second-order was better than the first-order model for both Cu(II) and Cr(VI).
These results indicate that the adsorption rate is controlled by chemical reactions [39,51].
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Table 2. Kinetic model parameters for Cu(II) and Cr(VI) adsorption onto C-ZLCH.

Adsorption Kinetic Parameters
Metal Ion

Cu(II) Cr(VI)

First order
me 2.83 2.60
K1 −0.0000133 −0.0000002
R2 0.4715 0.0003

Second order
me 111.11 96.15
K2 0.0007 0.0011
R2 0.9995 0.9977

3.7. Effect of the Presence of Chemical Substances

Many organic and inorganic compounds can affect the adsorption percentage of Cu(II)
and Cr(VI) in the environment [52]. This study investigated the effects of Na+, glucose, and
NH4

+ at 10 mg/L and 50 mg/L on Cu(II) and Cr(VI) adsorption by C-ZLCH, as shown
in Figure 8. Statistical analysis showed that the effect of chemical substances on Cu(II)
removal was insignificant, in contrast to Cr(VI) removal. This suggests that Cr(VI) ions
compete for binding sites on C-ZLCH [53].
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Figure 8. Effect of chemical substances on Cu(II) and Cr(VI) adsorption. [Blank: no presence of
chemical substances, C-ZLCH: 0.01 g, volume: 50 mL, metal ions concentration: 25 mg/L, pH: 8.1 for
Cu(II) at 60 min, pH: 6.7 for Cr(VI) at 90 min, temperature: 30 ◦C].

3.8. Effect of the Presence of AR88 Dye

Industrial waste generally releases heavy metals and dyes, which are major industrial
problems [54]. AR88 is a dye that harms humans and the environment, and is possibly
trapped in soil [25]. In this study, we investigated the effect of AR88 on the simultaneous
removal of metal ions and dyes (Figure 9). The experiment was conducted with optimal
Cu(II) and Cr(VI) removal, initial AR88 of 10 mg/L, initial pH 2 and pH 8.1 for Cu(II), and
pH 2 and pH 6.7 for Cr(VI). Statistical analysis showed that the presence of AR88 dye had
no significant effect on Cu(II) removal. However, it significantly affected Cr(VI) removal at
pH 2 compared to the absence of AR88 (blank). This indicates that the highest percentage
of adsorption of Cu(II) and Cr(VI) was similar to that in the absence of AR88 dye (Figure 3).
Moreover, the highest AR88 removal was observed at pH 2 for both Cu(II) and Cr(VI),
similar to the results reported by Hidayat et al. [25].



Materials 2023, 16, 2532 10 of 13Materials 2023, 16, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 9. Effect of AR88 on Cu(II) and Cr(VI) adsorption. [Blank: no presence of AR88 dye, pH 8.1 
for Cu(II) and pH 6.7 for Cr(VI), C-ZLCH: 0.01 g, volume: 50 mL, metal ions concentration: 25 mg/L, 
pH: 8.1 for Cu(II) at 60 min, pH: 6.7 for Cr(VI) at 90 min, temperature: 30 °C]. 

3.9. Comparison with other Adsorbents 
Table 3 lists the adsorption capacities of different adsorbents. Thus, C-ZLCH is a 

promising adsorbent for removing Cu(II) and Cr(VI) from water.  

Table 3. Comparison with other adsorbents. 

Adsorbents 
m (mg/g) 

References 
Cu(II) Cr(VI) 

Hematite Fe-oxide-coated sand (pH 1) 3.93  [55] 
Chitin 2.80  [56] 

Magnetite nano-adsorbent (MNA) 4.42  [57] 
Fe2O3-carbon foam 3.8 6.7 [58] 

HKUST-1/SiO2  62.38 [7] 
NH2–ASNs  34.0 [59] 
NH2–MSNs 53.5 42.2 [59] 

Fly ash-derived zeolite 92.59  [60] 
Fly ash-based zeolite A   [61] 

Natural zeolite-coated magnetite  43.93 [62] 
Amine-functionalized zeolite  13.5 [63] 
Carbonized zeolite/chitosan 111.35 104.75 This study 

4. Conclusions 
A carbonized zeolite/chitosan (C-ZLCH) composite was prepared via pyrolysis to re-

move Cu(II) and Cr(VI) from water. The results indicated that the pH was optimal at pH 
8.1 and 6.7 for Cu(II) and Cr(VI), respectively. Cu(II) and Cr(VI) adsorption capacities 
were 111.35 and 104.75 mg/g after 60 and 90 min, respectively. For both Cu(II) and Cr(VI), 
the adsorption isotherm followed the Langmuir model, which is favorable (RL and 1/n < 
1). The Cu(II) and Cr(VI) kinetic models were fitted to a pseudo-second-order model, 
which indicated chemical sorption on the C-ZLCH adsorbent. Statistical analysis showed 
no significant effect on Cu(II) removal in the presence of sodium, in contrast to the pres-
ence of glucose, ammonium, and AR88. However, there was a significant effect on Cr(VI) 
removal in the presence of chemical substances and AR88 dye. 

a ab
ab a

b
aba

b

ab

c

0

20

40

60

80

100

120

Blank pH 2 pH 8.1 Blank pH 2 pH 6.7

Cu(II) Cr(VI)

Pe
rc

en
t a

ds
or

pt
io

n 
(%

)

Metal ion AR88

Figure 9. Effect of AR88 on Cu(II) and Cr(VI) adsorption. [Blank: no presence of AR88 dye, pH 8.1
for Cu(II) and pH 6.7 for Cr(VI), C-ZLCH: 0.01 g, volume: 50 mL, metal ions concentration: 25 mg/L,
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3.9. Comparison with Other Adsorbents

Table 3 lists the adsorption capacities of different adsorbents. Thus, C-ZLCH is a
promising adsorbent for removing Cu(II) and Cr(VI) from water.

Table 3. Comparison with other adsorbents.

Adsorbents
m (mg/g)

References
Cu(II) Cr(VI)

Hematite Fe-oxide-coated sand (pH 1) 3.93 [55]
Chitin 2.80 [56]

Magnetite nano-adsorbent (MNA) 4.42 [57]
Fe2O3-carbon foam 3.8 6.7 [58]

HKUST-1/SiO2 62.38 [7]
NH2–ASNs 34.0 [59]
NH2–MSNs 53.5 42.2 [59]

Fly ash-derived zeolite 92.59 [60]
Fly ash-based zeolite A [61]

Natural zeolite-coated magnetite 43.93 [62]
Amine-functionalized zeolite 13.5 [63]
Carbonized zeolite/chitosan 111.35 104.75 This study

4. Conclusions

A carbonized zeolite/chitosan (C-ZLCH) composite was prepared via pyrolysis to
remove Cu(II) and Cr(VI) from water. The results indicated that the pH was optimal at pH
8.1 and 6.7 for Cu(II) and Cr(VI), respectively. Cu(II) and Cr(VI) adsorption capacities were
111.35 and 104.75 mg/g after 60 and 90 min, respectively. For both Cu(II) and Cr(VI), the
adsorption isotherm followed the Langmuir model, which is favorable (RL and 1/n < 1).
The Cu(II) and Cr(VI) kinetic models were fitted to a pseudo-second-order model, which
indicated chemical sorption on the C-ZLCH adsorbent. Statistical analysis showed no
significant effect on Cu(II) removal in the presence of sodium, in contrast to the presence of
glucose, ammonium, and AR88. However, there was a significant effect on Cr(VI) removal
in the presence of chemical substances and AR88 dye.
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