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Abstract. While it is well known that the mth order 5-spline Nm(x) with

integer knots generates a multiresolution analysis,   • • • C V_x  c V0 C • ■ • ,

with the with order of approximation, we prove that i//(x) := Ú1mJ¡{2x - 1),

where L2m(x) denotes the (2m)th order fundamental cardinal interpolatory

spline, generates the orthogonal complementary wavelet spaces Wk . Note that

for m = 1 , when the ß-spline Nx(x) is the characteristic function of the

unit interval [0, 1), our basic wavelet L2(2x - 1) is simply the well-known

Haar wavelet. In proving that Vk+l = Vk ffi Wk , we give the exact formulation

of Nm(2x - j), j e Z , in terms of integer translates of Nm(x) and y/{x).

This allows us to derive a wavelet decomposition algorithm without relying on

orthogonality nor construction of a dual basis.

1. Introduction

A very natural and convenient way to introduce wavelets is to follow the

notion of multiresolution analysis in [5, 7]. Let 4> be a function in L = L (R)

and set (pkj(x) = (f>(2 x - j). For each k e Z, denote by Vk the L2-closure of

the algebraic span of {(f>kj:j e Z}. Then the function </> is said to generate a

multiresolution analysis (or approximation of L ) if the following conditions

are satisfied:

(i) ■■■cV_xcV0cVxc---;

(ii) ClosL2([Jk€ZVk)=L2;

(üi) n*6Z n - {0} ;and
(iv) for each k, {<f>kJ: j e Z} is an unconditional basis of Vk .

Suppose that 4> generates a multiresolution analysis and that there exists
2 2

some function y in L   such that the L -closure WQ of the algebraic span of

{v(--j)'- J:£ Z} is the orthogonal complement of V0 in Vx . Then y/ is called
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786 C. K. CHUI AND J.-Z. WANG

a basic wavelet relative to <p. We will use the notation Vx = VQ®WQ, and again

set y/kj(x) = y/(2 x - j) and

Wk = ClosLj(span{^;.: jeZ}).

kl2
(Note that in the wavelet literature, a normalization constant 2 is used in

defining y/kj.) If y/ is a basic wavelet relative to cf>, then it is clear that the

"wavelet spaces" Wk , generated by y/ , satisfy the following properties:

(v)  Vk+x = Vk®Wk,all k€Z;
(vi)  Wk±Wj-, all k^j;and

(vii) L2 = ©,ez^.

y
As a consequence of (vii), any function in L has a (unique) orthogonal de-

composition in terms of functions in Wk , k € Z. This is called a (complete)

wavelet decomposition. Of course, in applications, one first approximates an

f G L by some fk € Vk with a sufficiently large value of k (cf. (i) and (ii))

and then obtains the (unique) wavelet decomposition of fk , namely:

(1-1) fim*k-i+ — + 8itf+fk-t
y

for some sufficiently large value of I, so that fk_t  has arbitrarily small L

norm (cf. (iii)). Here, gl, € Wi,, /' = k — l, ... ,k-\, and fk_t € Vk_e. Hence,

in view of (i), (v), and (vi), the decomposition of fk in (1.1) is an orthogonal

decomposition (in the sense that all the components gk_x, ... , gk_e, fk_e of

fk are mutually orthogonal).

A standard method to determine a basic wavelet y/ from <¡> can be summa-

rized very briefly as follows: First, orthonomalize {<p0j}, yielding {4>0¡} ; then

find the (two-scale) relation of <¡> in terms of {<¡>Xj} ; and finally alternate the

signs of the coefficient sequence in this two-scale relation in a clever way to

form y> in terms of {</>,,} (cf. [5, 3]). An extra feature that this basic wavelet

y/ has is that {ys0j} is an orthogonal family. For instance, if <j> is the mth or-

der 5-spline Nm , defined by convoluting the characteristic function y      with
m [0,1)

itself m-times (cf. [8] and [2]), then the procedure outlined above has been

demonstrated for m = 4 in [5] to yield the orthonomal (cubic spline) wavelets

of Battle [1] and Lemarié [4] (also see [7]).

It is noted from these examples that even for small values of m such as

m = 2 and 4, the price to pay in order to achieve the additional orthogonality

property of {^0.} is quite high. In the first place, it imposes extra compu-

tational complexity. Indeed, even for linear and cubic splines, it is extremely

difficult to obtain an explicit representation of the basic wavelet y/ (cf. [5, 7]).

Of course, for computational purposes, an expression of y/ is not important.

However, due to the orthogonality of {y/0j}, the rate of decay of the sequences

in the formulation for reconstructing </>¡ in terms of {0O,} and {y/0¡} , which

is essential in the computational algorithms for the wavelet decomposition (1.1)

(cf. [3, 6]), seems to be somewhat slow.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A CARDINAL SPLINE APPROACH TO WAVELETS 787

In this paper, we take a more direct approach to constructing a basic wavelet

y/ from </> ■ While it is essential to generate the same wavelet spaces Wk , so

that the properties (v)-(vii) are valid and the same wavelet decomposition (1.1)

is attained, we do not impose orthogonality on the family {y/0 }. Instead, we

look for a y/ so that the sequences for representing </>x. in terms of {0Oj} and

{y/0 } have sufficiently fast rate of decay. In fact, we believe that this approach

will allow us to construct a larger class of compactly supported basic wavelets

y/ than the class obtained by Daubechies [3]. Our results in this direction will

be presented in a later paper. The objective of this paper is to demonstrate this

point of view by considering the ß-splines Nm of arbitrary orders.

2. Main results

As usual, let x   denote the characteristic function of a set A . Then the mth
A

order 5-splines Nm are defined as follows:

Ni(x)=X[0¡)(x),

and for m = 2, 3, ... ,

Nm(x) = (Nm_x*Nx)(x)= [ Nm_x(x-t)dt.
Jo

Clearly, the support of Nm is the interval [0, m] and the mth derivative of

Nm is given by

(2.1) <w)w = £(-i);(7W-;),
j=0 ^J '

where ô denotes, as usual, the Dirac delta distribution with unit mass at the

origin (cf. [2]). In this paper, we will consider

(2.2) <p = Nm,

which generates a multiresolution analysis (i)-(iv).   In fact, its order of ap-

proximation is precisely m .  (For more details on approximation orders, see

[2].)
To describe our basic wavelet y/ relative to <f> given by (2.2), we need the

fundamental (cardinal) interpolatory spline:

(2-3) L2Jx) = 1EajN2m(x + m-J)>
jez

defined uniquely by the interpolation conditions:

(2.4) L2m(k)^ôk0,      kez,

where a   — or"1'  and the standard notation for the Kronecker delta is used.

That is, by considering the symbols

(2.5) A(z) = J2<*jZJ
7'GZ
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788 C K. CHUI AND J.-Z. WANG

and
m-\

(2.6) B(z)=    ¿2    N2m(j + m)zJ,
j=-m+\

the fundamental interpolation conditions (2.4) can be formulated as

(2.7) A(z)B(z) = l.

The importance of this formulation is that the finite Laurent series B(z) can

be expressed as

(2.8) B(z) = ^-^z^U(z),

where n = n2m_, is the well-known Euler-Frobenius polynomial of degree

2m - 2 (cf. Schoenberg [8]). We will make use of this important information

later.

Our basic wavelet W = tym relative to (f> = Nm is given by

(2.9) yv(x) = L{2mJ(2x-l).

Clearly, for m = 1, when á = y     , the corresponding basic wavelet y/ = y/,
[0,1) '

is simply the Haar wavelet. In general, we must verify the properties (v)-(vii).

In the first place, WQ is orthogonal to V0 , so that

(2.10) wk±vk>    allfceZ,

is trivial. Indeed, for all lx and l2 G Z, it follows from (2.1) and (2.4) that,

with j = l2- lx,

/OO /«OOy/(x -£x)4>(x -l2)dx = /     y/(x)<p(x - j) dx
-oo J —oo

L
oo

Lf2(2x-\)Nm(x-j)dx
oo

\m     /.oo

2̂ J — oo

L2m(2x-\)N(™\x-j)dx
-oo

^^(-iT^i^r L2m(2x-\)ô(x-j~v)dx
v=0 \"/J-oo

= E24(-1)W"1'(7)^(2; + 2,-l) = 0.
i/=0

On the other hand, while the inclusion VQ c Vx is a simple consequence of the

two-scale identity:

(2.11) 0(x) = E2-m+1(7)0(2x-y),
/=o ^J '

which can be described in terms of Fourier transforms by the identity:

(2.12) 4>((D)=X-P(z)4>(j) ,
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where

(2.13) z:=e   T

and

(2.14) P(z) = ¿2-m+1 (m)zj = 2"m+1(l + z)w;

j=0 ^ J '

the inclusion W0 c Vx , so that

(2.15) WkcVk+i>    all Ac G Z,

is a consequence of the following lemma.

Lemma 1. Let z be as in (2.13). Then

(2.16) V(o>) = jQM(j),

where

(2.17) Q(z):=[   ~J¡   A(z).
z

Here, A(z) is the symbol of {a } defined in (2.5). As a trivial consequence

of (2.10) and (2.15), we have the required orthogonality property (vi), namely:

rVk±rVj,    all   k^j   in   Z.

So, to conclude that y/ is a basic wavelet relative to 0, it is sufficient to verify

(2.18) V. = V0 + W0.

Indeed, if (2.18) holds, then (v) and (vii) follow from (2.10) and (i)-(iii). How-

ever, in order to give a computational algorithm for achieving the wavelet de-

composition (1.1), we must give the explicit rule that describes the decompo-

sition (2.18). That is, we need to determine the I sequences {an} and {bn}

that express each 4>xl, l G Z, in terms of {4>0n} and {y/0n} as follows:

(2.19) <t>(2x - I) = ^ae_2n4>(x - n) + ^be_2ny/(x - n).
n n

The main theorem in this paper is to determine these two sequences {an} and

{bn}. To facilitate the statement of this theorem, it is more convenient to

introduce two Laurent series:

(2.20)

and

(2.21)

j_   (l + z)mn(z)^2,

(2m-l)!2m z2
rt^\.      _t_     yi -r ¿-j    "^;   A(„¿\
G(z) •= T^Z.-TTTv«-JSPl-A(z )

_ 1 (l+z)mYl(z) ^       2j

~(2m-l)!2m'       z2m-'       ^aJZ

_1_   (\-z)mU(z)Yl(-z)       2

[(2w-l)!]222w-1 z2

-z)mn(z)Y\(-z)^„ z2j

[(2m -l)\]222m~l EQ;;
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Recall that U(z) is the Euler-Frobenius polynomial of degree 2m - 2, with

coefficients:

(2m-\)\N2m(j),       j=\,...,2m-\,

(cf. (2.8) and (2.6)). We have the following result.

Theorem 1. Let G(z) and H(z) be defined as in (2.20) and (2.21). Then the

sequences {an} and {bn} that give the wavelet decomposition (2.19) are the

coefficients of the following Laurent expansions of G(z) and H(z) :

(2.22) G(z) = Y,anz~"
nez

and

(2.23) H{z) = Y,hz~n-
«€Z

We remark that since Yl(z) is only a polynomial, it follows from (2.20)-

(2.23) that the rate of exponential decay of the sequences {an} and {bn} does

not exceed that of {ot,nn{\ • To give this rate of decay, let the roots of n =

n2m_j be denoted by r., j = \, ... ,2m-2, labeled in decreasing order; that

is,

r2m-2<r2m-3<---<rm<-l<rn1-l<---<ri<°>

where rxr2m_2 — ■■■ = rm_xrm = 1 (cf. Schoenberg [8, pp. 37-38]). Then we

have

(2.24) an = 0(\rJ-W),        n-+±cx>.

Hence, in view of the formulations (2.20)-(2.23), we have

(2.25) an,bn = 0(\rm\-WI2),     n-±oo.

3. Proofs of results

First, we remark that Lemma 1 can be easily verified by using Fourier trans-

forms and the identity

7=0

(cf. [2]). To establish the theorem, we need the following result.

Lemma 2. Let n = n2m_, be the Euler-Frobenius polynomials. Then

(3.1) n(z)(i + z)2m -n(-z)(i - z)2m = 22mzn(z2)

for all z.

To verify this lemma, we recall the identity

(3-2) TT^EO'+'^-V
0-z) j=0

<)w=f(-i)/(7)^t-i),
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(cf. [8]). Hence, it follows that

(1-z) (i + z) J=0

2m-\J.k_^2m^      Y\.(z  )= 22mzY(k + \)2m-lz2k = 22mz-

ik (1(\-zyk=0

which is equivalent to (3.1).   D

To establish Theorem 1, we first note that (2.19) is equivalent to

2*\l)e =Z^ae-2ne       <t>(œ) + 2^be-2ne       Vi03)
nez nez

which, in view of the two-scale identities (2.12) and (2.16), is in turn equivalent

to

(3.3) P(z)Y,ai_2nz2n-1 + Q(z)Y,bl_2nz2n-e = \,

nez nez

where P and Q are given in (2.14) and (2.17), and the notation (2.13) is used.

By a change of indices, it is clear that (3.3), and hence (2.19), is equivalent to

the set of two identities:

(3.4)

p{z)G(z) + G(-z)+Q{z)H(z) + H(-z) = u

p[z)G(z)-G(-z)+Qiz)H(z)-H(-z)^_
2 ~v ' 2

Now, by applying Lemma 2, and recalling (2.7), (2.8), (2.20), and (2.21), it is

straightforward to arrive at (3.4).    D

4. Decomposition and reconstruction algorithms

The sequences {an} and {bn} which have at least the exponential decay

rate (2.25) can now be used to yield the wavelet decomposition (1.1). Indeed,

writing

i/r=£i^m>      j = k-e,...,k,

(4.1)
gj-=12<yfjm,       j = k-i,...,k-\,

we note that, as a consequence of the decomposition (2.19), the decomposition

(4.2) fj^fj^+gj^,        j = k-i,...,k,

is equivalent to the recursive relations:

( J-i

(4.3)

= Ev CJ2rn ' j = k-i + \,...,k

d\'       =Ebn-2A> j = k-i + \,...,k.
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792 C K. CHUI AND J.-Z. WANG

Hence, (4.3) can be used to arrive at the wavelet decomposition (1.1), namely,

(4-4) 4 = £*_! + ••• + **_/+ /*_,,

where fk_t g Vk_e and gj £ Wj, j = k — ¿,..., k — 1, are formulated in

(4.1).
Similarly, the two-scale relations (2.11) and (2.16) can be used to reconstruct

fk from fk_e and gk_t, ... , gk_x . (Of course, in applications, these wavelets

Sk-\ > • ■ • > gk-e have probably been processed and are necessarily different from

those in (4.4).) For notational convenience, let us write

m

(4.5) P(z) = £>.z7

7=0

(that is, p. = 2~m+x(mj)) and

(4.6) Q(z) = YjQjz}-
jez

Then, in view of (2.11) and (2.16), the decomposition (4.2) is equivalent to

(4.7) cJe=^pe_2ncJ-l+J2ae-2ndn~l>        j = k - ¿ + 1 , .. . , k .
n n

Note that {pn} is a finite sequence, and in view of (2.17) and (2.24), we have

i..*Oflr*fW).        n^±oo.

For more details on algorithms of this type and their applications, the reader is

referred to Mallat [6].
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