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1 Introduction

Two dimensional conformal field theories are among the most well-studied quantum field

theories. They describe the dynamics of important statistical and condensed matter sys-

tems near criticality, and possess enough symmetry that they can — in some cases — be

solved exactly [1]. This has led to the hope that two dimensional CFTs could be completely

classified. This has so far proven impossible, except in the special case of rational CFTs

with a finite number of primary operators [2]. Nevertheless, it is possible to constrain

the operator content and dynamics of general irrational CFTs. Our goal is to describe

a new such constraint, and to provide a dual AdS/CFT interpretation involving black

hole physics.

The basic dynamical data of a two dimensional CFT is simple to state: every theory

is completely determined by the dimensions and three-point function coefficients of the

primary operators. An arbitrary correlation function, as well as the partition function on

an arbitrary Riemann surface, can be constructed in terms of this data. The basic strategy

of the conformal bootstrap program is to impose consistency conditions which constrain

the allowed dimensions and three-point coefficients. For 2D CFTs one needs only to impose
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crossing symmetry of four-point functions on the sphere and modular covariance of one-

point functions on the torus; these two conditions are sufficient to imply higher point

crossing symmetry and higher genus modular invariance [3, 4]. Recent work has focused

primarily on constraints from four-point crossing symmetry, which has led to impressive

successes in higher dimensional CFTs; see [5, 6] for reviews and references. Our goal is

to intiate a study of the constraints coming from modular covariance of torus one-point

functions, which have so far been left out of the fun.

The motivating example for our considerations is Cardy’s derivation of the asymptotic

density of states of a two dimensional CFT [7]. The starting point is the observation that

the partition function of a CFT on the circle S1

Z(β) = TrHS1e
−βH =

∑
i

e−βEi (1.1)

is invariant under the temperature inversion β → 4π2/β, which is a consequence of modular

invariance of the torus partition function. This β → 4π2/β symmetry relates the low

temperature behaviour of the theory to the high temperature behaviour. In particular, it

relates the asymptotic density of states at high energy to the energy of the ground state,

which — via the conformal anomaly — is determined by the central charge. The energies

Ei are, up to a constant shift, equal to the scaling dimensions of the operators on the plane.

So the spectrum of operator dimensions is constrained by modular invariance.

In this paper we will consider instead the finite temperature expectation value of a

primary operator O:

〈O〉β = TrHS1Oe
−βH =

∑
i

〈i|O|i〉e−βEi . (1.2)

The coefficients 〈i|O|i〉 in this expansion are essentially equal to the three-point function

coefficients CiiO of O with a complete basis of operators Oi. The one-point function (1.2)

transforms in a known way under the temperature inversion β → 4π2/β. As we will show

in section 2, this determines the behaviour of the three-point coefficients CiiO when the

dimension Ei is large in terms of the three-point coefficients for low dimension operators. In

particular we will find a universal formula for the average value of the three-point function

coefficient CiiO as a function of Ei. Just as in Cardy’s original formula, the asymptotic

behaviour of the theory — in this case the light-heavy-heavy three-point coefficients — is

determined by the dynamics of light operators.1

Our result has an interesting dual holographic interpretation. In the AdS/CFT corre-

spondence every two dimensional conformal field theory can be interpreted as a theory of

quantum gravity in three dimensional Anti-de Sitter space [12]. The heavy CFT states are

conjectured to be dual to quantum states of black holes in AdS3. An important piece of evi-

dence is the fact that Cardy’s formula for the asymptotic density of states matches precisely

the Bekenstein-Hawking formula for the entropy of the corresponding black holes [13]. We

are now in a position to take this one step further, and argue that the CFT observables

— i.e. the expectation values 〈i|O|i〉 — match those of the corresponding black hole. In

1Some related results have appeared in the literature before, including [8–11].
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section 3 we will compute the one-point function in a black hole background and show

that it precisely reproduces our formula for 〈i|O|i〉. Our bulk computation relies on de-

tailed properties of the black hole metric, so demonstrates how certain features of the black

hole geometry are visible in CFT observables. In particular, since the bulk computation

matches only the average value of COii we see that the black hole geometry emerges when

we coarse grain over all heavy microstates |i〉.
In the final section of our paper we will take our asymptotic analysis one step further.

In defining the dynamical data of a conformal field theory one needs only to determine

the three-point coefficients of primary operators; descendant operator correlation functions

are then fixed using conformal Ward identities. Our most general formula for three-point

coefficients, derived in section 2, gives the asymptotic behaviour of COii averaged over all

states |i〉 in the theory, both primaries and descendants. In section 4 we will understand to

what extent we can constrain the asymptotics of primary operator three-point coefficients.

To do so we will need to understand the conformal blocks for torus one-point functions.

In an appendix we will study the asymptotic behaviour of these blocks, extending earlier

work [14]. As a result we will derive a similar expression for the asymptotic three-point

coefficients of primary operators. Our formula is valid only when c� 1, and relies on some

other assumptions; we leave the study of O(1/c) corrections to future work.

2 A Cardy formula for three-point coefficients

Our goal is to derive a Cardy-like formula for the asymptotics of the three-point function

coefficients in 2D CFTs. In this section we will not distinguish between primary and

descendant operators; a similar formula for the asymptotics of three-point coefficients of

primary operators will be derived, under certain assumptions, in section 4.

2.1 Torus one-point functions

Our central object of interest is the one-point function of a primary operator O of dimension

(H, H̄) on a torus with modular parameter τ :

〈O〉τ = Tr O qL0− c
24 q̄L̄0− c

24

=
∑
i

〈i|O|i〉q∆i− c
24 q̄∆̄i− c

24 (2.1)

where q = e2πiτ . In the second line we have expanded in a basis of states on the cylinder,

labelled by an index i, which have conformal dimensions (∆i, ∆̄i). We have included

explicitly the shift in these dimensions by c/24, so that (∆i, ∆̄i) are the dimensions of the

corresponding operator Oi on the plane. We will denote by Ei = ∆i + ∆̄i the total scaling

dimension, which is (up to this constant shift) the energy of the state |i〉 on the cylinder.

Note that although we have not explicitly indicated the dependence on τ̄ , 〈O〉τ is not in

general an analytic function of τ .

An important feature of (2.1) is that, by translation invariance, 〈O〉τ is a function only

of τ and not of the location of the operator O on the torus. Similarly, because the states
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|i〉 are (L0, L̄0) eigenstates the coefficient 〈i|O|i〉 is a constant. Indeed, 〈i|O|i〉 is precisely

the three-point function coefficient for the correlation function 〈OiOOi〉 on the sphere,2

〈i|O|i〉 = 〈Oi(∞,∞)O(1, 1)Oi(0, 0)〉S2 , Oi(∞,∞) = lim
z→∞

z2∆iz2∆iOi(z, z) , (2.2)

where we are taking a Hermitian basis of operators, O†i = Oi.

2.2 Modular invariance

We will now use the invariance of the conformal field theory on the torus under large

conformal transformations, which act on τ as modular transformations. The partition

function of the theory is invariant under such modular transformations, and the primary

operator O transforms with modular weight (H, H̄). In particular, under the modular

transformation

τ → γτ ≡ aτ + b

cτ + d
(2.3)

the one-point function transforms as a Maass form of weight (H, H̄):

〈O〉γτ = (cτ + d)H(cτ̄ + d)H̄〈O〉τ . (2.4)

When O is the identity operator this reduces to the usual modular invariance of the par-

tition function.

We will be interested in the S transformation τ → −1/τ , under which

〈O〉−1/τ = (τ)H(τ̄)H̄〈O〉τ . (2.5)

The utility of this formula is that it relates the high temperature behaviour of the the-

ory to the behaviour at low temperature. For the partition function, this determines the

asymptotic density of states of the theory in terms of the dimension of the ground state

on the cylinder, which by conformal invariance is set by the central charge. In the present

case, this modular invariance constrains the asymptotics of the three-point function co-

efficients 〈i|O|i〉 in the limit where |i〉 is heavy in terms of the three-point coefficients of

light operators.

2.3 The asymptotic formula

Let us begin by investigating the behaviour of the one-point function when we take τ = i β2π
with β →∞. We have

〈O〉 iβ
2π

= 〈χ|O|χ〉 exp

{
−β
(
Eχ −

c

12

)}
+ . . . (2.6)

where χ is the lightest operator with non-vanishing three-point coefficient 〈χ|O|χ〉 6= 0,

and Eχ = ∆χ + ∆̄χ is the scaling dimension of χ. The . . . in (2.6) represent terms that are

2Depending on how one defines the theory on the sphere, a proportionality constant may be present (see

section 6.7 of [15]), but this plays no role in our analysis.
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exponentially suppressed as β → ∞.3 From (2.5) we therefore have the high temperature

(β → 0) expansion

〈O〉 iβ
2π

= iS〈χ|O|χ〉
(

2π

β

)EO
exp

{
−4π2

β

(
Eχ −

c

12

)}
+ . . . (2.7)

where EO = H + H̄ is the scaling dimension of O and S is its spin.

We can now compare this result to the expansion (2.1), which we rewrite as

〈O〉 iβ
2π

=

∫
dE TO(E) exp

{
−
(
E − c

12

)
β
}

(2.8)

where

TO(E) ≡
∑
i

〈i|O|i〉δ(E − Ei) (2.9)

is the total contribution from operators of dimension E. We note that at high temperatures

the integral (2.8) will be dominated by operators with large dimension E. Comparing (2.8)

with (2.7), we see that we can write TO(E) as the inverse Laplace transform

TO(E) ≈ iS〈χ|O|χ〉
∮

dβ

(
2π

β

)EO
exp

{(
E − c

12

)
β −

(
Eχ −

c

12

) 4π2

β

}
. (2.10)

At large E this integral is dominated by a saddle point with

β ≈ 2π

√
c

12 − Eχ
E − c

12

+
EO

2
(
E − c

12

) + . . . (2.11)

where . . . are terms which vanish more quickly as E →∞. We will restrict our attention

to the case where the operator χ is light — i.e. Eχ <
c

12 — so that the saddle point is real.

The saddle point approximation to the integral gives

TO(E) ≈
√

2πNO〈χ|O|χ〉
(
E − c

12

)EO/2−3/4
exp

{
4π

√( c
12
− Eχ

)(
E − c

12

)
+ . . .

}
(2.12)

where . . . denotes terms which vanish as E →∞ and the prefactor

NO = iS
( c

12
− Eχ

)−EO/2+1/4
(2.13)

is independent of E. We note that (2.12) gives a smeared approximation to (2.9), where we

average over states in an energy window set by the saddle point (2.11). Since β−1 ∼
√
E,

at high energies we have ∆E/E ∼ 1/
√
E and the approximation becomes sharp.

3For simplicity we will assume that this operator is non-degenerate — if there are multiple operators

χi of the same dimension then we must include a sum
∑
i〈χi|O|χi〉 6= 0. This leaves open the interesting

possibility that in some cases the sum might vanish. This might be the case if, for example, O is a current

under which two fields χi carry equal and opposite charges. In this case one would have to include higher

order terms.
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Rather than studying the total three-point function TO(E) it is useful to ask what

will be the typical value of the three-point function coefficient 〈i|O|i〉 for an operator Oi of

dimension E. The average value of the three-point coefficient

〈E|O|E〉 ≡ TO(E)

ρ(E)
(2.14)

can be computed using Cardy’s formula for the density of states [7]4

ρ(E) ≈
√

2π
(
E − c

12

)−3/4
exp

{
4π

√
c

12

(
E − c

12

)
+ . . .

}
(2.15)

as E →∞. The average value of the OPE coefficient of O with two operators of dimension

E is

〈E|O|E〉 ≈ NO〈χ|O|χ〉
(
E − c

12

)EO/2
exp

{
−πc

3

(
1−

√
1− 12Eχ

c

)√
12E

c
− 1

}
(2.16)

This is the desired asymptotic form for the light-heavy-heavy three-point coefficients. In

the next section we will describe the bulk dual interpretation of this formula in terms of

AdS3 gravity.

It is worth noting the similarity of (2.16) with the original Cardy formula (2.15). In

Cardy’s original formula, the only data that enters into the leading asymptotic density

of states is the central charge (i.e. the dimension of the ground state on the cylinder).

If one wishes to understand subleading contributions to Cardy’s formula, however, the

result depends on the dimensions of other light operators in the theory. We have obtained

a similar formula, which depends in addition on the data of certain light operators —

in particular, the dimension of the external operator EO as well as the dimension and

three-point coefficient 〈χ|O|χ〉 of the lightest operator to which it couples.

One important difference from Cardy’s formula is that the three-point coefficients being

studied are not positive definite. In particular, while the average three-point coefficient

vanishes exponentially as E →∞, individual three-point coefficients might be large. Many

of the more precise generalizations of Cardy’s formula, such as [17–19], rely on the fact

that in Cardy’s formula the partition function is a sum of positive definite terms. It is not

clear how to apply these techniques in the present case, where the individual terms in the

sum are not positive definite. For example, because the three point coefficients are not

positive definite, our techniques cannot be used to place a rigorous bound on behaviour of

the light-heavy-heavy three point coefficients. It is even possible to imagine scenarios where

the distribution of OPE coefficients is so broad that (2.8) does not have a well-behaved

saddle point at large E. We expect, however, that for generic operators the eigenstate

thermalization hypothesis will hold; this implies that deviations from this saddle point will

be suppressed at high energy (see [11] for more details). It would be interesting to explore

this further.

4We have included here the power law prefactor, for reasons that will become clear below. As above,

this factor comes from the integral over Gaussian fluctuations around the saddle point (as in e.g. [16]).
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So far we have made no assumptions about the value of c in our derivation. Equa-

tion (2.16) could be applied to a Minimal Model CFT, for example. Simplifications occur

if we take c to be large, however, which would be the case when the theory is dual to

semi-classical gravity in AdS3. In this case an interesting limit is one where the external

operator O, and the operator χ to which it couples, are light: EO � c, Eχ � c as c→∞.

In this case

〈E|O|E〉 ≈ ÑO〈χ|O|χ〉
(

12E

c
− 1

)EO/2
exp

{
−2πEχ

√
12E

c
− 1

}
. (2.17)

3 The AdS3 interpretation

We will now describe the interpretation of the above results in terms of AdS3 gravity.

A typical finite-c conformal field theory is not expected to be dual to semi-classical

bulk gravity. One might therefore expect that one must make certain assumptions about

the CFT in order to match a bulk derivation, such as large c or a sparseness constraint on

the light spectrum or three-point coefficients. This will not turn out to be necessary. In

particular, we will show that, although equations (2.16) and (2.17) were derived for general

CFTs — assuming only that E � c and the existence of an operator χ with 〈χ|O|χ〉 6= 0

and Eχ <
c

12 — these formulas can nevertheless be derived in semi-classical AdS3 gravity.

A very similar situation arises in Cardy’s formula for the density of states, which is

derived in a general CFT assuming only that E � c. Nevertheless it matches the semi-

classical Bekenstein-Hawking formula in AdS3. We take this as evidence that AdS gravity

may capture universal aspects of CFT dynamics beyond the naive regime of validity of

semi-classical gravity.

3.1 The AdS3 setup

We begin by giving a schematic bulk derivation of the various terms in our asymptotic

formula for three-point coefficients. The detailed Witten diagram computation will be

deferred to section 3.2.

We will consider first equation (2.17). We will take O and χ to be scalar primary oper-

ators which are light in the sense that EO, Eχ � c
12 . So O and χ are dual to perturbative

bulk scalar fields φO and φχ in AdS3. The bulk theory will contain a φ2
χφO interaction

term with coupling proportional to 〈χ|O|χ〉.
We wish to compute the expectation value of 〈E|O|E〉 in a typical state with energy

E � c
12 . At high energy, |E〉 is well-described by the BTZ black hole geometry [20]

ds2 = −(r2 − r2
+)dt2 +

dr2

r2 − r2
+

+ r2dφ2 (3.1)

where φ ∼= φ + 2π. We work in units where the AdS radius is `AdS = 1. The area of the

horizon A = 2πr+ is related to the energy by

r+ =

√
12E

c
− 1 . (3.2)
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ϕ χ 

Ο ϕ 

ϕ 

Figure 1. Geodesic approximation to the one-loop contribution to the one-point function of φO. A

constant time slice of the BTZ metric is depicted. The φχ particle wraps the horizon and meets the

φO particle emanating from the boundary at a cubic vertex. If the geodesic worldlines are replaced

by propagators and the cubic vertex is integrated over spacetime, this becomes a full-fledged one-

loop Witten diagram.

Since E � c
12 the area of the black hole is large in AdS units. Although an individual

microstate |E〉 will not necessarily have a geometric description, the metric (3.1) is expected

to emerge upon coarse-graining over a suitable family of microstates. Indeed, in all of our

asymptotic formulas we compute only the microcanonical value of the three-point coefficient

averaged over all states with with fixed energy.

Let us begin by considering 〈E|O|E〉 in the limit that the fields φO and φχ are very

massive, so that EO ≈ mO and Eχ ≈ mχ are taken to be much greater than 1, but still

much less than c. In this approximation a bulk two-point function for a field of mass m is

given by e−mL, where L is the geodesic length between two points.

We then consider the contribution to 〈E|O|E〉 sketched in figure 1: a φO particle

propagates from infinity to the horizon, where it splits into a pair of φχ particles which

wrap the horizon.5 The amplitude for this process is proportional to the cubic coupling

〈χ|O|χ〉. The φχ geodesic wrapping the horizon gives a contribution e−mχA. A radial

geodesic from the horizon r+ out to a radial coordinate r = Λ has length

L =

∫ Λ

r+

dr√
r2 − r2

+

= cosh−1

(
Λ

r+

)
≈ log Λ− log r+ + . . . (3.3)

where in the second line we have taken Λ→∞. Discarding the log Λ divergence gives the

regularized length which appears in the bulk boundary propagator:

e−mOLreg. ≈ rmO+ (3.4)

5A similar process was considered in [10], where it was given a somewhat different interpretation.
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where we have neglected terms which are subleading at large r+. Putting this together

we have

〈E|O|E〉 ≈ 〈χ|O|χ〉 rmO+ exp {−2πmχr+} (3.5)

Using (3.2), EO ≈ mO and Eχ ≈ mχ this matches precisely our asymptotic formula (2.17)

for the three-point coefficients.

The above derivation assumed that the O and χ particles were light. However, in

deriving the general asymptotic formula (2.16) we assumed only that Eχ <
c

12 . When Eχ
is of order c the state |χ〉 is dual to not to a perturbative field but rather to a massive

point particle in AdS3. A massive point particle will backreact on the AdS3 geometry to

give a conical defect geometry [21, 22]

ds2 = −(1 + r2)dt2 +
dr2

1 + r2
+ r2dφ2, φ ∼= φ+ 2π −∆φ . (3.6)

The deficit angle ∆φ is related to the mass of the χ particle by

mχ =
c

6

∆φ

2π
. (3.7)

Here mχ is the local mass of the particle (i.e. the quantity which appears in the particle’s

worldline action). The important point is that Eχ should be identified with the ADM

energy of the solution (3.6) as measured at infinity, which is not necessarily the same as

the local mass mχ. When Eχ � c we can ignore gravitational backreaction and mχ ≈ Eχ,

but in general they are related by

mχ =
c

6

(
1−

√
1− 12Eχ

c

)
. (3.8)

Inserting this expression for mχ into (3.5) reproduces the more general CFT expres-

sion (2.16).

The above arguments are meant to be intuitive not definitive, and indeed raise some

questions. For example, one might have expected that the geodesic configuration would

include an effect due to the radial worldline “pulling” on the horizon wrapping worldline

so as to minimize the total weighted length. Also, one can ask about how to relax the

conditions EO, Eχ � 1. These issues are addressed by the more careful Witten diagram

derivation of (2.17) given in the next section. On the other hand, we leave a more systematic

derivation of (2.16), which will involve the dynamics of conical singularities in the BTZ

background, to future work.

Before proceeding let us make a few comments on the interpretation of our deriva-

tion (3.5). First, we note that the BTZ metric (3.1) should be regarded as an effective

description of the state |E〉 which emerges only when we coarse grain over many states at

fixed energy. An individual microstate |E〉 may contain large fluctuations which deviate

significantly from (3.1), and may not even have a metric description. Our asymptotic for-

mula (2.17) computes only the average value of 〈E|O|E〉 in the microcanonical ensemble,

– 9 –
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where we average over all states at fixed energy. Indeed, the states over which we aver-

age are counted by Cardy’s formula (2.15), which is the Bekenstein-Hawking formula that

counts black hole microstates [13]. Our bulk formula (3.5) relied on detailed properties

of geodesics in the black hole geometry. We can therefore interpret our asymptotic for-

mula (2.17) as further CFT evidence that the black hole geometry emerges upon course

graining over microstates.

Another point worth mentioning is that the nonzero one-point function of O is a

consequence of Hawking radiation in the bulk. This feature can be made manifest by

writing down the thermal state for φχ, using this to compute 〈φ2
χ〉, and then thinking of

this as a source for φO. This approach leads to the same result at the end.

3.2 Witten diagram calculation

To do the computation properly we must compute the appropriate Witten diagram in the

BTZ metric [20]

ds2 = (r2 − r2
+)dt2E +

dr2

r2 − r2
+

+ r2dφ2 (3.9)

which we write in Euclidean signature, with tE ∼= tE + 2π/r+. The leading contribution to

the one-point function is the 1-loop diagram with a single cubic vertex depicted in figure 1,

but now with the worldlines replaced by propagators and the cubic vertex integrated over

the BTZ spacetime:

〈E|O|E〉 = COχχ

∫
drdtEdφ r Gbb(r; ∆χ)Gb∂(r, tE , φ; ∆O) (3.10)

where we have used translation invariance to place the boundary operator at tE = φ = 0.

Here Gbb and Gb∂ are the bulk-bulk and bulk-boundary propagators in the BTZ geome-

try (3.9). We will consider the case of scalar operators with scaling dimensions ∆O and

∆χ, which are equal to the energies EO and Eχ of the corresponding states on the cylinder.

We are interested in the large r+ limit, where the integral is tractable. We will absorb

all r+ independent factors into the normalization COχχ of the three-point vertex and show

that (3.10) is

〈E|O|E〉 ≈ COχχ r∆O
+ exp {−2π∆χr+} , r+ →∞ (3.11)

This reproduces our CFT result (2.17) for the asymptotic three-point coefficients.

The bulk-bulk propagator. The AdS3 propagator for a scalar field of mass m2 =

∆(∆− 2) is [23]

GAdS
bb (y, y′) = − 1

2π

e−∆σ(y,y′)

1− e−2σ(y,y′)
(3.12)

where σ(y, y′) is the geodesic distance. The propagator obeys (∇2 − m2)Gbb(y, y
′) =

1√
g δ

(3)(y − y′). The BTZ geometry is a quotient AdS3/Z, so we can use the method

of images to obtain the BTZ propagator [24]

Gbb(y, y
′) = − 1

2π

∑
n∈Z

e−∆σn(y,y′)

1− e−2σn(y,y′)
(3.13)
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where σn(y, y′) is the geodesic distance between y and the nth image of y′ under the BTZ

identification. In terms of the metric (3.9), the Z identification is the periodic identification

φ ∼= φ + 2π. The sum over n in (3.13) can be interpreted as a sum over geodesics in the

BTZ background: σn(y, y′) is the length of a geodesic which wraps n times around the

event horizon.

We are interested in Gbb(y, y), where the two bulk points are at the same location. The

n = 0 term in (3.13) gives a naively divergent contribution to the one-point function (3.10);

this is the usual UV divergent tadpole contribution, present even in empty AdS3, which

is cancelled by a local counterterm. The n 6= 0 terms give non-trivial, finite contributions

to (3.10). This subtracted two point function depends only on the radial location r of the

point y, and is

Gbb(r) = − 1

π

∞∑
n=1

e−∆σn(r)

1− e−2σn(r)
. (3.14)

Here σn(r) is the length of the closed geodesic which starts at radial location r and winds

n times around the horizon before returning back to the starting point.

We now note that, since the horizon itself is a geodesic, σn(r+) = 2πnr+. And clearly

2πnr+ ≤ σn(r) ≤ 2πnr. Thus we can focus only on the n = 1 term

Gbb(r) ≈ −
1

π
e−∆σ1(r) (3.15)

We now determine the behavior of σ1(r) as r+ →∞.

The geodesic corresponding to σ1(r) lies at constant t and so can be parametrized as

r(φ). Constant t geodesics are governed by the equation(
dr

dφ

)2

−
r2(r2 − r2

+)(r2 − r2
0)

r2
0

= 0 (3.16)

where r0 denotes the turning point, which can be chosen freely. We note that there is only

a single turning point for r > r+, hence geodesics with both endpoints at radial location r

are described by curves that bounce off the turning point at r0. As r+ →∞ it’s easy to see

that we need to take r0 ≈ r+ to satisfy the boundary conditions. Further, in this regime

the geodesic spends almost all of its “time” near r = r+, apart from fixed length segments

where it travels out to the endpoints. Hence we conclude that σ1(r) ≈ 2πr+ and so

Gbb(r) ≈ −
1

π
e−2π∆r+ . (3.17)

The bulk-boundary propagator. The bulk-boundary propagator for a scalar of mass

m2 = ∆(∆ − 2) in BTZ can be obtained from the bulk-bulk propagator by taking one of

the bulk points to the boundary, and is given by

Gb∂(r, tE , φ) = N

(
−

√
r2

r2
+

− 1 cos(r+tE) +
r

r+
cosh(r+φ)

)−∆

(3.18)

where the normalization constant is N = 1
2∆π

(∆−1)r∆
+ . N is chosen such that Gb∂(r, t, φ) ≈

r∆−1δ(t)δ(φ) as r → ∞. The boundary point has been taken as t = φ = 0. Properly,

in (3.18) we should include a sum over images, φ→ φ+ 2πn, but we omit this since in our

computation the n 6= 0 terms are exponentially small as r+ →∞.
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Witten diagram. With these results in hand, the 1-loop Witten diagram becomes

〈E|O|E〉 ≈ −∆O − 1

2∆Oπ2
r∆O

+ e−2π∆χr+

×
∫
drdtEdφ r

(
−

√
r2

r2
+

− 1 cos(r+tE) +
r

r+
cosh(r+φ)

)−∆O

(3.19)

Now rescale the coordinates,

〈E|O|E〉 ≈ −∆O − 1

2∆Oπ2
r∆O

+ e−2π∆χr+

∫
dr̂dt̂Edφ̂ r̂

(
−
√
r̂2 − 1 cos(t̂E) + r̂ cosh(φ̂)

)−∆O

(3.20)

so that t̂E ∼= t̂E + 2π and φ̂ ∼= φ̂ + 2πr+. In this form, the only dependence on r+ in the

integral comes from the φ̂ integration range. But the integrand is exponentially small for

|φ̂| ∼ r+ and so we can freely extend the φ̂ integral over the real line. Hence the leading

term in the integral is r+ independent, and we can write

〈E|O|E〉 ≈ COχχr∆O
+ e−2π∆χr+ (3.21)

for some COχχ which is independent of r+. As advertised, this reproduces (2.17).

4 Three-point function coefficients for primary operators

In section 2 we studied the asymptotics of the light-heavy-heavy three-point function co-

efficient for arbitrary operators. We now consider the three-point coefficients of primary

operators, from which descendant operator three-point coefficients can be derived using

Virasoro Ward identities. The primary operator three-point function coefficients can be

regarded — along with the central charge and the primary operator dimensions — as the in-

dependent data which define a conformal field theory. We will see that certain assumptions

are necessary in order to obtain similar asymptotic formulae.

4.1 Torus blocks

We consider, as in section 2, the one-point function of a primary operator O on a torus

with modular parameter τ :

〈O〉τ =
∑
i

q∆i− c
24 q̄∆̄i− c

24 〈i|O|i〉

=
∑
α

〈α|O|α〉q∆α− c
24 q̄∆̄α− c

24FH∆α,c(q)F
H̄
∆̄i,c

(q̄) . (4.1)

In the second line we have written the one-point function as a sum over primaries |α〉
of dimension (∆α, ∆̄α). The functions FH∆ (q) and F̄ H̄

∆̄
(q̄) are known as torus one-point

function conformal blocks, and encode the contributions of the Virasoro descendants of the

primary |α〉. These conformal blocks depend only on the dimensions (H, H̄) and (∆, ∆̄)

and the central charge c. We will restrict our attention to the case c > 1.
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The torus block FH∆,c(q) can be computed algorithmically using the Virasoro algebra

(see e.g. [14] for a nice review). For example, one can compute the coefficients in the q

expansion explicitly:

FH∆,c(q) = 1 +

(
H(H − 1)

2∆
+ 1

)
q +O(q2) (4.2)

Exact closed form expressions for FH∆ (q) exist only in special cases. One example is H = 0,

when the external operator is the identity. In this case the one-point function is just the

partition function, to which all of the descendant states contribute equally. This implies

that the conformal block is just the Verma module character6

F 0
∆(q) =

∞∏
n=1

(1− qn)−1 =
q1/24

η(q)
(4.3)

which counts the states in the Verma module built on the primary |α〉.
The coefficients in the q-expansion of a conformal block are polynomials in the external

dimension H and rational functions of ∆ and c, whose poles and residues are determined

by the null vectors of the Virasoro algebra. This leads to recursion relations that can

be used to efficiently compute the blocks explicitly, just as with four-point blocks on the

sphere [25, 26]. These recursion relations also allow one to study the blocks in various

limits. For example, as noted in [14], we have

FH∆,c(q) =
q1/24

η(q)
+O(∆−1) (4.4)

as ∆ → ∞. The derivation of this formula and its subleading corrections are discussed

in detail in appendix A. Equation (4.4) can be understood as the statement that, when

the internal operator |α〉 is heavy one can regard the external operator O as a small

perturbation to the result (4.3). In appendix A we will study the regime of validity of this

approximation and show that (4.4) holds when

∆| log q|2 � 1 . (4.5)

4.2 Asymptotics of three-point coefficients

We can now derive an expression for the primary operator three-point coefficients. We will

begin by rewriting equation (4.1) as

〈O〉 iβ
2π

=

∫
d∆d∆̄ T pO(∆, ∆̄) exp

{
−
(
E − c

12

)
β

}
FH∆ (e−β)FH∆̄ (e−β) (4.6)

where

T pO(∆, ∆̄) ≡
∑
α

〈α|O|α〉δ(∆−∆α)δ(∆̄− ∆̄α) (4.7)

6In fact, as discussed in appendix A this expression holds when H = 1 as well.
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is the contribution from primaries of dimension (∆, ∆̄), and E = ∆ + ∆̄. We again wish

to study the high temperature limit, using (2.6):

〈O〉 iβ
2π

= 〈χ|O|χ〉 exp

{
−β
(
Eχ −

c

12

)}
+ . . . (4.8)

to constrain the asymptotics of three-point function coefficients. As in section 2 the oper-

ator χ is the lightest one with 〈χ|O|χ〉 6= 0 and we assume that Eχ <
c

12 .

We must now ask under what circumstances the integral (4.6) will be dominated by

terms with large ∆ and ∆̄. In section 2 this was an automatic consequence of the divergence

of (2.6) at β → 0. Once the conformal blocks are included, however, this is not necessarily

the case. For example, when c < 1 there are only a finite number of primary states and

the integral (4.6) has a finite range. In this case the divergence (2.6) will come from the

behaviour of the conformal blocks FH∆ (e−β) as β → 0. While this is an interesting special

case, our primary interest is in matching with AdS3 gravity at large c.

In a generic large c conformal field theory we expect that the small β behavior of (4.6)

is controlled by a saddle point at large ∆ and ∆̄. The existence of a saddle point in the

sum over all states is essentially equivalent to the existence of a thermodynamic limit in

which macroscopic observables like the total energy assume sharply defined values, with the

energy growing with the temperature. In general, this does not imply that the dimensions

of the contributing primaries behave similarly, since the contribution of descendant states

must be taken into account; indeed for c < 1 theories with a finite spectrum of primaries

it must be that the descendants dominate. However, at large c the asymptotic density of

primary states grows rapidly at high energy — in fact, as we will see below it is essentially

given by Cardy’s formula. So in a generic large c theory we expect the small β asymptotics

to be controlled by a saddle point at large (∆, ∆̄).

Let us therefore proceed by investigating the large (∆, ∆̄) asymptotics of (4.6), assum-

ing that c� 1 so that the integral has support at large E. Using (4.4) we have

FH∆ (e−β)FH∆̄ (e−β) =

∣∣∣∣∣q1/24

η(τ)

∣∣∣∣∣
2

+ . . . (4.9)

where . . . denote terms which are suppressed as (∆, ∆̄)→∞. We can then use the β → 0

asymptotics of the eta function to obtain

FH∆ (e−β)FH∆̄ (e−β) ≈ β exp

{
1

12

(
β +

4π2

β

)}
+ . . . (4.10)

We note from (4.5) that this asymptotic form holds only if we take (∆, ∆̄)→∞ and β → 0

with ∆β2 � 1, ∆̄β2 � 1. We will justify this condition below.

We now sum over spins by writing T pO(E) =
∫
dsT pO(∆, ∆̄), where E = ∆ + ∆̄ and

s = ∆ − ∆̄. We can then proceed to compute T pO(E) as in section 2. We find a nearly

identical expression for the inverse Laplace transform:

T pO(E) =
iS

2π
〈χ|O|χ〉

∮
dβ

(
2π

β

)EO+1

exp

{(
E − c− 1

12

)
β −

(
Eχ −

c− 1

12

)
4π2

β

}
(4.11)
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This integral has a saddle point with

β ≈ 2π

√
c−1
12 − Eχ
E − c−1

12

+
EO + 1

2
(
E − c−1

12

) + . . . (4.12)

giving the saddle point result

T pO(E) ≈
√

2πNp
O〈χ|O|χ〉

(
E − c− 1

12

)EO/2−1/4

× exp

{
4π

√(
c− 1

12
− Eχ

)(
E − c− 1

12

)
+ . . .

}
(4.13)

with

Np
O =

iS

2π

(
c− 1

12
− Eχ

)−EO/2−1/4

. (4.14)

We can now ask whether our approximation (4.10) was justified. From (4.12) we see

that as long as we take

Eβ2 ≈ c− 1

12
− Eχ � 1 (4.15)

our approximation is valid. We conclude that our result (4.13) holds whenever we take c

large with Eχ � c
12 . In particular, this result holds when χ is dual to either a perturbative

bulk field or a conical deficit in AdS3.

We can now compute the average value of the three-point coefficient

〈E|O|E〉p ≡
T pO(E)

ρp(E)
(4.16)

where

ρp(E) ≈
√

2π

(
E − c− 1

12

)−1/4

exp

{
4π

√
c− 1

12

(
E − c− 1

12

)
+ . . .

}
(4.17)

is the density of state of primary operators of dimension E in a theory with c > 1 as

E →∞.7 At large c this formula is — at leading order in c — indistinguishable from the

original Cardy formula which counts all states, not just primaries. The average value of

the OPE coefficient for O with two primary operators of dimension E is then

〈E|O|E〉p ≈ N
p
O〈χ|O|χ〉

(
E − ĉ

12

)EO/2
exp

{
−πĉ

3

(
1−

√
1− 12Eχ

ĉ

)√(
12E

ĉ
− 1

)}
(4.18)

where ĉ = c− 1.

Our expressions for the asymptotics of the primary operator three-point coefficients

are nearly identical to those for the general three-point coefficients — the only difference is

a shift of c→ ĉ = c−1. This shift is invisible in the semi-classical large c limit, so the bulk

7This version of Cardy’s formula can be derived by, for example, taking O to be the identity operator

in (4.13).
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derivations in section 3 continue to apply in this case. Indeed, the fact that descendant

states lead to an effective shift of the central charge has been observed in other contexts (see

e.g. [27–29]). This shift can be viewed as a one-loop renormalization of the bulk effective

central charge due to the presence of Virasoro descendants, whose density of states grows

like that of a CFT with central charge 1.
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A Asymptotics of torus conformal blocks

In this appendix we will discuss the asymptotics of one-point conformal blocks on the torus

with the goal of understanding the regime of validity of the asymptotic formula (4.4).

A.1 Setup

We will follow the notation of [14]. We consider an external primary operator φλ,λ of

dimension (∆λ,∆λ) and expand the torus one-point function as a sum over primaries

〈φλ〉 =
∑
∆,∆

Cλ,λ
∆,∆
F∆(q)F∆(q̄) (A.1)

The conformal block F∆(q) depends on ∆λ and c as well as ∆, but we will suppress the

dependence on the former for notational simplicity. Here we label primary operators ν∆;∆

by their dimensions (∆,∆) and

Cλ,λ
∆,∆

= 〈ν∆;∆|φλ,λ(1)|ν∆;∆〉 (A.2)

is the OPE coefficient of φλ,λ̄ with ν∆,∆.

A general descendant state |ν∆,N ;∆,N 〉 will be labelled by a pair N = {ni}, N = {ni}
of sequences of non-negative integers, as

|ν∆,N ;∆,N 〉 =
∞∏
i=1

(L−i)
ni
(
L−i

)ni |ν∆;∆〉 (A.3)

The OPE coefficient of φλ,λ with a descendant state will take the form

〈ν∆,M ;∆,M |φλ,λ(1)|ν∆,N ;∆,N 〉 = ρ(ν∆,N , νλ, ν∆,M )ρ(ν∆,N̄ , νλ, ν∆,M̄ )Cλ,λ
∆,∆

(A.4)

To compute the conformal block we must normalize the descendant states approproiately,

so will need the Gram matrix

[Bn
∆]MN ≡ 〈ν∆,N |ν∆,M 〉 (A.5)
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The entries in the Gram matrix are rational functions of ∆ and c. We will can then expand

the conformal block as

F∆(q) = q∆− c
24

∞∑
n=0

qnFn∆ (A.6)

where the coefficient

Fn∆ =
∑

|M |=|N |=n

ρ(ν∆,N , νλ, ν∆,M )[Bn
∆]MN (A.7)

gives the contribution from descendant states of level n. Here [Bn
∆]MN is the inverse Gram

matrix at level n. We note that the ρ(ν∆,N , νλ, ν∆,M ) are polynomials in ∆λ which are

determined by the Virasoro Ward identities, while [Bn
∆]MN is a rational function of ∆

and c.

A.2 Large ∆ limit

We now study the large ∆ limit of the coefficients Fn∆.

Let us consider the computation of the coefficient ρ(ν∆,N , νλ, ν∆,M ) at level n. To com-

pute this we must move the various raising operators L−i appearing in |ν∆,M 〉 =
∏
Lni−i|ν∆〉

to the left through φ in order to act on 〈ν∆,M |. Powers of ∆ come from factors of L0 acting

on the external states. These L0 factors come from commutators [Lm, L−m] = 2mL0. For

example, suppose we wish to compute the matrix element 〈∆|LmφλL−m|∆〉 using

φλL−m = L−mφλ + [φλ, L−m] (A.8)

The first term has an L−m which can then appear in [Lm, L−m] to give a factor of ∆. The

second commutator term can be expressed in terms of φλ and its derivatives using (A.15),

leaving no Virasoro generators. To maximize powers of ∆ we therefore want the fewest

number of such commutators. Thus the leading contribution at large ∆ occurs when we

ignore the commutator [φλ, L−m]. This argument works for a general descendant as well:

at leading order in ∆, we can simply move all of the L−i in |ν∆,M 〉 to the left ignoring the

commutator with φ. The result is that the matrix element

ρ(ν∆,N , νλ, ν∆,M ) = [Bn
∆]MN (A.9)

is just the usual Gram matrix. This means that at large ∆ the coefficient Fn∆ just counts

the number of descendant states at level n:

Fn∆ = p(n) +O(∆−1) (A.10)

where p(n) is the number of partitions of n. This leads to equation (4.4) for the confor-

mal block

F∆ =
∏
n

(1− qn)−1 +O(∆−1) (A.11)

In fact, one can show that equation (A.11) is exact when the external operator has

dimension ∆λ = 0 or ∆λ = 1:

F∆(q) =
∏
n

(1− qn)−1 =
q−1/24

η(q)
, when ∆λ = 0, 1 (A.12)
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The ∆λ = 0 case is clear, since in this case φλ is the unit operator. Matrix elements of the

identitiy just count states, and there are p(n) states at level n. The ∆λ = 1 can be similarly

understood by noting that, by translation invariance, we can integrate the operator φλ(z)

over the unit circle and divide by 2π to obtain the same result as φλ(1). However, since

∆λ = 1 the result is conformally invariant, so commutes with all the Ln. Thus the three-

point function of φλ(1) in a descendant state is the same as in the original primary. Indeed,

if we consider the case where φλ is a conserved current the resulting integral is just the

conserved charge. The statement (A.12) is just the statement that every state in the same

conformal family has the same charge.

We wish to go one step farther and understand the subleading corrections at large ∆.

We will argue that

Fn∆ =

(
1 +

∆λ(∆λ − 1)

2∆
n+O(∆−2)

)
p(n) (A.13)

As a warmup, let us first reconsider our above example in more detail. We have

〈∆|Lmφλ(z)L−m|∆〉 = 2m∆〈∆|φ(z)|∆〉+ 〈∆| [Lm, [φ(z), L−m]] |∆〉 (A.14)

The first term dominates at large ∆ and gives the Gram matrix described above. The

second term can be easily computed using

[Ln, φλ(z)] = ∆λ(n+ 1)znφλ(z) + zn+1∂φλ(z) (A.15)

and

〈∆|φλ(z)|∆〉 = 〈∆|φλ(1)|∆〉z−∆λ (A.16)

to give

〈∆|[[Lm, [L−m, φλ(z)]|∆〉 = m2∆λ(∆λ − 1)〈∆|φλ(z)|∆〉 (A.17)

We see that the normalized three-point coefficient is

〈∆|Lmφλ(z)L−m|∆〉
〈∆|LmL−m|∆〉

=

(
1 +m

∆λ(∆λ − 1)

2∆

)
〈∆|φ(z)|∆〉 (A.18)

We recognize in this formula the first subleading term in equation (A.13).

We will now argue that the above computation applies, at the desired order in ∆−1, to

compute the contribution of a general descendant state. We wish to imagine a contribution

of the form

〈∆|
(∏

Lnii

)
φ(z)

(∏
L
mj
−j

)
|∆〉[Bn

∆]MN (A.19)

As above, we compute this at large ∆ by commuting the Li to the right. The term with

no commutators gives the leading contribution. We can’t have a single commutator, since

there would be a mismatch in the levels of Virasoro generators on the two sides of φλ, which

would give zero. So the first subleading contribution comes from a double commutator,

which will be subleading by a factor of 1/∆. In fact, the leading contribution will come from

the diagonal terms with M = N . This is because after extracting the double commutator,

unless M = N there will be a mismatch in the types of Virasoro generator left on the two

sides of φλ; this would lead to fewer powers of ∆ coming from [Ln, L−n] commutators.
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Turning to the Gram matrix, we need the diagonal components of the inverse Gram

matrix. These entries are just the inverse of the entries of the Gram matrix (to leading

order in ∆):

[Bn
∆]NN =

(
〈∆|

(∏
Lnii

)(∏
L
nj
−j

)
|∆〉
)−1 (

1 +O(∆−1)
)

(A.20)

That is, to leading order in ∆ we can just set the off-diagonal terms in the Gram matrix to

0. It’s easy to verify this claim explicitly at level 2. This is because the leading contribution

to the determinant of the full matrix and the minors just comes from the diagonal terms.

However, since in our computation we are only extracting a single double commutator,

the computation proceeds exactly as in (A.18). We have

〈∆|
(∏

Lni−i

)
φ(z)

(∏
L
nj
j

)
|∆〉[Bn

∆]NN =

(
1 + n

∆λ(∆λ − 1)

2∆
+ . . .

)
〈∆|φ(z)|∆〉

(A.21)

which implies (A.13).

A.3 Validity of large ∆ asymptotics

In the previous subsection we derived the following result for the large ∆ expansion of the

torus one-point block

F∆(q) =

∞∑
n=0

Fn∆q
n =

∞∑
n=0

(
1 +

∆λ(∆λ − 1)

2∆
n+O(∆−2)

)
p(n)qn (A.22)

We now ask when it valid to keep just the leading term in the 1/∆ expansion. The issue is

of course that no matter how large ∆ is, the sum over n means that n/∆ grows arbitrarily

large. For the O(∆−1) term to be suppressed relative to the leading term we need for q to

be sufficiently small so that the sum is effectively cut off at n� ∆. To make this precise,

we use the Hardy-Ramanujan formula

p(n) ∼ eπ
√

2n
3 , n→∞ . (A.23)

Therefore
∑∞

n=0 p(n)qn has a saddle point value of n given by n∗ = π2/6β2, where q = e−β

as usual. Self-consistency requires n∗ � 1 and hence β � 1. Under these conditions we

have n∗/∆� 1 provided β2∆� 1. This leads us to the desired result

F∆(q) ≈
∞∑
n=0

p(n)qn =

∞∏
n=1

1

1− qn
, for β � 1 and β2∆� 1 . (A.24)
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[28] C.A. Keller and A. Maloney, Poincaré series, 3D gravity and CFT spectroscopy, JHEP 02

(2015) 080 [arXiv:1407.6008] [INSPIRE].

[29] N. Benjamin, E. Dyer, A.L. Fitzpatrick, A. Maloney and E. Perlmutter, Small black holes

and near-extremal CFTs, JHEP 08 (2016) 023 [arXiv:1603.08524] [INSPIRE].

– 21 –

http://dx.doi.org/10.1016/0003-4916(84)90085-X
http://inspirehep.net/search?p=find+J+%22AnnalsPhys.,152,220%22
http://dx.doi.org/10.1016/0003-4916(84)90025-3
http://inspirehep.net/search?p=find+J+%22AnnalsPhys.,153,405%22
https://arxiv.org/abs/hep-th/0201253
http://inspirehep.net/search?p=find+EPRINT+hep-th/0201253
http://dx.doi.org/10.1103/PhysRevD.59.104001
http://dx.doi.org/10.1103/PhysRevD.59.104001
https://arxiv.org/abs/hep-th/9808037
http://inspirehep.net/search?p=find+EPRINT+hep-th/9808037
http://dx.doi.org/10.1007/JHEP02(2010)029
http://dx.doi.org/10.1007/JHEP02(2010)029
https://arxiv.org/abs/0712.0155
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.0155
http://dx.doi.org/10.1007/JHEP02(2015)080
http://dx.doi.org/10.1007/JHEP02(2015)080
https://arxiv.org/abs/1407.6008
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.6008
http://dx.doi.org/10.1007/JHEP08(2016)023
https://arxiv.org/abs/1603.08524
http://inspirehep.net/search?p=find+EPRINT+arXiv:1603.08524

	Introduction
	A Cardy formula for three-point coefficients
	Torus one-point functions
	Modular invariance
	The asymptotic formula

	The AdS(3) interpretation
	The AdS(3) setup
	Witten diagram calculation

	Three-point function coefficients for primary operators
	Torus blocks
	Asymptotics of three-point coefficients

	Asymptotics of torus conformal blocks
	Setup
	Large Delta limit
	Validity of large Delta asymptotics


