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Abstract. In this paper, we obtain a Cartan type identity for curvature-adapted isopara-
metric hypersurfaces in symmetric spaces of compact type or non-compact type. This identity
is a generalization of Cartan-D’Atri’s identity for curvature-adapted (=amenable) isoparamet-
ric hypersurfaces in rank one symmetric spaces. Furthermore, by using the Cartan type iden-
tity, we show that certain kind of curvature-adapted isoparametric hypersurfaces in a symmet-
ric space of non-compact type are principal orbits of Hermann actions.

1. Introduction. An isoparametric hypersurface in a (general) Riemannian manifold
is a connected hypersurface whose sufficiently close parallel hypersurfaces are of constant
mean curvature (see [12] for example). In this paper, we assume that all isoparametric hyper-
surfaces are complete. It is known that all isoparametric hypersurfaces in a symmetric space
of compact type are equifocal in the sense of [37] and that, conversely all equifocal hypersur-
faces are isoparametric (see [12]). Also, it is known that all isoparametric hypersurfaces in
a symmetric space of non-compact type are complex equifocal in the sense of [18] and that,
conversely, all curvature-adapted complex equifocal hypersurfaces are isoparametric (see [19,
Theorem 15]), where the curvature-adaptedness implies that, for a unit normal vector v, the
(normal) Jacobi operator R(-, v)v preserves the tangent space invariantly and commutes with
the shape operator A for v, where R is the curvature tensor of the ambient space. It is known
that principal orbits of a Hermann action (i.e., the action of a symmetric subgroup of G) of
cohomogeneity one on a symmetric space G/K of compact type are curvature-adapted and
equifocal (see ([11]). Hence they are isoparametric hypersurfaces. On the other hand, we
[20, 23] showed that the principal orbits of a Hermann action (i.e., the action of a (not neces-
sarily compact) symmetric subgroup of G) of cohomogeneity one on a symmetric space G/K
of non-compact type are curvature-adapted and complex equifocal, and they have no focal
point of non-Euclidean type on the ideal boundary of G/K. Hence they are isoparametric
hypersurfaces.
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For an isoparametric hypersurface M in a real space form N of constant curvature c, it
is known that the following Cartan’s identity holds:

AA
(1.1) 3 CXMO =0
A—AQ
reSpecA\{ro}

for any Ag € SpecA, where A is the shape operator of M and SpecA is the spectrum of A, m;,
is the multiplicity of A. Here we note that all hypersurfaces in a real space form are curvature-
adapted. In general cases, this identity is shown in algebraic method. Also, it is shown in
geometrical method in the following three cases:

) ¢=0, 20 #0,

(i) ¢ > 0, Ag : any eigenvalue of A,,

(iii) ¢ <0, |Ag| > +/—c.

In detail, it is shown by showing the minimality of the focal submanifold for Ay and using this
fact.

Let H ~ G/K be a cohomogeneity one action of a compact group H (C G) on a rank
one symmetric space G/K and M a principal orbit of this action. Since the H-action is of
cohomogeneity one, it is hyperpolar. Hence M is an equifocal (hence isoparametric) hyper-
surface (see [13]). In 1979, D’ Atri [8] obtained a Cartan type identity for M in the case where
M is amenable (i.e., curvature-adapted). On the other hand, in 1989-1991, Berndt [1, 2] ob-
tained a Cartan type identity (in algebraic method) for curvature-adapted hypersurfaces with
constant principal curvature in rank one symmetric spaces other than spheres and hyperbolic
spaces. Here we note that, for a curvature-adapted hypersurface in a rank one symmetric space
of non-compact type, it has constant principal curvature if and only if it is isoparametric.

In this paper, we obtain the Cartan type identities for curvature-adapted isoparametric
hypersurfaces in symmetric spaces and, furthermore, by using the Cartan type identity, we
prove that certain kind of curvature-adapted isoparametric hypersurfaces in a symmetric space
of non-compact type are principal orbits of Hermann actions. Let M be a hypersurface in a
symmetric space N = G/K of compact type or non-compact type and v a unit normal vector
field of M. Set R(vy) := R(:, vx)Vx|1, M, Where R is the curvature tensor of N. For each
r € R, we define a function t, over [0, c0) by

NG
_ 0

oy m an(rv5) (s >0)

L =0,

-

Also, for each r € C, we define a complex-valued function 7, over (—oo, 0] by
iv—s

2.(s) = tan(lr;/—s)

- (S = 0) 9

r

(s <0)
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where i is the imaginary unit. First we prove the following Cartan type identity for a curvature-
adapted isoparametric hypersurface in a simply connected symmetric space of compact type.

THEOREM A. Let M be a curvature-adapted isoparametric hypersurface in a simply
connected symmetric space N := G /K of compact type. For each focal radius ro of M, we
have

Z A+ AT (1) y

1.2
( ) A— ‘Cr() (M)

m;h,# = 0 N
OnEsy,

where S = {(A, 1) € SpecAy x SpecR(vy) ; Ker(Ay —Al)NKer(R(vy) —ul) # {0}, A #
7o ()} and my,_;, = dim(Ker(A, — AI) N Ker(R(vy) — ul)).

REMARK 1.1. (i) If Ker(Ay —Aol) NKer(R(vy) — pnol) is included by the focal space
for the focal radius rg, then we have 7,, (o) = Ao.

(ii) If G/K is a sphere of constant curvature ¢, then SpecR(vy) = {c} and 7,,(c) is equal
to the principal curvature corresponding to ro. Hence the identity (1.2) coincides with (1.1).

(iii) In the case where G/K is a rank one symmetric space of compact type, the identity
(1.2) coincides with the identity obtained by D’ Atri [8] (see [8, Theorems 3.7 and 3.9]).

(iv) In the case where G/K is a rank one symmetric space of compact type other than
spheres, the identity (1.2) is different from the identity obtained by Berndt [1, 2].

Next, in this paper, we prove the following Cartan type identity for a curvature-adapted
isoparametric C“-hypersurface in a symmetric space of non-compact type, where C* means
the real analyticity.

THEOREM B. Let M be a curvature-adapted isoparametric C®-hypersurface in a sym-
metric space N := G/K of non-compact type. Assume that M has no focal point of non-
Euclidean type on the ideal boundary N(oc0) of N. Then M admits a complex focal radius
and, for each complex focal radius ro of M, we have

Z u+ )\fro(ﬂ)

1.3
( ) A= fI’()(/'L)

m;h,# = 0 5
(. m)esy,

where S;‘O = {(A, u) € SpecAy x SpecR(vy); Ker(Ay —AI)NKer(R(vy) —pl) # {0}, X #
T ()} and my,,, := dim(Ker(A, — A1) NKer(R(vy) — nl)).

REMARK 1.2. (i) The notion of a complex focal radius was introduced in [18]. This
quantity indicates the position of a focal point of the complexification M Ccac® /K Cyofa
submanifold M in a symmetric space G/K of non-compact type (see [19]).

(i) If Ker(Ay —Xol) NKer(R(vy) — pol) is included by the focal space for the complex
focal radius ro, then we have 7,,(1t0) = Ao.

(iii) If G/K is a hyperbolic space of constant curvature c, then SpecR(vy) = {c} and
7, (c) is equal to the principal curvature corresponding to rg. Hence the identity (1.3) coin-
cides with (1.1).



438 N. KOIKE

(iv) In the case where G/K is a rank one symmetric space of non-compact type and rg
is a real focal radius, the identity (1.3) coincides with the identity obtained by D’ Atri [8] (see
[8, Theorems 3.7 and 3.9]).

(v) In the case where G/K is a rank one symmetric space of non-compact type other
than hyperbolic spaces, the identity (1.3) is different from the identity obtained by J. Berndt
[1,2].

(vi) For a curvature-adapted and isoparametric hypersurface M in G/K, the following
conditions (a)—(c) are equivalent:

(a) M has no focal point of non-Euclidean type on N (c0),

(b) M is proper complex equifocal in the sense of [20],

(c) Ker(Ay + /—uI) NKer(R(vy) — ul) = {0} holds for each u € SpecR(vy) \ {0}.

(vii) Principal orbits of a Hermann type action of cohomogeneity one on G/K are
curvature-adapted isoparametric C“-hypersurface having no focal point of non-Euclidean
type on N (0co) (see [20, Theorem B] and the above (iii)).

The proof of Theorem B is performed by showing the minimality of the focal subman-
ifold F := {expL((Re ro)vx + (Imrg)Jvy) ; x € MC} of the complexification M Cof M (see
Figure 1), where exp™ is the normal exponential map of the submanifold M€ in GC/KC, J
is the complex structure of GC/KC and v is a unit normal vector field of M (in G/K). Here
we note that exp((Re rg)vx + (Imrg)Jvy) is equal to the point y,E (ro) of the complexified
geodesic ny in G¢/KC. In the case where G/K is of rank greater than one and M is not ho-
mogeneous, the proof of the minimality of F' is performed by showing the minimality of the
lift F := (r 0 ¢)~1(F) of F to the path space H°([0, 1], g(c), where ¢ is the parallel trans-
port map for GC (which is an anti-Kaehlerian submersion of H([0, 1], g(c) onto G©) and 7
is the natural projection of G€ onto G€/KC (which also is an anti-Kaehlerian submersion).
Here we note that the minimality of F is trivial in the case where M is homogeneous. By
using Theorem B, we prove the following fact for the number of distinct principal curvatures

FIGURE 1.
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of a curvature-adapted isoparametric C“-hypersurfaces in a symmetric sapce of non-compact

type.
By using Theorem B, we prove the following main result.

THEOREM C. Let M be a curvature-adapted isoparametric C®-hypersurface in a sym-
metric space N of non-compact type. Assume that M has no focal point of non-Euclidean type
on N(00). Then M is a principal orbit of a Hermann action.

REMARK 1.3. In this theorem, are indispensable both the condition of the curvature-
adaptedness and the condition for the non-existenceness of non-Euclidean type focal point
on the ideal boundary. In fact, we have the following examples. Let G/K be an irreducible
symmetric space of non-compact type such that the (restricted) root system of G/K is non-
reduced. Let g = £ + p (g = Lie G, £ = Lie K) be the Cartan decomposition associated with
a symmetric pair (G, K) and a a maximal abelian subspace of p. Also, let A be the positive
root system of G/K with respect to a and [T the simple root system of A4, where we fix a
lexicographic ordering of the dual space a* of a. Setn =), A, @ and N :=exp n, where
@,. is the root space for A and exp is the exponential map of G. If G/K is of rank one, then
any orbit of the N-action on G/K is a full irreducible curvature-adapted isoparametric C*-
hypersurface but it has a focal point of non-Euclidean type on N (c0) (see [25]). On the other
hand, it is a principal orbit of no Hermann action. Thus, in this theorem, is indispensable
the condition for the non-existenceness of a focal point of non-Euclidean type on the ideal
boundary. Let H) be the element of a defined by (H,, e) = A(e). Assume that the (restricted)
root system of G/K is of type (BC,). Take an element A of IT such that 21 belongs to A,
and one-dimensional subspaces / of RH) + g,. Set S := exp((a + n) © ), where exp is the
exponential map of G and (a 4+ n) & [ is the orthogonal complement of / in a 4+ n. Then § is
a subgroup of AN := exp(a + n) and any orbit of the S-action on G/K is a full irreducible
isoparametric C®-hypersurface but it is not curvature-adapted (see [25]). Furthermore, we
can find an orbit having no focal point of non-Euclidean type on N(co) among orbits of the
S-action. On the other hand, it is a principal orbit of no Hermann action. Thus the condition
of the curvature-adaptedness is indispensable in this theorem.

In Section 2, we recall basic notions. In Section 3, we prove Theorem A. In Section 4,
we define the mean curvature of a proper anti-Kaehlerian Fredholm submanifold and prepare
a lemma to prove Theorem B. In Section 5, we prove Theorems B and C.

2. Basic notions. In this section, we recall basic notions which are used in the proof
of Theorems A and B. First we recall the notion of an equifocal hypersurface in a symmetric
space. Let M be a complete (oriented embedded) hypersurface in a symmetric space N =
G/K and fix a global unit normal vector field v of M. Let y,_be the normal geodesic of M
with y; (0) = vy, where x € M and y, (0) is the velocity vector of y,, at 0. If y,, (so) is a
focal point of M along y,_, then s¢ is called a focal radius of M at x. Denote by F Ry, the
set of all focal radii of M at x. If M is compact and if 7Ry x is independent of the choice
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of x, then it is called an equifocal hypersurface. This notion is the hypersurface version of an
equifocal submanifold defined in [37].

Next we recall the notion of a complex equifocal hypersurface in a symmetric space of
non-compact type. Let M be a complete (oriented embedded) hypersurface in a symmetric
space N = G/K of non-compact type and fix a global unit normal vector field v of M. Let g
be the Lie algebra of G and 6 be the Cartan involution of G with Fix6 = K, where Fix 0 is
the fixed point group of 6. Denote by the same symbol 6 the involution of g induced from 6.
Set p := Ker(6 + id). The subspace p is identified with the tangent space T,x N of N at eK,
where e is the identity element of G. Let M be a complete (oriented embedded) hypersurface
in N. Fix a global unit normal vector field v of M.Denote by A the shape operator of M
(for v). Take X € TyM (x = gK). The M-Jacobi field Y along y, with Y (0) = X (hence
Y'(0) = —A,X) is given by

Y (5) = (Py 0, © (Do — sDJ, 0 A))(X),

SV

where Py, | o is the parallel translation along yx|[0,.s], D59

SUx

o (resp. D3}, ) is given by

DS =g.o cos(iad(sg; 'vy)) o g, !

resp. DS =g
( T jad(sgr vy

Here ad is the adjoint representation of the Lie algebra g of G. All focal radii of M at x are
catched as real numbers s with Ker(D?, — soD%i o Ay) # {0}. So, we [18] defined the

SOUx SOUx

notion of a complex focal radius of M at x as a complex number zo with Ker(DZ7, —zo Déévx o

AC) £ {0}, where D%, (resp. DS ) is a C-linear transformation of (7, N)* defined by

20Vx 20Vx

D, = gF ocos(iad®(zog; ' vi)) 0 (95) 7!

R |

. ¢ sin(iad*(zog; 'vy)) Cy—1
resp. D, =g; o o(gs) |,
( o 5 T 500 (zogn Ton) "

where gfkc (resp. ad®) is the complexification of g, (resp. ad). Also, we call Ker(DZ7, —
20 Dgévx o A®) the foccal space of the complex focal radius zo and its complex dimension the
multiplicity of the complex focal radius zo, In [19], it was shown that, in the case where M
is of class C“, complex focal radii of M at x indicate the positions of focal points of the ex-
trinsic complexification MC(<— GC/KC) of M along the complexified geodesic y,g, where
G® /K C is the anti-Kaehlerian symmetric space associated with G/K. See [19] (also [26])
about the detail of the definition of the extrinsic complexification. Denote by CF R the set of
all complex focal radii of M at x. If CFR, is independent of the choice of x, then M is called
a complex equifocal hypersurface. Here we note that we should call such a hypersurface an
equi-complex focal hypersurface but, for simplicity, we call it a complex equifocal hypersur-
face. This notion is the hypersurface version of a complex equifocal submanifold defined in
[18].
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Next we recall the notion of an anti-Kaehlerian equifocal hypersurface in an anti-
Kaehlerian symmetric space. Let J be a parallel complex structure on an even dimensional
pseudo-Riemannian manifold (M, ( , )) of half index. If (J X, JY) = —(X, Y) holds for ev-
ery X, Y € TM,then (M, ( , ), J)iscalled an anti-Kaehlerian manifold. Let N = G/K be a
symmetric space of non-compact type and G©/ K © the anti-Kaehlerian symmetric space asso-
ciated with G/K . See [19] about the anti-Kaehlerian structure of G€/K €. Let f be an isomet-
ric immersion of an anti-Kaehlerian manifold (M, ( , ), J) into G¢ /K CIfJo fe = feold,
then M is called an anti-Kaehlerian submanifold immersed by f. Let A be the shape ten-
sor of M. We have A7, X = Ay(JX) = J(AyX), where X € TM and v € TiM. If
AyX = aX +bJX (a,b € R), then X is called a J-eigenvector for a + bi. Let {e;}]_,
be an orthonormal system of T, M such that {e;}7_, U {Je;}!_, is an orthonormal base of
T, M. We call such an orthonormal system {e;}7_; a J-orthonormal base of TxM. If there
exists a J-orthonormal base consisting of J-eigenvectors of A,, then we say that A, is di-
agonalizable with respect to a J-orthonormal base. Then we set TrjA, = Y " A; as
Ave; = (Rerj)e; + ImA;)Je; (i = 1,...,n). We call this quantity the J-trace of A,.
If, for each unit normal vector v € M, the shape operator A, is diagonalizable with re-
spect to a J-orthonormal tangent base, if the normal Jacobi operator R(v) preserves the tan-
gent space Ty M (x :the base point of v) invariantly and if A, and R(v) commute, then
we call M a curvature-adapted anti-Kaehlerian submanifold, where R is the curvature ten-
sor of GC/KC. Assume that M is an anti-Kaehlerian hypersurface (i.e., codimM = 2)
and that it is orientable. Denote by exp~ the normal exponential map of M. Fix a global
parallel orthonormal normal base {v, Jv} of M. If eXpJ— (avy + bJvy) is a focal point of
(M, x), then we call the complex number a + bi a complex focal radius along the geo-
desic y,,. Assume that the number (which may be 0 and oo) of distinct complex focal
radii along the geodesic y,, is independent of the choice of x € M. Furthermore assume
that the number is not equal to 0. Let {r; ,; i = 1,2,...} be the set of all complex fo-
cal radii along y,, , where |r; x| < |rig1.x|or “|rix] = |rit+1.x| & Rerix > Rerjy1,” or
“Irixl = |rit1.x| & Rerix =Reriy1x & Imrixy = —Imrjy; , <0”. Letr; ( = 1,2,...)
be complex-valued functions on M defined by assigning r; , to each x € M. We call this
function r; the i-th complex focal radius function for v. If the number of distinct complex fo-
cal radii along y,, is independent of the choice of x € M, complex focal radius functions for
v are constant on M and they have constant multiplicity, then M is called an anti-Kaehlerian
equifocal hypersurface. We ([19]) showed the following fact.

FACT 3. Let M be a complete (embedded) C®-hypersurface in G/K. Then M is com-
plex equifocal if and only if MC is anti-Kaehler equifocal.

Next we recall the notion of an anti-Kaehlerian isoparametric hypersurface in an infinite
dimensional anti-Kaehlerian space. Let f be an isometric immersion of an anti-Kaehlerian
Hilbert manifold (M, ( , ), J) into an infinite dimensional anti-Kaehlerian space (V, { , ), J ).
See [19, Section 5] about the definitions of an anti-Kaehlerian Hilbert manifold and an in-
finite dimensional anti-Kaehlerian space. If Jo f« = f« o J holds, then we call M an
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anti-Kaehlerian Hilbert submanifold in (V, ( , ), J ) immersed by f. If M is of finite codi-
mension and there exists an orthogonal time-space decomposition V. = V_ @ V, such that
J Vi = V=, (V,(, )v,) is a Hilbert space, the distance topology associated with ( , )y,
coincides with the original topology of V and, for each v € T M, the shape operator A, is a
compact operator with respectto f*(, )v,, then we call M an anti-Kaehlerian Fredholm sub-
manifold (rather than anti-Kaehlerian Fredholm Hilbert submanifold). Let (M, (, ), J) be
an orientable anti-Kaehlerian Fredholm hypersurface in an anti-Kaehlerian space (V, ( , ), J )
and A be the shape tensor of (M, (, ), J). Fix a global unit normal vector field v of M. If
there exists X (# 0) € T, M with A, X = aX +bJ X, then we call the complex number a + bi
a J-eigenvalue of Ay, (or a complex principal curvature of M at x) and call X a J-eigenvector
of Ay, for a + bi. Here we note that this relation is rewritten as Aﬁ X0 = (g + b)) X1.0,
where X0 .= %(X — i/X). Also, we call the space of all J-eigenvectors of A, for
a + b/—1 a J-eigenspace of A,, for a + bi. We call the set of all J-eigenvalues of A, the
J-spectrum of A,, and denote it by Spec; A, . Spec;A,, \ {0} is described as follows:

Spec; Ay \ {0} ={A;;i=1,2,...}

[Xi| > |Aig1] or “|Ai| = |Ai+1] & ReA; > ReXjy1”
or “|Ai| = |Ai+1] & ReA; =ReXjy) & ImA; = —ImA;41 > 07

Also, the J-eigenspace for each J-eigenvalue of A, other than O is of finite dimension. We
call the J-eigenvalue A; the i-th complex principal curvature of M at x. Assume that the
number (which may be oco) of distinct complex principal curvatures of M is constant over
M. Then we can define functions ; (i = 1,2,...) on M by assigning the i-th complex
principal curvature of M at x to each x € M. We call this function i the i-th complex
principal curvature function of M. If the number of distinct complex principal curvatures of
M is constant over M, each complex principal curvature function is constant over M and it
has constant multiplicity, then we call M an anti-Kaehler isoparametric hypersurface. Let
{ei}2, be an orthonormal system of (Tx M, (, )x). If {¢;}72, U {Je;}72, is an orthonormal
base of Ty M, then we call {e,-}j?i1 a J-orthonormal base. If there exists a J-orthonormal base
consisting of J-eigenvectors of A, , then A, is said to be diagonalized with respect to the
J-orthonormal base. If M is anti-Kaehlerian isoparametric and, for each x € M, the shape
operator A, is diagonalized with respect to a J-orthonormal base, then we call M a proper
anti-Kaehlerian isoparametric hypersurface.

In [18], we defined the notion of the parallel transport map for a semi-simple Lie group
G as a pseudo-Riemannian submersion of a pseudo-Hilbert space H°([0, 1], g) onto G. See
[18] in detail. Also, in [19], we defined the notion of the parallel transport map for the com-
plexification G of a semi-simple Lie group G as an anti-Kaehlerian submersion of an infinite
dimensional anti-Kaehlerian space H 0([0, 1], g‘c) onto G€. See [19] in detail. Let G/K be
a symmetric space of non-compact type and ¢ : H°([0, 1], §©) — GC the parallel transport
map for G€ and 7 : G¢ — GC/KC the natural projection. We [19] showed the following
fact.
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FACT. 4. Let M be a complete anti-Kaehlerian hypersurface in an anti-Kaehlerian
symmetric space G€/KC. Then M is anti-Kaehlerian equifocal if and only if each component
of (7t o ¢)~Y(M) is anti-Kaehlerian isoparametric.

Next we recall the notion of a focal point of non-Euclidean type on the ideal boundary
N (oc0) of a hypersurface M in a Hadamard manifold N which was introduced in [23] for a
submanifold of general codimension. Assume that M is orientable. Let v be a unit normal
vector field of M and y,, : [0,00) — N the normal geodesic of M of direction vy. If
there exists an M-Jacobi field Y along y,, satistfying lim;— ||Y (#)||/t = 0, then we call
Vv, (00) (€ N(00)) a focal point of M on the ideal boundary N (00) along yy, , where y,, (00)
is the asymptotic class of y,, . Also, if there exists an M-Jacobi field Y along y,, satisfying
lim;— o0 |1Y (#)||/t = 0 and Sec(vy, Y (0)) # 0, then we call y,, (00) a focal point of non-
Euclidean type of M on N(0o) along y,., where Sec(vy, Y (0)) is the sectional curvature for
the 2-plane spanned by v, and Y (0). If, for any point x of M, y,, (00) and y_,, (c0) are not
a focal point of non-Euclidean type of M on N(c0), then we say that M has no focal point
of non-Euclidean type on the ideal boundary N (00). According to [19, Theorem 1] and [23,
Theorem A], we have the following fact.

FACT 5. Let M be a curvature-adapted and isoparametric C®-hypersurface in a sym-
metric space N := G /K of non-compact type. Then the following conditions (i) and (ii) are
equivalent:

(1) Mhas no focal point of non-Euclidean type on the ideal boundary N (00).
(ii) Each component of (7w o ¢)~ (M Cyis proper anti-Kaehlerian isoparametric.

3. Proof of Theorem A. In this section, we shall prove Theorem A. Let M be a
curvature-adapted isoparametric hypersurface in a simply connected symmetric space G/K
of compact type, v a unit normal vector field of M and C(C TXJ- M) the Coxeter domain (i.e.,
the fundamental domain (containing 0) of the Coxeter group of M at x). The boundary dC
of C consists of two points and it is described as dC = {rjvy, vy} (2 < 0 < r1). We may
assume that |r|| < |rz| by replacing v with —v if necessary. Note that the set 7R js of all focal
radii of M is equalto {kr; + (1 —k)r2; k € Z}. Set F; := {y,, (ri); x € M} (i = 1,2), which
are all of focal submanifolds of M. The hypersurface M is the r;-tube over F; (i = 1, 2). Let
7 be the natural projection of G onto G/K and ¢ the parallel transport map for G. Let M be
a component of (7 o ¢)~! (M), which is an isoparametric hypersurface in H°([0, 1], g). The
set PC j; of all principal curvatures other than zero of Mis equal to {m s k € Z}. Set
Aok—1 = m (k=1,2,...)and Ay := m (k=1,2,...). Then we have
[Mi+1] < |Ai]or A = —Aj+1 > O for any i € N. Denote by m; the multiplicity of A;. Denote
by A (resp. A) the shape operator of M for v (resp. M for vE), where v’ is the horizontal lift
of v to M with respect to 7 o ¢. Fix ro € FRy. The focal map f,,, : M — G/K is defined
by fry(x) := v, (ro) (x € M). Let F := f,,(M), which is either F; or F>. Denote by AF the
shape tensor of F and v, the geodesic flow of G/K.
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(2ry —rpu

FIGURE 2.

PROOF OF THEOREM A. Define a set S, by
Sy (= {(A, u) € SpecA, x SpecR(vy); Ker(Ax — AI) N Ker(R(vy) — ul) # {0}}.
Since M is curvature adapted, we have
M= @ Ker(Ax —rl) NKer(R(vy) — ul)).
(A, )€ Sy
Define a distribution D on M by D, := 690»,#)65?0 (Ker(Ay — AI) NKer(R(vy) — nl)) and

D™ the orthogonal complementary distribution of D in TM. Let X € Ker(A, — AI) N
Ker(R(vy) — ul) (A, n) € S}‘O) and Y be the Jacobi field along y;y,, with Y(0) = X and
Y'(0) = —Ayy, X (= —roAX). This Jacobi field Y is described as

Lsi
Y(s) = (cos(sroﬂ) - W) PVrov\[o,x] XD

Since Y (1) = f;,«X, we have

A sin( )
(3.1) FroxX = (cos(roﬂ) - %\/ﬁ) Py, (X,

which is not equal to 0 because (A, ) € S . From this relation, we have T, F =
Py, ., (D). On the other hand, we have

~ 1
Vfro*XWro(Ux) = %Y/(l)

= — (ﬂ sin(ro /) + A cos(roﬁ)) PVV()UX (X).
From (3.1) and (3.2), we have

F
Al/fro(vx)frO*X ==

(3.2)

M+ AT (1)

FroxX .
A — ()



A CARTAN TYPE IDENTITY FOR ISOPARAMETRIC HYPERSURFACES 445

Hence we can derive the following relation:

A+ ATh (1)
(3.3) TrA) () =— Z T g
0 o X A— Tro (/’L)

SHEST
where S and m,_, are as in the statement of Theorem A. On the other hand, it is not difficult
to show the existence of a transnormal function on G/K having M and F as a regular level
and a singular level, respectively. Hence, according to [28, Theorem 1.3], F is austere and

hence minimal. Therefore, we obtain the desired identity from (3.3). O

4. The mean curvature of a proper anti-Kaehlerian Fredholm submanifold. In
this section, we define the notion of a proper anti-Kaehlerian Fredholm submanifold and its
mean curvature vector. Let M be an anti-Kaehlerian Fredholm submanifold in an infinite
dimensional anti-Kaehlerian space V and A be the shape tensor of M. Denote by the same
symbol J the complex structures of M and V. If A, is diagonalized with respect to a J-
orthonormal base for each unit normal vector v of M, then we call M a proper anti-Kaehlerian
Fredholm submanifold. Assume that M is such a submanifold. Let v be a unit normal vector
of M. If the series Zfil m;A; exists, then we call it the J-trace of A, and denote it by Trj A,,
where {A;; i = 1,2,...} = Spec;A, \ {0} (X;’s are ordered as stated in Section 2) and
m; = ldimKer(AU — M) (i =1,2,...), where A; I means (ReA;)I + (ImA;)J. Note that,
if 4(Spec;Ay) is finite, then we promise A; = 0 and m; = 0 (i > #(Spec;A, \ {0})), where
f1(-) is the cardinal number of (-). Define a normal vector field H of M by (Hy,v) = Trj A,
xeM, ve TXJ‘M). We call H the mean curvature vector of M.

Let G/K be a symmetric space of non-compact type and ¢ : H°([0, 1], g(c) — G be
the parallel transport map for the complexification G€ of G and 7 be the natural projection
of G© onto the anti-Kaehlerian symmetric space GC/K €. We have the following fact, which
will be used in the proof of Theorem B in the next section.

LEMMA 4.1. Let M be a curvature-adapted anti-Kaehlerian submanifold in G€/K©
and A (resp. X) be the shape tensor of M (resp. (7w o ¢)~V(M)). Assume that, for each unit
normal vector v of M and each J-eigenvalue i of R(v), Ker(A, — /=) N Ker(R(v) —
wl) = {0} holds. Then the following statements (i) and (ii) hold:

(i) (7 o ¢)~"N(M) is a proper anti-Kaehlerian Fredholm submanifold.

(i) For each unit normal vector v of M, TI']ZUL = Try A, holds, where v’ is the

horizontal lift of v to (w o qﬁ)‘1 (M) and Trj Ay is the J-trace of A,.

PROOF. We can show the statement (i) in terms of [19, Lemmas 9, 12 and 13]. By
imitating the proof of [18, Theorem C], we can show the statement (ii), where we also use the
above lemmas in [19]. O

5. Proofs of Theorems B and C. In this section, we first prove Theorem B. Let M
be a curvature-adapted isoparametric C“-hypersurface in a symmetric space G/K of non-
compact type. Assume that M admits no focal point of non-Euclidean type on the ideal
boundary of G/K. Denote by A the shape tensor of M and R the curvature tensor of G/K.
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Let v be a unit normal vector field of M, which is uniquely extended to a unit normal vector
field of the extrinsic complexification MC(c G€/KC) of M. Since M is a curvature-adapted
isoparametric hypersurface admitting no focal point of non-Euclidean type on the ideal bound-
ary N(00), it admits a complex focal radius. Let r¢ be one of complex focal radii of M. The
focal map fr, : M€ — G(C/K(C for rg is defined by f,,(x) = epr- (rovy) (= y,g (r0))
(x € M), where rgv, means (Rerg)vy + (Imrg)Jvy (J : the complex structure of G© /K ©y.
Let F := f,,(M C), which is an anti-Kaehlerian submanifold in G€ /K C (see Figure 1). With-
out loss of generality, we may assume o := ¢K € M. Denote by Aand AF the shape tensor of
MC and F, respectively. Let v; be the geodesic flow of G€/KC. Then we have the following
fact.

LEMMA 5.1. Forany x € M (C M%), the following relation holds:

7o w+ AT (1)
T Al = Y S e,
ol (7%re) ol A — T (1)

(wess)
where S} andm;,, are as in the statement of Theorem B.

PROOF. Let Sy := {(A, u) € SpecA,, x SpecR(vy); Ker(A,, —AI) N Ker(R(vy) —
ul) # {0}}. Since M is curvature adapted, we have T\M = @(A,u)esx (Ker(Ay — AN
Ker (R(vy) — ul)). Set Dy, := @(k L)ess (Ker(Ay — A1) NKer(R(vy) — nl)) and D)ﬂ- the

. A

orthogonal complement of D in T, M. The tangent space T,(MC) is identified with the
complexification (T, M)C. Under this identification, the shape operator A,, is identified with
the complexification AT of Ay. Let X € Ker(Ay — A1)® NKer(R(vy) — ul)C (1, ) € S})
and Y be the Jacobi field along y,, with Y(0) = X and Y'(0) = —A,OUXX (= —rogAX =
—X ((Rerg) X + (Imrg) J X)), where y,,,, is the geodesic in GC/KC with Vrove (0) = 1oy (=
(Rerg)vy + (Imrg)Jvy). This Jacobi field Y is described as

. Asin(isrg/— )

Y(s) = (COS(]SV()»,/—/,L) Iy Pyl (X)) -
Since Y (1) = f;,«X, we have
. A sin(irg/—u)

(5.1 JroxX = <COS(1"O\/—_M) - ﬁ Pyro,,x (X)
which is not equal to 0 because (A, ) € S} . This relation implies that T, ) F'= Py, , (D).
On the other hand, we have

~ ro 1 _,
Vfro*xwlr()l —Ux =—Y (1)

(5.2) 7ol 7ol
—— I:_ZI (iv/ = sin(irg /= 1) + A cos(iroy/=10))Py, . (X) .
From (5.1) and (5.2), we have
ro S
— i (e + 22y (W)
(5.3) e X = - X.
lﬂ\ro\(ﬁvx) fro* % e 0 fro*
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The desired relation follows from this relation. O
S T (A (1) N he followine |
etk(A, pu) := R ((A, ) e S,O). Next we prepare the following lemma.

LEMMA 5.2. Let (A, 1) € Sfo. Then we have

. -1 ro ro
() (@xpge rove)y Yl (T vr ) = e,
|rol |rol
where expgc is the exponential map of GC,
(i) (expge rov)y (Ker(Ai (o~ KO, o))
Iro

- B (Ker(Aux — D N Ker(R(vy) — MI)C) ,
ey, (1)
where S} (A1, w1) ={(h, n) € S5 k(A 1) = K(M,Ml)}
(111) if M # /=1, then k (A, p1) # i|,0|v
PROOF. The relation of (i) is trivial. Let (A, u) € Sfo (A1, i1). The restriction

JroxIKer(Ay, —21)C0Ker(R(v)—u1yC OF frox 18 equal to Py, Iker(a,, —11CAKer(R(uy)—un)C UP 1O
constant multiple by (5.1). Also, we have Py, = (expgc rovx)«. These facts together with
(5.3) deduce

(eXPGC TV )+ (Ker(Avx —AD% NKer(R(vy) — MI)(C>
= fros (Ker(Ay, = 2D)F NKer(R(wo) = D))

CKer(A e 1).
Vgl (1 v0) (A1, 1)

From this fact, the relation of (ii) follows. Now we shall show the statement (iii). Let ro =
ao + bo~/—1 (ag, bo € R). Suppose that k (A1, (1) = ‘ +/— 1. By squaring both sides of
this relation, we have

\ro

(Fro (1> + 1) (A7 + p1) = 0.

Hence we have A1 = &,/— 1. Thus the statement (iii) is shown. O

Denote by R the curvature tensor of G© /KC. By using these lemmas, we prove Theorem

B. According to Lemma 5.1, we have only to show Tr ]Aw (704 =0 (x € M). In the case
Irol g Vx

where M is homogeneous, we can show this relation by imitating the process of the proof of
[15, Corollary 1.1].

SIMPLE PROOF OF THEOREM B IN RANK ONE CASE. We have only to show

TryAF o0y = 0. Assume that G/K is of rank one. Define a complex linear function
Irol \ro\ x

D : T;; Y Cby ®(w) = TryAL (w € f (0 F)- Since M is curvature-adapted, we

have TyM = @(k’#)esx (Ker(AUx — M) NKer(R(vy) — [LI)). Set

S = {(r, 1) € (Spec; Ay,) x (Spec; R(vy)); Ker(Ay, — Al) qur(k(vy) —ul) £ {0}
& # fro(W)}
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yeM C). Define a distribution D on M€ by
Dy:= P (Ker(A, —AI) NKer(R(vy) — puD)) (v € M)

DISSA

and D~ the orthogonal complementary distribution of D in T(MC). Also, define a distribu-
tion D on M by Dy := @, 5. (Ker(Ay —AI) NKer(R(vy) — ul)) (x € M) and D the
MESE

orthogonal complementary distribution of D in 7 M. Under the identification of Ty (M) with
(TxM )(C, ﬁx is identified with the complexification (Dx)(C of D,. The focal map f;, is a sub-
mersoin of MC onto F and the fibres of fr, are integral manifolds of D+ Let L be the integral
manifold of D+ through x and set Lg := L N M. It is shown that L is the extrinsic com-
plexification of Ly. Set Q := {Iﬂ\r0|(‘r0‘vx) x € L} and QR := {Iﬂ\r0|(|r0‘vx); x € Lg}.
It is shown that Q is the extrinsic complexification of Qg and that Q is a complex hyper-
surface without geodesic point in T#;O (0 F» that is, it is not contained in any complex affine

hyperplane of T+ o x yF. According to Lemma 5.1, we have

ro o A+ AT, (1)
o(ni(Go)) = =i X G X e

Irol A= Ty (1)
S E I

Let (3:, i) be a pair of continuous functions on Lg such that (X(y), ny)) € S,‘O for any
y € L. Since G/K is of rank one, /i is constant on Lg. The complex focal radius having
Ker(Ay — X(y) I) N Ker(R(vy) — w(y) I) as a part of the focal space is the complex number
Zo satisfying Ker(Dg(‘)’v — zODg(‘)U o A$)|Ker(Ay—X(y) DOKer(R(vy)~E(y) 1) # {0}, that is, it is
equal to (1//J1(y)) arctan(/7L(y)/A(y)), which is independent of the choice of y € Lg
by the isoparametricness (hence complex equifocality) of M. Hence  is constant on L.
Therefore @ is constant along Q. Since @ is of class C” and Qp is a half-dimensional
totally real submanifold in Q, @ is constant along Q. Furthermore, this fact together with the
linearity of @ imply @ = 0. In particular, we have Tr Airo(vx) =0. m]

PROOF OF THEOREM B (GENERAL CASE). According to Lemma 5.1, we have only to

show Tr; Aw 0y = 0 (xo € M). We shall show this relation by investigating the focal
Iro1 % TrgT X0

submanifold of (7 o qj)_l(MC) corresponding to rp, where ¢ (: HO([0, 11, g(c) - GY is the
parallel transport map for G and 7 is the natural projection of G onto G€/KC. Let MC
be the complete extension of (7 o ®) " '(M €. Let vE be the horizontal lift of v to MC. Since
7 o ¢ is an anti-Kaehlerian submersion, the complex focal radii of M c (hence M) are those of
MEC. Let ro be a complex focal radius of M (hence MC). The focal map fro for rg is defined
by f,o(x) =x+ rov (x € MC) Set F := frO(M ). Denote by A (resp. AF) the shape
tensor of M€ (resp. F) Let Spec]A N0} ={Ai5 i =12, .. (“IA] > |Aig1]” or “|Ai| =
[Xit1] & ReXd; > ReA;41” or “|A;] _0 [Xit1] & Red; = ReAj+1 & ImA; = —ImA;4+1 > 07).
The set of all complex focal radii of MC (hence M) is equal to {I/A;; i = 1,2,...}.
We have ro = 1/A;, for some iyp. Define a distribution D (i =0,1,2,...) on M(C by
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(Do)u = Kerﬁ% and (D;), = Ker(Z;jL% —nD) G =1,2,...), whereu € MC. Since M isa
curvature-adapted isoparametric submanifold admitting no focal point of non-Euclidean type
on N (00), M is proper anti-Kaehlerian isoparametric by Fact 5. Therefore, we have T M€ =
Do @ (D, D; ) and Spec ]Z"‘L is independent of the choice of u € MC. Take ug € M€ with
(r o p)(ug) = xo. Let X; € (D Jup (@ # i0) and Xo € (DO)uo Then we have frO*X =
(1 — ror))X; and frO*XO = Xo. Hence we have Tf o )F = (Do)u0 (@Z#ZO(D )uo) and
Ker( fro)*uo = (Dlo)uo, which implies that DZO is 1ntegrable On the other hand, we have
FrowXi = (uiro)/lrolX; and AZ

T (20 )f,O*Xo = 0, where IZ is the geodesic
o \V()\ ”0

"0 L
w\’o\(\ro\ Uu())

~ A i
flow of HO([O, 1], g(c). Therefore, we obtain AF (0 )f,O*X,- = l 0‘ f,O*X Hence we
\’0\ ‘rO‘ ”O
XilAi .~ .
have Tr]AF (0 = Zl#lo o ‘_g x m;, where m; = %dlm D;. According to The-
[rol \”0\ ug ‘0

orem 2 of [19], each leaf of D,0 is a complex sphere. Let L be the leaf of 510 through
uo and ugy be the anti-podal point of u¢ in the complex sphere L. Slmllarly we can show

Ailhig
Trj AL —0 x Thus we have Tr; AL =Try AL - .
! w\’o\(\ro\(v )u*) Zl#lo g —hi g v v ! lff\ro\(\ro\ uo) w\ro\(W(UL)ug)
ro —
On the other hand, it follows from w"O‘(Irol @t Jug) = w\ro\(v |Uu0) that TrJA‘;\ro\(\rO\Uuo) =
—Tr,AL _ H btai
ry l//"()‘(\ro\(vL)u*) ence we obtain
(5.4) TryAL =0.

20 L
]//\’0\( [rol Uu())

It follows from (i) and (ii) of Lemma 5.2 that F := f, (M C) is a curvature adapted anti-
Kaehlerian submanifold. Also, it follows from (iv) of Remark 1.2, (5.3), (i) and (iii) of Lemma
5.2 that, for each unit normal vector w of F and each u € Spec;R(w) \ {0}, Ker(Ai +
—wl) N Ker(R(w) — ul) = {0} holds. Therefore, it follows from Lemma 4.1 that Fisa
proper anti-Kaehlerian Fredholm submanifold and, for each unit normal vector w of F, we
have TryAF Wl = TrJAF It is clear that W\ro\(|f°| vuo) is the horizontal lift of w|,0|(|r Uy,) tO
frO (ug). Hence we have

5.5 Try AL =TrjAL
(5.5) J ‘/f\r()\(\ro\”*o) J ‘//\'O‘(ﬁvé‘o)-
From (5.4) and (5.5), we have TryA* = 0. This completes the proof. O

llf'\ro\ ( ol U)L())
Now we prepare the following lemma to prove Theorem C.

LEMMA 5.3. Let M be a curvature-adapted isoparametric C®-hypersurface in a sym-
metric space N := G/K of non-compact type. Assume that M has no focal point of non-
Euclidean type on N (00). Then, for any complex focal radius r of M, we have

1
Spec (Ax[Ker R(vy)) C {@’ 0}
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and

N
m, —Mtanh( —//LRCV)}

for u € SpecR(vy) \ {0}, where x is an arbitrary point of M.

Spec (Aleer(R(vx)—#l)) < {

PROOF. For simplicity, we set D, := Ker(R(vy) — pnid) for each u € Spec R(vy).

Let ro be the complex focal radius of M with Rerp = maxRer, where r runs over the set
r

of all complex focal radii of M. Let (A, u) € Sfo \ {(0,0)} and r a complex focal radius

including Ker(A, — AI) N D,, as the focal space, that is, A = 7, (u) (see (ii) of Remark 1.2).
/‘L+)tfr0 (D]

Set Chu = —W

. We shall show Re ¢;, ,, < 0. The argument divides into the following
three cases:

D=0 @>{)0 <. /=u<|A (i) |A] < /—1.

First we consider the case (i). Then we have ¢, = 1_}‘—M0 Also, we can show A = 1/r.
Hence we have

5.6 _ !

(5.6) C)L,u—r_rO'

Furthermore, we have Rec, ;, < 0 from the choice of ryp. Next we consider the case (ii).
Since A = 7,(u) and A is a real number with |A| > /—u, we can show A = Tre, () (=
R V:’;Rer)) and r = Rer (mod (ri)//—t). Hence we have ¢, = T(,—Rer)(1t), Where
we note that Rer # rg (mod (ri)//—p) because (A, u) € Sfo. Therefore, we obtain

= (1 + tan?(/=uImry)) tanh (/= (Rer — Rerp)) 0
<
tanh®(/—x(Rer — Rerg)) + tan2(/—plmro) -
because Rer < Rery. Next we consider the case (iii). Since A = 7,.(u) and A is a real

number with |A| < /—u, we can show A = f(RerJr i )(u)(z /—wmtanh(,/—uRer)) and
E=T

r = Rer + 2\’/’17 (mod \/”_L#). Hence we have ¢, = T,

(5.7)  Reci,=

Cmi )(M)~ Therefore, we

(ro—Rer+ ENem

obtain
V= (1 + tan*(y/=uImrg)) tanh(y/=(Rer — Rerp)) -0

1 + tanh?(\/—(Rer — Rerp)) tan2 (/= pImro)

Thus Rec, ;, < 0 is shown in general. Hence, from the identity in Theorem B, Recy ;, = 0
(A, ) € S}‘O) follows, where we note that cp o = 0. In case of (i), it follows from (5.6) that

(5.8)  Recy, =

Re(r_lro) = 0. Hence we have Rer = Rerpg(< 00) or r = oo. If Rer = Rerg(< 00),

then we have A = 1/r = 1/Rerp = Tres,(0) (which does not happen if rg is real because
(A,0) € S;‘O). Also, if r = 00, then we have A = 0. Thus we have

1
5.9 Spec(A, — 0} .
(5.9 pec( |D0)C{Rero }

In case of (ii), it follows from (5.7) that Rer = Rerg. Hence we have A = Tre,, (1) (which
does not happen if ro = Rerg (mod (7i)//—p) because (A, n) € S;). In case of (iii), it
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follows from (5.8) that Rer = Rerg. Hence we have A = i )(u) (which does not

(Rer0+
happen if ro = Rerg + 5= (mod (i) //—mp) because (A, ) € S" ) Hence we have

(5.10) Spec(Ax|p,) C {t h(HRe ~ «/—utanh(«/—uRerQ)}

This complets the proof. O
Next we prove Theorem C in terms of this Lemma and its proof.

PROOF OF THEOREM C. According to the proof of Lemma 5.3, the real parts of com-
plex focal radii of M coincide with one another. Denote by sy this real part. Then, according
to Lemma 5.3, we have

Spec(Axlp,) C { O}

and

V="

Spec(A
pec( xlDu) - {t nh(y/— o)

«/—Mtanh(«/—uso)} (n € Spec R(vx) \ {0}) .
Set DY := Ker (AX|D0 _ %id), DH = KerAq|p,,

N
DX := Ker <Ax|Dﬂ tanh(ﬁso) )
and

Df := Ker (A;|p; — ~/—p tanh(y/—ps0) id) .

According to (i) of Remark 1.2, if D§’ & (D, cspec Ry (o) Pfi ) # 0}, then so is a (real)
focal radius of M whose focal space is equal to DX ® (@#espec RWO\{(0} DX) # {0}. Let ngy
(s € R) be the end-point map for sv. Set M, := 1y, (M). Set F' := My,. If 59 is a (real) focal
radius of M, then F is the only focal submanifold of M, and if s is not a (real) focal radius
of M, then F is a parallel submanifold of M. Without loss of generality, we may assume that
eK € F. Define a unit normal vector field v* of M (0 < s < s59) by v W) = yv (s)(x e M).
Denote by A® (0 < s < s¢) the shape operator of M; (for v*) and AF the shape tensor of F'.
Set (DJ)* 1= Ms)«(DY) (0 < s < s0) and (D))* := (nsn)«(D}) (0 < s < 50, jt €
Spec R(vy) \ {0}). Also, set (DE)* 1= (s0)«(D{) (s € R) and (Df)* := (n50)+(D})
(s e R, € Spec R(vy) \ {0}). Easily we have

H
G0 TnSOU(X)F (DO )m o @ ( @ (D, )nv()u(x)> .
neSpec R(vx)\{0}
Also, we can show
Anwlofy,, =0 0= <)
and
Al o = Htanh(v=pu(so = 5)id (0 =<5 <s0).

B Insv(x)
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My

M
7?7,301) (x) F
o

s
15 (X)

17l
exp (TUSOU(X) F) Tl

pf=mfe( @ o)

ﬁeA-%—l]va
Hys .7 Hys His
& )nsn(x) =Dy )rzsn(x) b ( @ (Dﬂ )m-v(x))
ﬂ€A+|RUX
FIGURE 3.
Hence we have
=0

F
A HA%0
Wvo(vx) |(D0 )m‘ov(x)

and
F ) _ . — — . Sy
A%o(”x)l(Déi)igov(x) = (; 11S1(1)1_0 /—p tanh(y/—u(so s))) id=0,

where i is the geodesic flow of G/K. From these relations and (5.11), we obtain Ag ) =
SO X

0. Since this relation holds for any x € M, F is totally geodesic. Denote by exp~ the normal
exponential map for F. Since the real parts of complex focal radii of M coincide with one
another, the normal umbrella epr-(TxJ-F )’s (x € F) do not intersect with one another. From
this fact, an involutive diffeomorphism t : G/K — G/K having F as the fixed point set
is well-defined by r(expL(w)) = expL(—w) (w € TLF). Foreachs € R \ {so}, the
restriction 7|, of T to My coincides with the end-point map 125, —s)vs for 2(so — s)v°. Since
F is totally geodesic, we see that 1y(s,—s)ps (hence 7|y, ) is an isometry of M. From this fact,
it follows that t is an isometry of G/K. Hence F is reflective. Furthermore, by imitating
the proof of [16, Proposition 1.12], we can show that F is an orbit of a Hermann action
on G/K as follows. Take Exp Zp € F, where Exp is the exponential map of G/K at o. Set
m := Ad(exp(—Zo)) ((exp Zo), 1 (Texp zo F)), where Ad is the adjoint operator of G. Define a
subalgebra & of gby ¥ := {X € £; ad(X)m = m} and set h := ¢ + m, which is a subalgebra
of g. Set H := I(exp Zo)(exp(h)), where I(exp Zyp) is the inner automorphism of G by
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exp Zo. Easily we can show that Tgxp z,(HEXp Zg) = Tgxpz,F and hence HExpZy = F.
Define an involution 7 of G by £(g) :=togot~! (¢ € G). Itis easy to show that (Fix 7)o C
H C Fixt. Thus H ~ G/K is a Hermann action. Let HC be the complexification of H
and M©(c G€/KC) be the complete complexification of M. See [22] about the definition of
the complete complexification of M. Since both HC - 0 and M€ are anti-Kaehler equifocal
submanifolds having FC as a focal submanifold, they are equal to one of the partial tubes over
FC stated in Section 5 in [22]. Thus they coincides with each other. Furthermore, from this
fact, we can derive H - 0 = M. This completes the proof. O
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