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A CARTAN TYPE IDENTITY FOR ISOPARAMETRIC HYPERSURFACES

IN SYMMETRIC SPACES

NAOYUKI KOIKE

(Received April 2, 2013, revised August 19, 2013)

Abstract. In this paper, we obtain a Cartan type identity for curvature-adapted isopara-
metric hypersurfaces in symmetric spaces of compact type or non-compact type. This identity
is a generalization of Cartan-D’Atri’s identity for curvature-adapted (=amenable) isoparamet-
ric hypersurfaces in rank one symmetric spaces. Furthermore, by using the Cartan type iden-
tity, we show that certain kind of curvature-adapted isoparametric hypersurfaces in a symmet-
ric space of non-compact type are principal orbits of Hermann actions.

1. Introduction. An isoparametric hypersurface in a (general) Riemannian manifold
is a connected hypersurface whose sufficiently close parallel hypersurfaces are of constant
mean curvature (see [12] for example). In this paper, we assume that all isoparametric hyper-
surfaces are complete. It is known that all isoparametric hypersurfaces in a symmetric space
of compact type are equifocal in the sense of [37] and that, conversely all equifocal hypersur-
faces are isoparametric (see [12]). Also, it is known that all isoparametric hypersurfaces in
a symmetric space of non-compact type are complex equifocal in the sense of [18] and that,
conversely, all curvature-adapted complex equifocal hypersurfaces are isoparametric (see [19,
Theorem 15]), where the curvature-adaptedness implies that, for a unit normal vector v, the
(normal) Jacobi operator R(·, v)v preserves the tangent space invariantly and commutes with
the shape operator A for v, where R is the curvature tensor of the ambient space. It is known
that principal orbits of a Hermann action (i.e., the action of a symmetric subgroup of G) of
cohomogeneity one on a symmetric space G/K of compact type are curvature-adapted and
equifocal (see ([11]). Hence they are isoparametric hypersurfaces. On the other hand, we
[20, 23] showed that the principal orbits of a Hermann action (i.e., the action of a (not neces-
sarily compact) symmetric subgroup of G) of cohomogeneity one on a symmetric space G/K

of non-compact type are curvature-adapted and complex equifocal, and they have no focal
point of non-Euclidean type on the ideal boundary of G/K . Hence they are isoparametric
hypersurfaces.
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For an isoparametric hypersurface M in a real space form N of constant curvature c, it
is known that the following Cartan’s identity holds:

(1.1)
∑

λ∈SpecA\{λ0}

c + λλ0

λ − λ0
× mλ = 0

for any λ0 ∈ SpecA, where A is the shape operator of M and SpecA is the spectrum of A, mλ

is the multiplicity of λ. Here we note that all hypersurfaces in a real space form are curvature-
adapted. In general cases, this identity is shown in algebraic method. Also, it is shown in
geometrical method in the following three cases:

(i) c = 0, λ0 �= 0,
(ii) c > 0, λ0 : any eigenvalue of Av ,

(iii) c < 0, |λ0| >
√

−c.
In detail, it is shown by showing the minimality of the focal submanifold for λ0 and using this
fact.

Let H � G/K be a cohomogeneity one action of a compact group H (⊂ G) on a rank
one symmetric space G/K and M a principal orbit of this action. Since the H -action is of
cohomogeneity one, it is hyperpolar. Hence M is an equifocal (hence isoparametric) hyper-
surface (see [13]). In 1979, D’Atri [8] obtained a Cartan type identity for M in the case where
M is amenable (i.e., curvature-adapted). On the other hand, in 1989–1991, Berndt [1, 2] ob-
tained a Cartan type identity (in algebraic method) for curvature-adapted hypersurfaces with
constant principal curvature in rank one symmetric spaces other than spheres and hyperbolic
spaces. Here we note that, for a curvature-adapted hypersurface in a rank one symmetric space
of non-compact type, it has constant principal curvature if and only if it is isoparametric.

In this paper, we obtain the Cartan type identities for curvature-adapted isoparametric
hypersurfaces in symmetric spaces and, furthermore, by using the Cartan type identity, we
prove that certain kind of curvature-adapted isoparametric hypersurfaces in a symmetric space
of non-compact type are principal orbits of Hermann actions. Let M be a hypersurface in a
symmetric space N = G/K of compact type or non-compact type and v a unit normal vector
field of M . Set R(vx) := R(·, vx )vx |TxM , where R is the curvature tensor of N . For each
r ∈ R, we define a function τr over [0,∞) by

τr(s) :=

⎧
⎪⎪⎨
⎪⎪⎩

√
s

tan(r
√

s)
(s > 0)

1

r
(s = 0) .

Also, for each r ∈ C, we define a complex-valued function τ̂r over (−∞, 0] by

τ̂r (s) :=

⎧
⎪⎪⎨
⎪⎪⎩

i
√

−s

tan(ir
√

−s)
(s < 0)

1

r
(s = 0) ,
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where i is the imaginary unit. First we prove the following Cartan type identity for a curvature-
adapted isoparametric hypersurface in a simply connected symmetric space of compact type.

THEOREM A. Let M be a curvature-adapted isoparametric hypersurface in a simply

connected symmetric space N := G/K of compact type. For each focal radius r0 of M , we

have

(1.2)
∑

(λ,µ)∈Sx
r0

µ + λτr0(µ)

λ − τr0(µ)
× mλ,µ = 0 ,

where Sx
r0

:= {(λ, µ) ∈ SpecAx ×SpecR(vx ) ; Ker(Ax −λI)∩Ker(R(vx )−µI) �= {0}, λ �=
τr0(µ)} and mλ,µ := dim(Ker(Ax − λI) ∩ Ker(R(vx) − µI)).

REMARK 1.1. (i) If Ker(Ax −λ0I)∩Ker(R(vx )−µ0I) is included by the focal space
for the focal radius r0, then we have τr0(µ0) = λ0.

(ii) If G/K is a sphere of constant curvature c, then SpecR(vx ) = {c} and τr0(c) is equal
to the principal curvature corresponding to r0. Hence the identity (1.2) coincides with (1.1).

(iii) In the case where G/K is a rank one symmetric space of compact type, the identity
(1.2) coincides with the identity obtained by D’Atri [8] (see [8, Theorems 3.7 and 3.9]).

(iv) In the case where G/K is a rank one symmetric space of compact type other than
spheres, the identity (1.2) is different from the identity obtained by Berndt [1, 2].

Next, in this paper, we prove the following Cartan type identity for a curvature-adapted
isoparametric Cω-hypersurface in a symmetric space of non-compact type, where Cω means
the real analyticity.

THEOREM B. Let M be a curvature-adapted isoparametric Cω-hypersurface in a sym-

metric space N := G/K of non-compact type. Assume that M has no focal point of non-

Euclidean type on the ideal boundary N(∞) of N . Then M admits a complex focal radius

and, for each complex focal radius r0 of M , we have

(1.3)
∑

(λ,µ)∈Sx
r0

µ + λτ̂r0(µ)

λ − τ̂r0(µ)
× mλ,µ = 0 ,

where Sx
r0

:= {(λ, µ) ∈ SpecAx ×SpecR(vx ) ; Ker(Ax −λI)∩Ker(R(vx )−µI) �= {0}, λ �=
τ̂r0(µ)} and mλ,µ := dim(Ker(Ax − λI) ∩ Ker(R(vx) − µI)).

REMARK 1.2. (i) The notion of a complex focal radius was introduced in [18]. This
quantity indicates the position of a focal point of the complexification MC (⊂ GC/KC) of a
submanifold M in a symmetric space G/K of non-compact type (see [19]).

(ii) If Ker(Ax −λ0I)∩Ker(R(vx )−µ0I) is included by the focal space for the complex
focal radius r0, then we have τ̂r0(µ0) = λ0.

(iii) If G/K is a hyperbolic space of constant curvature c, then SpecR(vx ) = {c} and
τ̂r0(c) is equal to the principal curvature corresponding to r0. Hence the identity (1.3) coin-
cides with (1.1).
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(iv) In the case where G/K is a rank one symmetric space of non-compact type and r0

is a real focal radius, the identity (1.3) coincides with the identity obtained by D’Atri [8] (see
[8, Theorems 3.7 and 3.9]).

(v) In the case where G/K is a rank one symmetric space of non-compact type other
than hyperbolic spaces, the identity (1.3) is different from the identity obtained by J. Berndt
[1, 2].

(vi) For a curvature-adapted and isoparametric hypersurface M in G/K, the following
conditions (a)–(c) are equivalent:

(a) M has no focal point of non-Euclidean type on N(∞),
(b) M is proper complex equifocal in the sense of [20],
(c) Ker(Ax ± √−µI) ∩ Ker(R(vx) − µI) = {0} holds for each µ ∈ SpecR(vx ) \ {0}.

(vii) Principal orbits of a Hermann type action of cohomogeneity one on G/K are
curvature-adapted isoparametric Cω-hypersurface having no focal point of non-Euclidean
type on N(∞) (see [20, Theorem B] and the above (iii)).

The proof of Theorem B is performed by showing the minimality of the focal subman-

ifold F := {exp⊥((Re r0)vx + (Im r0)J vx) ; x ∈ MC} of the complexification MC of M (see
Figure 1), where exp⊥ is the normal exponential map of the submanifold MC in GC/KC, J

is the complex structure of GC/KC and v is a unit normal vector field of M (in G/K). Here
we note that exp⊥((Re r0)vx + (Im r0)J vx) is equal to the point γ C

vx
(r0) of the complexified

geodesic γ C
vx

in GC/KC. In the case where G/K is of rank greater than one and M is not ho-
mogeneous, the proof of the minimality of F is performed by showing the minimality of the

lift F̃ := (π ◦ φ)−1(F ) of F to the path space H 0([0, 1], gC), where φ is the parallel trans-
port map for GC (which is an anti-Kaehlerian submersion of H 0([0, 1], gC) onto GC) and π

is the natural projection of GC onto GC/KC (which also is an anti-Kaehlerian submersion).
Here we note that the minimality of F is trivial in the case where M is homogeneous. By
using Theorem B, we prove the following fact for the number of distinct principal curvatures

FIGURE 1.
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of a curvature-adapted isoparametric Cω-hypersurfaces in a symmetric sapce of non-compact
type.

By using Theorem B, we prove the following main result.

THEOREM C. Let M be a curvature-adapted isoparametric Cω-hypersurface in a sym-

metric space N of non-compact type. Assume that M has no focal point of non-Euclidean type

on N(∞). Then M is a principal orbit of a Hermann action.

REMARK 1.3. In this theorem, are indispensable both the condition of the curvature-
adaptedness and the condition for the non-existenceness of non-Euclidean type focal point
on the ideal boundary. In fact, we have the following examples. Let G/K be an irreducible
symmetric space of non-compact type such that the (restricted) root system of G/K is non-
reduced. Let g = k + p (g = Lie G, k = Lie K) be the Cartan decomposition associated with
a symmetric pair (G,K) and a a maximal abelian subspace of p. Also, let △+ be the positive
root system of G/K with respect to a and Π the simple root system of △+, where we fix a
lexicographic ordering of the dual space a∗ of a. Set n :=

∑
λ∈△+ gλ and N := exp n, where

gλ is the root space for λ and exp is the exponential map of G. If G/K is of rank one, then
any orbit of the N-action on G/K is a full irreducible curvature-adapted isoparametric Cω-
hypersurface but it has a focal point of non-Euclidean type on N(∞) (see [25]). On the other
hand, it is a principal orbit of no Hermann action. Thus, in this theorem, is indispensable
the condition for the non-existenceness of a focal point of non-Euclidean type on the ideal
boundary. Let Hλ be the element of a defined by 〈Hλ, •〉 = λ(•). Assume that the (restricted)
root system of G/K is of type (BCn). Take an element λ of Π such that 2λ belongs to △+,
and one-dimensional subspaces l of RHλ + gλ. Set S := exp((a + n) ⊖ l), where exp is the
exponential map of G and (a + n) ⊖ l is the orthogonal complement of l in a + n. Then S is
a subgroup of AN := exp(a + n) and any orbit of the S-action on G/K is a full irreducible
isoparametric Cω-hypersurface but it is not curvature-adapted (see [25]). Furthermore, we
can find an orbit having no focal point of non-Euclidean type on N(∞) among orbits of the
S-action. On the other hand, it is a principal orbit of no Hermann action. Thus the condition
of the curvature-adaptedness is indispensable in this theorem.

In Section 2, we recall basic notions. In Section 3, we prove Theorem A. In Section 4,
we define the mean curvature of a proper anti-Kaehlerian Fredholm submanifold and prepare
a lemma to prove Theorem B. In Section 5, we prove Theorems B and C.

2. Basic notions. In this section, we recall basic notions which are used in the proof
of Theorems A and B. First we recall the notion of an equifocal hypersurface in a symmetric
space. Let M be a complete (oriented embedded) hypersurface in a symmetric space N =
G/K and fix a global unit normal vector field v of M . Let γvx be the normal geodesic of M

with γ ′
vx

(0) = vx , where x ∈ M and γ ′
vx

(0) is the velocity vector of γvx at 0. If γvx (s0) is a
focal point of M along γvx , then s0 is called a focal radius of M at x. Denote by FRM,x the
set of all focal radii of M at x. If M is compact and if FRM,x is independent of the choice
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of x, then it is called an equifocal hypersurface. This notion is the hypersurface version of an
equifocal submanifold defined in [37].

Next we recall the notion of a complex equifocal hypersurface in a symmetric space of
non-compact type. Let M be a complete (oriented embedded) hypersurface in a symmetric
space N = G/K of non-compact type and fix a global unit normal vector field v of M . Let g

be the Lie algebra of G and θ be the Cartan involution of G with Fix θ = K, where Fix θ is
the fixed point group of θ . Denote by the same symbol θ the involution of g induced from θ .
Set p := Ker(θ + id). The subspace p is identified with the tangent space TeKN of N at eK,

where e is the identity element of G. Let M be a complete (oriented embedded) hypersurface
in N . Fix a global unit normal vector field v of M. Denote by A the shape operator of M

(for v). Take X ∈ TxM (x = gK). The M-Jacobi field Y along γx with Y (0) = X (hence
Y ′(0) = −AxX) is given by

Y (s) = (Pγx |[0,s] ◦ (Dco
svx

− sDsi
svx

◦ Ax))(X) ,

where Pγx |[0,s] is the parallel translation along γx |[0,s], Dco
svx

(resp. Dsi
svx

) is given by

Dco
svx

= g∗ ◦ cos(iad(sg−1
∗ vx)) ◦ g

−1
∗

(
resp. Dsi

svx
= g∗ ◦ sin(iad(sg−1

∗ vx))

iad(sg−1
∗ vx)

◦ g
−1
∗

)
.

Here ad is the adjoint representation of the Lie algebra g of G. All focal radii of M at x are
catched as real numbers s0 with Ker(Dco

s0vx
− s0D

si
s0vx

◦ Ax) �= {0}. So, we [18] defined the

notion of a complex focal radius of M at x as a complex number z0 with Ker(Dco
z0vx

−z0D
si
z0vx

◦
AC

x ) �= {0}, where Dco
z0vx

(resp. Dsi
z0vx

) is a C-linear transformation of (TxN)C defined by

Dco
z0vx

= g
C
∗ ◦ cos(iadC(z0g

−1
∗ vx)) ◦ (gC

∗ )−1

(
resp. Dsi

svx
= g

C
∗ ◦ sin(iadC(z0g

−1
∗ vx))

iadC(z0g
−1
∗ vx)

◦ (gC
∗ )−1

)
,

where g
C
∗ (resp. adC) is the complexification of g∗ (resp. ad). Also, we call Ker(Dco

z0vx
−

z0D
si
z0vx

◦ AC
x ) the foccal space of the complex focal radius z0 and its complex dimension the

multiplicity of the complex focal radius z0, In [19], it was shown that, in the case where M

is of class Cω, complex focal radii of M at x indicate the positions of focal points of the ex-
trinsic complexification MC(→֒ GC/KC) of M along the complexified geodesic γ C

vx
, where

GC/KC is the anti-Kaehlerian symmetric space associated with G/K . See [19] (also [26])
about the detail of the definition of the extrinsic complexification. Denote by CFRx the set of
all complex focal radii of M at x. If CFRx is independent of the choice of x, then M is called
a complex equifocal hypersurface. Here we note that we should call such a hypersurface an
equi-complex focal hypersurface but, for simplicity, we call it a complex equifocal hypersur-
face. This notion is the hypersurface version of a complex equifocal submanifold defined in
[18].
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Next we recall the notion of an anti-Kaehlerian equifocal hypersurface in an anti-
Kaehlerian symmetric space. Let J be a parallel complex structure on an even dimensional
pseudo-Riemannian manifold (M, 〈 , 〉) of half index. If 〈JX, JY 〉 = −〈X,Y 〉 holds for ev-
ery X, Y ∈ T M , then (M, 〈 , 〉, J ) is called an anti-Kaehlerian manifold. Let N = G/K be a
symmetric space of non-compact type and GC/KC the anti-Kaehlerian symmetric space asso-
ciated with G/K . See [19] about the anti-Kaehlerian structure of GC/KC. Let f be an isomet-
ric immersion of an anti-Kaehlerian manifold (M, 〈 , 〉, J ) into GC/KC. If J̃ ◦ f∗ = f∗ ◦ J ,
then M is called an anti-Kaehlerian submanifold immersed by f . Let A be the shape ten-
sor of M . We have AJ̃ vX = Av(JX) = J (AvX), where X ∈ T M and v ∈ T ⊥M . If
AvX = aX + bJX (a, b ∈ R), then X is called a J -eigenvector for a + bi. Let {ei}ni=1
be an orthonormal system of TxM such that {ei}ni=1 ∪ {J ei}ni=1 is an orthonormal base of
TxM . We call such an orthonormal system {ei}ni=1 a J -orthonormal base of TxM . If there
exists a J -orthonormal base consisting of J -eigenvectors of Av , then we say that Av is di-

agonalizable with respect to a J -orthonormal base. Then we set TrJ Av :=
∑n

i=1 λi as
Avei = (Re λi)ei + (Im λi)J ei (i = 1, . . . , n). We call this quantity the J -trace of Av .
If, for each unit normal vector v ∈ M , the shape operator Av is diagonalizable with re-
spect to a J -orthonormal tangent base, if the normal Jacobi operator R(v) preserves the tan-
gent space TxM (x : the base point of v) invariantly and if Av and R(v) commute, then
we call M a curvature-adapted anti-Kaehlerian submanifold, where R is the curvature ten-
sor of GC/KC. Assume that M is an anti-Kaehlerian hypersurface (i.e., codim M = 2)
and that it is orientable. Denote by exp⊥ the normal exponential map of M . Fix a global
parallel orthonormal normal base {v, J v} of M . If exp⊥(avx + bJvx) is a focal point of
(M, x), then we call the complex number a + bi a complex focal radius along the geo-

desic γvx . Assume that the number (which may be 0 and ∞) of distinct complex focal
radii along the geodesic γvx is independent of the choice of x ∈ M . Furthermore assume
that the number is not equal to 0. Let {ri,x ; i = 1, 2, . . . } be the set of all complex fo-
cal radii along γvx , where |ri,x | < |ri+1,x | or “|ri,x | = |ri+1,x | & Re ri,x > Re ri+1,x” or
“|ri,x | = |ri+1,x | & Re ri,x = Re ri+1,x & Im ri,x = −Im ri+1,x < 0”. Let ri (i = 1, 2, . . . )
be complex-valued functions on M defined by assigning ri,x to each x ∈ M . We call this
function ri the i-th complex focal radius function for v. If the number of distinct complex fo-
cal radii along γvx is independent of the choice of x ∈ M , complex focal radius functions for
v are constant on M and they have constant multiplicity, then M is called an anti-Kaehlerian

equifocal hypersurface. We ([19]) showed the following fact.

FACT 3. Let M be a complete (embedded) Cω-hypersurface in G/K . Then M is com-

plex equifocal if and only if MC is anti-Kaehler equifocal.

Next we recall the notion of an anti-Kaehlerian isoparametric hypersurface in an infinite
dimensional anti-Kaehlerian space. Let f be an isometric immersion of an anti-Kaehlerian
Hilbert manifold (M, 〈 , 〉, J ) into an infinite dimensional anti-Kaehlerian space (V , 〈 , 〉, J̃ ).
See [19, Section 5] about the definitions of an anti-Kaehlerian Hilbert manifold and an in-
finite dimensional anti-Kaehlerian space. If J̃ ◦ f∗ = f∗ ◦ J holds, then we call M an
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anti-Kaehlerian Hilbert submanifold in (V , 〈 , 〉, J̃ ) immersed by f . If M is of finite codi-
mension and there exists an orthogonal time-space decomposition V = V− ⊕ V+ such that
J̃ V± = V∓, (V , 〈 , 〉V±) is a Hilbert space, the distance topology associated with 〈 , 〉V±
coincides with the original topology of V and, for each v ∈ T ⊥M , the shape operator Av is a
compact operator with respect to f ∗〈 , 〉V± , then we call M an anti-Kaehlerian Fredholm sub-

manifold (rather than anti-Kaehlerian Fredholm Hilbert submanifold). Let (M, 〈 , 〉, J ) be
an orientable anti-Kaehlerian Fredholm hypersurface in an anti-Kaehlerian space (V , 〈 , 〉, J̃ )

and A be the shape tensor of (M, 〈 , 〉, J ). Fix a global unit normal vector field v of M . If
there exists X( �= 0) ∈ TxM with AvxX = aX+bJX, then we call the complex number a+bi

a J -eigenvalue of Avx (or a complex principal curvature of M at x) and call X a J -eigenvector

of Avx for a + bi. Here we note that this relation is rewritten as AC
vx

X(1,0) = (a + bi)X(1,0),

where X(1,0) := 1
2 (X − iJX). Also, we call the space of all J -eigenvectors of Avx for

a + b
√

−1 a J -eigenspace of Avx for a + bi. We call the set of all J -eigenvalues of Avx the
J -spectrum of Avx and denote it by SpecJ Avx . SpecJ Avx \ {0} is described as follows:

SpecJ Avx \ {0} = {λi ; i = 1, 2, . . . }

(
|λi | > |λi+1| or “|λi | = |λi+1| & Re λi > Re λi+1”

or “|λi | = |λi+1| & Re λi = Re λi+1 & Im λi = −Im λi+1 > 0”

)
.

Also, the J -eigenspace for each J -eigenvalue of Avx other than 0 is of finite dimension. We
call the J -eigenvalue λi the i-th complex principal curvature of M at x. Assume that the
number (which may be ∞) of distinct complex principal curvatures of M is constant over
M . Then we can define functions λ̃i (i = 1, 2, . . . ) on M by assigning the i-th complex
principal curvature of M at x to each x ∈ M . We call this function λ̃i the i-th complex

principal curvature function of M . If the number of distinct complex principal curvatures of
M is constant over M , each complex principal curvature function is constant over M and it
has constant multiplicity, then we call M an anti-Kaehler isoparametric hypersurface. Let
{ei}∞i=1 be an orthonormal system of (TxM, 〈 , 〉x). If {ei}∞i=1 ∪ {J ei}∞i=1 is an orthonormal
base of TxM , then we call {ei}∞i=1 a J -orthonormal base. If there exists a J -orthonormal base
consisting of J -eigenvectors of Avx , then Avx is said to be diagonalized with respect to the

J -orthonormal base. If M is anti-Kaehlerian isoparametric and, for each x ∈ M , the shape
operator Avx is diagonalized with respect to a J -orthonormal base, then we call M a proper

anti-Kaehlerian isoparametric hypersurface.
In [18], we defined the notion of the parallel transport map for a semi-simple Lie group

G as a pseudo-Riemannian submersion of a pseudo-Hilbert space H 0([0, 1], g) onto G. See
[18] in detail. Also, in [19], we defined the notion of the parallel transport map for the com-
plexification GC of a semi-simple Lie group G as an anti-Kaehlerian submersion of an infinite
dimensional anti-Kaehlerian space H 0([0, 1], gC) onto GC. See [19] in detail. Let G/K be
a symmetric space of non-compact type and φ : H 0([0, 1], gC) → GC the parallel transport
map for GC and π : GC → GC/KC the natural projection. We [19] showed the following
fact.
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FACT. 4. Let M be a complete anti-Kaehlerian hypersurface in an anti-Kaehlerian

symmetric space GC/KC. Then M is anti-Kaehlerian equifocal if and only if each component

of (π ◦ φ)−1(M) is anti-Kaehlerian isoparametric.

Next we recall the notion of a focal point of non-Euclidean type on the ideal boundary
N(∞) of a hypersurface M in a Hadamard manifold N which was introduced in [23] for a
submanifold of general codimension. Assume that M is orientable. Let v be a unit normal
vector field of M and γvx : [0,∞) → N the normal geodesic of M of direction vx . If
there exists an M-Jacobi field Y along γvx satisfying limt→∞ ||Y (t)||/t = 0, then we call
γvx (∞) (∈ N(∞)) a focal point of M on the ideal boundary N(∞) along γvx , where γvx (∞)

is the asymptotic class of γvx . Also, if there exists an M-Jacobi field Y along γvx satisfying
limt→∞ ||Y (t)||/t = 0 and Sec(vx , Y (0)) �= 0, then we call γvx (∞) a focal point of non-

Euclidean type of M on N(∞) along γvx , where Sec(vx , Y (0)) is the sectional curvature for
the 2-plane spanned by vx and Y (0). If, for any point x of M , γvx (∞) and γ−vx (∞) are not
a focal point of non-Euclidean type of M on N(∞), then we say that M has no focal point

of non-Euclidean type on the ideal boundary N(∞). According to [19, Theorem 1] and [23,
Theorem A], we have the following fact.

FACT 5. Let M be a curvature-adapted and isoparametric Cω-hypersurface in a sym-

metric space N := G/K of non-compact type. Then the following conditions (i) and (ii) are

equivalent:

(i) Mhas no focal point of non-Euclidean type on the ideal boundary N(∞).

(ii) Each component of (π ◦ φ)−1(MC) is proper anti-Kaehlerian isoparametric.

3. Proof of Theorem A. In this section, we shall prove Theorem A. Let M be a
curvature-adapted isoparametric hypersurface in a simply connected symmetric space G/K

of compact type, v a unit normal vector field of M and C(⊂ T ⊥
x M) the Coxeter domain (i.e.,

the fundamental domain (containing 0) of the Coxeter group of M at x). The boundary ∂C

of C consists of two points and it is described as ∂C = {r1vx , r2vx} (r2 < 0 < r1). We may
assume that |r1| ≤ |r2| by replacing v with −v if necessary. Note that the set FRM of all focal
radii of M is equal to {kr1 + (1−k)r2 ; k ∈ Z}. Set Fi := {γvx (ri) ; x ∈ M} (i = 1, 2), which
are all of focal submanifolds of M . The hypersurface M is the ri-tube over Fi (i = 1, 2). Let
π be the natural projection of G onto G/K and φ the parallel transport map for G. Let M̃ be
a component of (π ◦ φ)−1(M), which is an isoparametric hypersurface in H 0([0, 1], g). The
set PCM̃ of all principal curvatures other than zero of M̃ is equal to

{ 1
kr1+(1−k)r2

; k ∈ Z
}
. Set

λ2k−1 := 1
kr1+(1−k)r2

(k = 1, 2, . . . ) and λ2k := 1
−(k−1)r1+kr2

(k = 1, 2, . . . ). Then we have
|λi+1| < |λi | or λi = −λi+1 > 0 for any i ∈ N. Denote by mi the multiplicity of λi . Denote
by A (resp. Ã) the shape operator of M for v (resp. M̃ for vL), where vL is the horizontal lift
of v to M̃ with respect to π ◦ φ. Fix r0 ∈ FRM . The focal map fr0 : M → G/K is defined
by fr0(x) := γvx (r0) (x ∈ M). Let F := fr0(M), which is either F1 or F2. Denote by AF the
shape tensor of F and ψt the geodesic flow of G/K .
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FIGURE 2.

PROOF OF THEOREM A. Define a set Sx by

Sx := {(λ, µ) ∈ SpecAx × SpecR(vx) ; Ker(Ax − λI) ∩ Ker(R(vx) − µI) �= {0}} .

Since M is curvature adapted, we have

TxM =
⊕

(λ,µ)∈Sx

(Ker(Ax − λI) ∩ Ker(R(vx ) − µI)) .

Define a distribution D on M by Dx :=
⊕

(λ,µ)∈Sx
r0

(Ker(Ax − λI) ∩ Ker(R(vx ) − µI)) and

D⊥ the orthogonal complementary distribution of D in T M . Let X ∈ Ker(Ax − λI) ∩
Ker(R(vx ) − µI) ((λ, µ) ∈ Sx

r0
) and Y be the Jacobi field along γr0vx with Y (0) = X and

Y ′(0) = −Ar0vx X (= −r0λX). This Jacobi field Y is described as

Y (s) =
(

cos(sr0
√

µ) − λ sin(sr0
√

µ)
√

µ

)
Pγr0v |[0,s] (X) .

Since Y (1) = fr0∗X, we have

(3.1) fr0∗X =
(

cos(r0
√

µ) − λ sin(r0
√

µ)
√

µ

)
Pγr0vx

(X) ,

which is not equal to 0 because (λ, µ) ∈ Sx
r0

. From this relation, we have Tfr0 (x)F =
Pγr0vx

(D). On the other hand, we have

(3.2)
∇̃fr0∗Xψr0(vx) = 1

r0
Y ′(1)

= −
(√

µ sin(r0
√

µ) + λ cos(r0
√

µ)
)
Pγr0vx

(X) .

From (3.1) and (3.2), we have

AF
ψr0 (vx)fr0∗X = −µ + λτr0(µ)

λ − τr0(µ)
fr0∗X .
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Hence we can derive the following relation:

(3.3) Tr AF
ψr0 (vx) = −

∑

(λ,µ)∈Sx
r0

µ + λτr0(µ)

λ − τr0(µ)
× mλ,µ ,

where Sx
r0

and mλ,µ are as in the statement of Theorem A. On the other hand, it is not difficult
to show the existence of a transnormal function on G/K having M and F as a regular level
and a singular level, respectively. Hence, according to [28, Theorem 1.3], F is austere and
hence minimal. Therefore, we obtain the desired identity from (3.3). ✷

4. The mean curvature of a proper anti-Kaehlerian Fredholm submanifold. In
this section, we define the notion of a proper anti-Kaehlerian Fredholm submanifold and its
mean curvature vector. Let M be an anti-Kaehlerian Fredholm submanifold in an infinite
dimensional anti-Kaehlerian space V and A be the shape tensor of M . Denote by the same
symbol J the complex structures of M and V . If Av is diagonalized with respect to a J -
orthonormal base for each unit normal vector v of M , then we call M a proper anti-Kaehlerian

Fredholm submanifold. Assume that M is such a submanifold. Let v be a unit normal vector
of M . If the series

∑∞
i=1 miλi exists, then we call it the J -trace of Av and denote it by TrJ Av ,

where {λi ; i = 1, 2, . . . } = SpecJ Av \ {0} (λi ’s are ordered as stated in Section 2) and
mi = 1

2 dimKer(Av − λiI) (i = 1, 2, . . . ), where λiI means (Re λi)I + (Im λi)J . Note that,
if ♯(SpecJ Av) is finite, then we promise λi = 0 and mi = 0 (i > ♯(SpecJ Av \ {0})), where
♯(·) is the cardinal number of (·). Define a normal vector field H of M by 〈Hx, v〉 = TrJ Av

(x ∈ M, v ∈ T ⊥
x M). We call H the mean curvature vector of M .

Let G/K be a symmetric space of non-compact type and φ : H 0([0, 1], gC) → GC be
the parallel transport map for the complexification GC of G and π be the natural projection
of GC onto the anti-Kaehlerian symmetric space GC/KC. We have the following fact, which
will be used in the proof of Theorem B in the next section.

LEMMA 4.1. Let M be a curvature-adapted anti-Kaehlerian submanifold in GC/KC

and A (resp. Ã) be the shape tensor of M (resp. (π ◦ φ)−1(M)). Assume that, for each unit

normal vector v of M and each J -eigenvalue µ of R(v), Ker(Av − √−µI) ∩ Ker(R(v) −
µI) = {0} holds. Then the following statements (i) and (ii) hold:

(i) (π ◦ φ)−1(M) is a proper anti-Kaehlerian Fredholm submanifold.

(ii) For each unit normal vector v of M , TrJ ÃvL = TrJ Av holds, where vL is the

horizontal lift of v to (π ◦ φ)−1(M) and TrJ Av is the J -trace of Av .

PROOF. We can show the statement (i) in terms of [19, Lemmas 9, 12 and 13]. By
imitating the proof of [18, Theorem C], we can show the statement (ii), where we also use the
above lemmas in [19]. ✷

5. Proofs of Theorems B and C. In this section, we first prove Theorem B. Let M

be a curvature-adapted isoparametric Cω-hypersurface in a symmetric space G/K of non-
compact type. Assume that M admits no focal point of non-Euclidean type on the ideal
boundary of G/K . Denote by A the shape tensor of M and R the curvature tensor of G/K .
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Let v be a unit normal vector field of M , which is uniquely extended to a unit normal vector
field of the extrinsic complexification MC(⊂ GC/KC) of M . Since M is a curvature-adapted
isoparametric hypersurface admitting no focal point of non-Euclidean type on the ideal bound-
ary N(∞), it admits a complex focal radius. Let r0 be one of complex focal radii of M . The
focal map fr0 : MC → GC/KC for r0 is defined by fr0(x) := exp⊥(r0vx)(= γ C

vx
(r0))

(x ∈ MC), where r0vx means (Rer0)vx + (Imr0)J vx (J : the complex structure of GC/KC).
Let F := fr0(M

C), which is an anti-Kaehlerian submanifold in GC/KC (see Figure 1). With-
out loss of generality, we may assume o := eK ∈ M . Denote by Â and AF the shape tensor of
MC and F , respectively. Let ψt be the geodesic flow of GC/KC. Then we have the following
fact.

LEMMA 5.1. For any x ∈ M (⊂ MC), the following relation holds:

TrJ AF

ψ|r0 |
(

r0
|r0| vx

) = − r0

|r0|
∑

(λ,µ)∈Sx
r0

µ + λτ̂r0(µ)

λ − τ̂r0(µ)
× mλ,µ ,

where Sx
r0

and mλ,µ are as in the statement of Theorem B.

PROOF. Let Sx := {(λ, µ) ∈ SpecAvx × SpecR(vx) ; Ker(Avx − λI) ∩ Ker(R(vx ) −
µI) �= {0}}. Since M is curvature adapted, we have TxM =

⊕
(λ,µ)∈Sx

(Ker(Ax − λI) ∩
Ker (R(vx) − µI)). Set Dx :=

⊕
(λ,µ)∈Sx

r0
(Ker(Ax − λI) ∩ Ker(R(vx) − µI)) and D⊥

x the

orthogonal complement of Dx in TxM . The tangent space Tx(M
C) is identified with the

complexification (TxM)C. Under this identification, the shape operator Âvx is identified with
the complexification AC

x of Ax . Let X ∈ Ker(Ax − λI)C ∩ Ker(R(vx ) − µI)C ((λ, µ) ∈ Sx
r0

)

and Y be the Jacobi field along γr0vx with Y (0) = X and Y ′(0) = −Âr0vx X (= −r0λX =
−λ ((Rer0)X + (Imr0)JX)), where γr0vx is the geodesic in GC/KC with γ̇r0vx (0) = r0vx(=
(Rer0)vx + (Imr0)J vx). This Jacobi field Y is described as

Y (s) =
(

cos(isr0
√

−µ) − λ sin(isr0
√−µ)

i
√−µ

)
Pγr0vx |[0,s] (X) .

Since Y (1) = fr0∗X, we have

(5.1) fr0∗X =
(

cos(ir0
√

−µ) − λ sin(ir0
√−µ)

i
√−µ

)
Pγr0vx

(X)

which is not equal to 0 because (λ, µ) ∈ Sx
r0

. This relation implies that Tfr0 (x)F =Pγr0vx
(DC

x ).
On the other hand, we have

(5.2)
∇̃fr0∗Xψ|r0|

(
r0

|r0|
vx

)
= 1

|r0|
Y ′(1)

=− r0

|r0|
(
i
√

−µ sin(ir0
√

−µ) + λ cos(ir0
√

−µ)
)
Pγr0vx

(X) .

From (5.1) and (5.2), we have

(5.3) AF

ψ|r0 |
(

r0
|r0 | vx

)fr0∗X =
− r0

|r0|
(
µ + λτ̂r0(µ)

)

λ − τ̂r0(µ)
fr0∗X .
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The desired relation follows from this relation. ✷

Set κ(λ,µ) :=
− r0

|r0| (µ+λτ̂r0 (µ))

λ−τ̂r0 (µ)
((λ, µ) ∈ Sx

r0
). Next we prepare the following lemma.

LEMMA 5.2. Let (λ1, µ1) ∈ Sx
r0

. Then we have

(i) (expGC r0vx)−1
∗ ψ|r0|

( r0

|r0|
vx

)
= r0

|r0|
vx ,

where expGC is the exponential map of GC,

(ii) (expGC r0vx)−1
∗

(
Ker

(
AF

ψ|r0|(
r0
|r0 | vx )

− κ(λ1, µ1)I
))

=
⊕

(λ,µ)∈Sx
r0

(λ1,µ1)

(
Ker(Avx − λI)C ∩ Ker(R(vx ) − µI)C

)
,

where Sx
r0

(λ1, µ1) = {(λ, µ) ∈ Sx
r0

; κ(λ,µ) = κ(λ1, µ1)},
(iii) if λ1 �= ±√−µ1, then κ(λ1, µ1) �= ± r0

|r0|
√−µ1 .

PROOF. The relation of (i) is trivial. Let (λ, µ) ∈ Sx
r0

(λ1, µ1). The restriction
fr0∗|Ker(Avx −λI)C∩Ker(R(vx)−µI)C of fr0∗ is equal to Pγr0vx

|Ker(Avx −λI)C∩Ker(R(vx)−µI)C up to
constant multiple by (5.1). Also, we have Pγr0vx

= (expGC r0vx)∗. These facts together with
(5.3) deduce

(expGC r0vx)∗
(

Ker(Avx − λI)C ∩ Ker(R(vx) − µI)C
)

= fr0∗
(

Ker(Avx − λI)C ∩ Ker(R(vx) − µI)C
)

⊂ Ker
(
AF

ψ|r0 |(
r0
|r0| vx)

− κ(λ1, µ1)I
)

.

From this fact, the relation of (ii) follows. Now we shall show the statement (iii). Let r0 =
a0 + b0

√
−1 (a0, b0 ∈ R). Suppose that κ(λ1, µ1) = ± r0

|r0|
√−µ1. By squaring both sides of

this relation, we have
(
τ̂r0(µ1)

2 + µ1
)(

λ2
1 + µ1

)
= 0 .

Hence we have λ1 = ±√−µ1. Thus the statement (iii) is shown. ✷

Denote by R̂ the curvature tensor of GC/KC. By using these lemmas, we prove Theorem
B. According to Lemma 5.1, we have only to show TrJ AF

ψ|r0 |(
r0
|r0 | vx )

= 0 (x ∈ M). In the case

where M is homogeneous, we can show this relation by imitating the process of the proof of
[15, Corollary 1.1].

SIMPLE PROOF OF THEOREM B IN RANK ONE CASE. We have only to show
TrJ AF

ψ|r0 |(
r0
|r0| vx )

= 0. Assume that G/K is of rank one. Define a complex linear function

Φ : T ⊥
fr0 (x)

F → C by Φ(w) = TrJ AF
w (w ∈ T ⊥

fr0 (x)
F ). Since M is curvature-adapted, we

have TxM =
⊕

(λ,µ)∈Sx

(
Ker(Avx − λI) ∩ Ker(R(vx) − µI)

)
. Set

Ŝ
y
r0 := {(λ, µ) ∈ (SpecJ Âvy ) × (SpecJ R̂(vy)) ; Ker(Âvy − λI) ∩ Ker(R̂(vy) − µI) �= {0}

& λ �= f̂r0(µ)}
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(y ∈ MC). Define a distribution D̂ on MC by

D̂y :=
⊕

(λ,µ)∈Ŝ
y
r0

(
Ker(Âvy − λI) ∩ Ker(R̂(vy) − µI)

)
(y ∈ MC)

and D̂⊥ the orthogonal complementary distribution of D̂ in T (MC). Also, define a distribu-
tion D on M by Dx :=

⊕
(λ,µ)∈Ŝx

r0
(Ker(Ax − λI) ∩ Ker(R(vx) − µI)) (x ∈ M) and D⊥ the

orthogonal complementary distribution of D in T M . Under the identification of Tx(M
C) with

(TxM)C, D̂x is identified with the complexification (Dx)C of Dx . The focal map fr0 is a sub-

mersoin of MC onto F and the fibres of fr0 are integral manifolds of D̂⊥. Let L be the integral

manifold of D̂⊥ through x and set LR := L ∩ M . It is shown that L is the extrinsic com-
plexification of LR. Set Q := {ψ|r0|(

r0
|r0|vx) ; x ∈ L} and QR := {ψ|r0|(

r0
|r0|vx) ; x ∈ LR}.

It is shown that Q is the extrinsic complexification of QR and that Q is a complex hyper-
surface without geodesic point in T ⊥

fr0 (x)F , that is, it is not contained in any complex affine

hyperplane of T ⊥
fr0 (x)F . According to Lemma 5.1, we have

Φ
(
ψ|r0|

( r0

|r0|
vy

))
= − r0

|r0|
∑

(λ,µ)∈S
y
r0

µ + λτ̂r0(µ)

λ − τ̂r0(µ)
× mλ,µ .

Let (̃λ, µ̃) be a pair of continuous functions on LR such that (̃λ(y), µ̃(y)) ∈ S
y
r0 for any

y ∈ L. Since G/K is of rank one, µ̃ is constant on LR. The complex focal radius having
Ker(Ay − λ̃(y) I) ∩ Ker(R(vy) − µ̃(y) I) as a part of the focal space is the complex number
z0 satisfying Ker(Dco

z0vy
− z0D

si
z0vy

◦ AC
y )|Ker(Ay−λ̃(y) I )∩Ker(R(vy)−µ̃(y) I ) �= {0}, that is, it is

equal to (1/
√

µ̃(y)) arctan(
√

µ̃(y)/̃λ(y)), which is independent of the choice of y ∈ LR

by the isoparametricness (hence complex equifocality) of M . Hence λ̃ is constant on LR.
Therefore Φ is constant along QR. Since Φ is of class Cω and QR is a half-dimensional
totally real submanifold in Q, Φ is constant along Q. Furthermore, this fact together with the
linearity of Φ imply Φ ≡ 0. In particular, we have Tr AF

ψr0 (vx ) = 0. ✷

PROOF OF THEOREM B (GENERAL CASE). According to Lemma 5.1, we have only to
show TrJ AF

ψ|r0 |(
r0
|r0 | vx0 )

= 0 (x0 ∈ M). We shall show this relation by investigating the focal

submanifold of (π ◦ φ)−1(MC) corresponding to r0, where φ (: H 0([0, 1], gC) → GC) is the

parallel transport map for GC and π is the natural projection of GC onto GC/KC. Let M̃C

be the complete extension of (π ◦ φ)−1(MC). Let vL be the horizontal lift of v to M̃C. Since
π ◦φ is an anti-Kaehlerian submersion, the complex focal radii of MC (hence M) are those of
M̃C. Let r0 be a complex focal radius of M (hence M̃C). The focal map f̃r0 for r0 is defined

by f̃r0(x) = x + r0v
L
x (x ∈ M̃C). Set F̃ := f̃r0(M̃

C). Denote by Ã (resp. AF̃ ) the shape
tensor of M̃C (resp. F̃ ). Let SpecJ ÃvL

0̂
\{0} = {λi ; i = 1, 2, . . . } (“|λi | > |λi+1|” or “|λi | =

|λi+1| & Reλi > Reλi+1” or “|λi | = |λi+1| & Reλi = Reλi+1 & Imλi = −Imλi+1 > 0”).
The set of all complex focal radii of MC (hence M) is equal to {1/λi ; i = 1, 2, . . . }.
We have r0 = 1/λi0 for some i0. Define a distribution D̃i (i = 0, 1, 2, . . . ) on M̃C by
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(D̃0)u := KerÃṽL
u

and (D̃i)u := Ker(ÃṽL
u
−λiI) (i = 1, 2, . . . ), where u ∈ M̃C. Since M is a

curvature-adapted isoparametric submanifold admitting no focal point of non-Euclidean type
on N(∞), M̃C is proper anti-Kaehlerian isoparametric by Fact 5. Therefore, we have T M̃C =
D̃0 ⊕

(⊕
iD̃i

)
and SpecJ ÃṽL

u
is independent of the choice of u ∈ M̃C. Take u0 ∈ M̃C with

(π ◦ φ)(u0) = x0. Let Xi ∈ (D̃i)u0 (i �= i0) and X0 ∈ (D̃0)u0 . Then we have f̃r0∗Xi =
(1 − r0λi)Xi and f̃r0∗X0 = X0. Hence we have Tf̃r0 (u0)

F̃ = (D̃0)u0 ⊕
(⊕

i �=i0
(D̃i)u0

)
and

Ker(f̃r0)∗u0 = (D̃i0)u0 , which implies that D̃i0 is integrable. On the other hand, we have

AF̃

ψ̃|r0 |(
r0
|r0 | v

L
u0

)
f̃r0∗Xi = (λir0)/|r0|Xi and AF̃

ψ̃|r0 |(
r0
|r0 | v

L
u0

)
f̃r0∗X0 = 0, where ψ̃ is the geodesic

flow of H 0([0, 1], gC). Therefore, we obtain AF̃

ψ̃|r0 |(
r0
|r0| v

L
u0

)
f̃r0∗Xi = λi |λi0 |

λi0−λi
f̃r0∗Xi . Hence we

have TrJ AF̃

ψ̃|r0 |(
r0
|r0| v

L
u0

)
=

∑
i �=i0

λi |λi0 |
λi0−λi

× mi , where mi := 1
2 dim D̃i . According to The-

orem 2 of [19], each leaf of D̃i0 is a complex sphere. Let L be the leaf of D̃i0 through
u0 and u∗

0 be the anti-podal point of u0 in the complex sphere L. Similarly we can show

TrJ AF̃

ψ̃|r0 |(
r0
|r0| (̃v

L)u∗
0
)
=

∑
i �=i0

λi |λi0 |
λi0−λi

× mi. Thus we have TrJ AF̃

ψ̃|r0|(
r0
|r0 | v

L
u0

)
=TrJ AF̃

ψ̃|r0|(
r0
|r0 | (̃v

L)u∗
0
)
.

On the other hand, it follows from ψ̃|r0|(
r0
|r0| (̃v

L)u∗
0
) = −ψ̃|r0|(

r0
|r0|v

L
u0

) that TrJ AF̃

ψ̃|r0|(
r0
|r0 | v

L
u0

)
=

−TrJ AF̃

ψ̃|r0|(
r0
|r0 | (̃v

L)u∗
0
)
. Hence we obtain

(5.4) TrJ AF̃

ψ̃|r0 |(
r0
|r0| v

L
u0

)
= 0 .

It follows from (i) and (ii) of Lemma 5.2 that F := fr0(M
C) is a curvature adapted anti-

Kaehlerian submanifold. Also, it follows from (iv) of Remark 1.2, (5.3), (i) and (iii) of Lemma
5.2 that, for each unit normal vector w of F and each µ ∈ SpecJ R(w) \ {0}, Ker(AF

w ±√−µI) ∩ Ker(R(w) − µI) = {0} holds. Therefore, it follows from Lemma 4.1 that F̃ is a
proper anti-Kaehlerian Fredholm submanifold and, for each unit normal vector w of F , we

have TrJ AF̃
wL = TrJ AF

w. It is clear that ψ̃|r0|(
r0
|r0|v

L
u0

) is the horizontal lift of ψ|r0|(
r0
|r0|vx0) to

f̃r0(u0). Hence we have

(5.5) TrJ AF

ψ|r0 |(
r0
|r0 | vx0 )

= TrJ AF̃

ψ̃|r0 |(
r0
|r0 | v

L
u0

) .

From (5.4) and (5.5), we have TrJ AF

ψ|r0 |(
r0
|r0 | vx0 )

= 0. This completes the proof. ✷

Now we prepare the following lemma to prove Theorem C.

LEMMA 5.3. Let M be a curvature-adapted isoparametric Cω-hypersurface in a sym-

metric space N := G/K of non-compact type. Assume that M has no focal point of non-

Euclidean type on N(∞). Then, for any complex focal radius r of M , we have

Spec
(
Ax |Ker R(vx )

)
⊂

{
1

Re r
, 0

}
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and

Spec
(
Ax |Ker(R(vx)−µI)

)
⊂

{ √−µ

tanh(
√−µRe r)

,
√

−µ tanh(
√

−µRe r)

}

for µ ∈ SpecR(vx ) \ {0}, where x is an arbitrary point of M .

PROOF. For simplicity, we set Dµ := Ker(R(vx) − µ id) for each µ ∈ Spec R(vx ).
Let r0 be the complex focal radius of M with Rer0 = max

r
Rer , where r runs over the set

of all complex focal radii of M . Let (λ, µ) ∈ Sx
r0

\ {(0, 0)} and r a complex focal radius
including Ker(Av − λI) ∩ Dµ as the focal space, that is, λ = τ̂r (µ) (see (ii) of Remark 1.2).

Set cλ,µ := −µ+λτ̂r0 (µ)

λ−τ̂r0 (µ)
. We shall show Re cλ,µ ≤ 0. The argument divides into the following

three cases:

(i) µ = 0 (ii) 0 <
√−µ < |λ| (iii) |λ| <

√−µ .

First we consider the case (i). Then we have cλ,µ = λ
1−λr0

. Also, we can show λ = 1/r .
Hence we have

(5.6) cλ,µ = 1

r − r0
.

Furthermore, we have Re cλ,µ ≤ 0 from the choice of r0. Next we consider the case (ii).
Since λ = τ̂r(µ) and λ is a real number with |λ| >

√−µ, we can show λ = τ̂Re r (µ)(=√−µ

tanh(
√−µRe r)

) and r ≡ Re r (mod (π i)/
√−µ). Hence we have cλ,µ = τ̂(r0−Re r)(µ), where

we note that Rer �≡ r0 (mod (π i)/
√−µ) because (λ, µ) ∈ Sx

r0
. Therefore, we obtain

(5.7) Re cλ,µ =
√−µ

(
1 + tan2(

√−µImr0)
)

tanh(
√−µ(Rer − Rer0))

tanh2(
√−µ(Rer − Rer0)) + tan2(

√−µImr0)
≤ 0

because Rer ≤ Rer0. Next we consider the case (iii). Since λ = τ̂r (µ) and λ is a real
number with |λ| <

√−µ, we can show λ = τ̂
(Re r+ π i

2
√−µ

)
(µ)(= √−µ tanh(

√−µRe r)) and

r ≡ Re r + π i
2
√−µ

(mod π i√−µ
). Hence we have cλ,µ = τ̂

(r0−Rer+ π i
2
√−µ

)
(µ). Therefore, we

obtain

(5.8) Recλ,µ =
√−µ

(
1 + tan2(

√−µImr0)
)

tanh(
√−µ(Rer − Rer0))

1 + tanh2(
√−µ(Rer − Rer0)) tan2(

√−µImr0)
≤ 0 .

Thus Recλ,µ ≤ 0 is shown in general. Hence, from the identity in Theorem B, Recλ,µ = 0
((λ, µ) ∈ Sx

r0
) follows, where we note that c0,0 = 0. In case of (i), it follows from (5.6) that

Re
( 1

r−r0

)
= 0. Hence we have Re r = Re r0(< ∞) or r = ∞. If Re r = Re r0(< ∞),

then we have λ = 1/r = 1/Re r0 = τ̂Re r0(0) (which does not happen if r0 is real because
(λ, 0) ∈ Sx

r0
). Also, if r = ∞, then we have λ = 0. Thus we have

(5.9) Spec(Ax |D0) ⊂
{

1

Re r0
, 0

}
.

In case of (ii), it follows from (5.7) that Rer = Rer0. Hence we have λ = τ̂Re r0(µ) (which
does not happen if r0 ≡ Re r0 (mod (π i)/

√−µ) because (λ, µ) ∈ Sx
r0

). In case of (iii), it
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follows from (5.8) that Rer = Rer0. Hence we have λ = τ̂
(Re r0+ π i

2
√−µ

)
(µ) (which does not

happen if r0 ≡ Re r0 + π i
2
√−µ

(mod (π i)/
√−µ) because (λ, µ) ∈ Sx

r0
). Hence we have

(5.10) Spec(Ax |Dµ) ⊂
{ √−µ

tanh(
√−µRer0)

,
√

−µ tanh(
√

−µRer0)

}
.

This complets the proof. ✷

Next we prove Theorem C in terms of this Lemma and its proof.

PROOF OF THEOREM C. According to the proof of Lemma 5.3, the real parts of com-
plex focal radii of M coincide with one another. Denote by s0 this real part. Then, according
to Lemma 5.3, we have

Spec(Ax |D0) ⊂
{

1

s0
, 0

}

and

Spec(Ax |Dµ) ⊂
{ √−µ

tanh(
√−µs0)

,
√

−µ tanh(
√

−µs0)

}
(µ ∈ Spec R(vx) \ {0}) .

Set DV
0 := Ker

(
Ax |D0 − 1

s0
id

)
, DH

0 := KerAx |D0 ,

DV
µ := Ker

(
Ax |Dβ −

√−µ

tanh(
√−µs0)

id

)

and

DH
µ := Ker

(
Ax |Dβ −

√
−µ tanh(

√
−µs0) id

)
.

According to (ii) of Remark 1.2, if DV
0 ⊕

(⊕
µ∈Spec R(vx)\{0} DV

µ

)
�= {0}, then s0 is a (real)

focal radius of M whose focal space is equal to DV
0 ⊕

( ⊕
µ∈Spec R(vx)\{0} DV

µ

)
�= {0}. Let ηsv

(s ∈ R) be the end-point map for sv. Set Ms := ηsv(M). Set F := Ms0 . If s0 is a (real) focal
radius of M , then F is the only focal submanifold of M , and if s0 is not a (real) focal radius
of M , then F is a parallel submanifold of M . Without loss of generality, we may assume that
eK ∈ F . Define a unit normal vector field vs of Ms (0 ≤ s < s0) by vs

ηsv(x) = γ ′
vx

(s) (x ∈ M).

Denote by As (0 ≤ s < s0) the shape operator of Ms (for vs ) and AF the shape tensor of F .
Set (DV

0 )s := (ηsv)∗(DV
0 ) (0 ≤ s < s0) and (DV

µ )s := (ηsv)∗(DV
µ ) (0 ≤ s < s0, µ ∈

Spec R(vx) \ {0}). Also, set (DH
0 )s := (ηsv)∗(DH

0 ) (s ∈ R) and (DH
µ )s := (ηsv)∗(DH

µ )

(s ∈ R, µ ∈ Spec R(vx) \ {0}). Easily we have

(5.11) Tηs0v(x)F = (DH
0 )

s0
ηs0v(x) ⊕

( ⊕

µ∈Spec R(vx)\{0}
(DH

µ )
s0
ηs0v(x)

)
.

Also, we can show

As
ηsv(x)|(DH

0 )sηsv(x)
= 0 (0 ≤ s < s0)

and

As
ηsv(x)|(DH

β )sηsv (x)
= µ tanh(

√
−µ(s0 − s)) id (0 ≤ s < s0) .
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FIGURE 3.

Hence we have

AF
ψs0 (vx)|(DH

0 )
s0
ηs0v(x)

= 0

and

AF
ψs0 (vx)|(DH

β )
s0
ηs0v(x)

=
(

lim
s→s0−0

√
−µ tanh(

√
−µ(s0 − s))

)
id = 0 ,

where ψ is the geodesic flow of G/K . From these relations and (5.11), we obtain AF
ψs0 (vx) =

0. Since this relation holds for any x ∈ M , F is totally geodesic. Denote by exp⊥ the normal
exponential map for F . Since the real parts of complex focal radii of M coincide with one
another, the normal umbrella exp⊥(T ⊥

x F)’s (x ∈ F ) do not intersect with one another. From
this fact, an involutive diffeomorphism τ : G/K → G/K having F as the fixed point set
is well-defined by τ (exp⊥(w)) := exp⊥(−w) (w ∈ T ⊥F). For each s ∈ R \ {s0}, the
restriction τ |Ms of τ to Ms coincides with the end-point map η2(s0−s)vs for 2(s0 − s)vs . Since
F is totally geodesic, we see that η2(s0−s)vs (hence τ |Ms ) is an isometry of Ms . From this fact,
it follows that τ is an isometry of G/K . Hence F is reflective. Furthermore, by imitating
the proof of [16, Proposition 1.12], we can show that F is an orbit of a Hermann action
on G/K as follows. Take Exp Z0 ∈ F , where Exp is the exponential map of G/K at o. Set
m := Ad(exp(−Z0))((exp Z0)

−1
∗ (TExp Z0F)), where Ad is the adjoint operator of G. Define a

subalgebra k′ of g by k′ := {X ∈ k ; ad(X)m = m} and set h := k′ + m, which is a subalgebra
of g. Set H := I (exp Z0)(exp(h)), where I (exp Z0) is the inner automorphism of G by
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exp Z0. Easily we can show that TExp Z0(HExp Z0) = TExp Z0F and hence HExp Z0 = F .
Define an involution τ̂ of G by τ̂ (g) := τ ◦ g ◦ τ−1 (g ∈ G). It is easy to show that (Fix τ̂ )0 ⊂
H ⊂ Fix τ̂ . Thus H � G/K is a Hermann action. Let HC be the complexification of H

and MC(⊂ GC/KC) be the complete complexification of M . See [22] about the definition of
the complete complexification of M . Since both HC · o and MC are anti-Kaehler equifocal
submanifolds having FC as a focal submanifold, they are equal to one of the partial tubes over
FC stated in Section 5 in [22]. Thus they coincides with each other. Furthermore, from this
fact, we can derive H · o = M . This completes the proof. ✷
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