Tohoku Math. J. 66 (2014), 435–454

# A CARTAN TYPE IDENTITY FOR ISOPARAMETRIC HYPERSURFACES IN SYMMETRIC SPACES

## ΝΑΟΥUKI ΚΟΙΚΕ

(Received April 2, 2013, revised August 19, 2013)

**Abstract.** In this paper, we obtain a Cartan type identity for curvature-adapted isoparametric hypersurfaces in symmetric spaces of compact type or non-compact type. This identity is a generalization of Cartan-D'Atri's identity for curvature-adapted (=amenable) isoparametric hypersurfaces in rank one symmetric spaces. Furthermore, by using the Cartan type identity, we show that certain kind of curvature-adapted isoparametric hypersurfaces in a symmetric space of non-compact type are principal orbits of Hermann actions.

1. Introduction. An isoparametric hypersurface in a (general) Riemannian manifold is a connected hypersurface whose sufficiently close parallel hypersurfaces are of constant mean curvature (see [12] for example). In this paper, we assume that all isoparametric hypersurfaces are complete. It is known that all isoparametric hypersurfaces in a symmetric space of compact type are equifocal in the sense of [37] and that, conversely all equifocal hypersurfaces are isoparametric (see [12]). Also, it is known that all isoparametric hypersurfaces in a symmetric space of non-compact type are complex equifocal in the sense of [18] and that, conversely, all curvature-adapted complex equifocal hypersurfaces are isoparametric (see [19, Theorem 15]), where the curvature-adaptedness implies that, for a unit normal vector v, the (normal) Jacobi operator  $R(\cdot, v)v$  preserves the tangent space invariantly and commutes with the shape operator A for v, where R is the curvature tensor of the ambient space. It is known that principal orbits of a Hermann action (i.e., the action of a symmetric subgroup of G) of cohomogeneity one on a symmetric space G/K of compact type are curvature-adapted and equifocal (see ([11]). Hence they are isoparametric hypersurfaces. On the other hand, we [20, 23] showed that the principal orbits of a Hermann action (i.e., the action of a (not necessarily compact) symmetric subgroup of G) of cohomogeneity one on a symmetric space G/Kof non-compact type are curvature-adapted and complex equifocal, and they have no focal point of non-Euclidean type on the ideal boundary of G/K. Hence they are isoparametric hypersurfaces.

<sup>2010</sup> Mathematics Subject Classification. Primary 53C40; Secondary 53C35.

Key words and phrases. Isoparametric hypersurface, principal curvature, focal radius, complex focal radius, Hermann action.

Partly supported by the Grant-in-Aid for Scientific Research (C), Japan Society for the Promotion of Science.

For an isoparametric hypersurface M in a real space form N of constant curvature c, it is known that the following Cartan's identity holds:

(1.1) 
$$\sum_{\lambda \in \operatorname{Spec} A \setminus \{\lambda_0\}} \frac{c + \lambda \lambda_0}{\lambda - \lambda_0} \times m_{\lambda} = 0$$

for any  $\lambda_0 \in \text{Spec}A$ , where A is the shape operator of M and SpecA is the spectrum of A,  $m_{\lambda}$  is the multiplicity of  $\lambda$ . Here we note that all hypersurfaces in a real space form are curvatureadapted. In general cases, this identity is shown in algebraic method. Also, it is shown in geometrical method in the following three cases:

- (i) c = 0,  $\lambda_0 \neq 0$ ,
- (ii) c > 0,  $\lambda_0$  : any eigenvalue of  $A_v$ ,
- (iii) c < 0,  $|\lambda_0| > \sqrt{-c}$ .

In detail, it is shown by showing the minimality of the focal submanifold for  $\lambda_0$  and using this fact.

Let  $H \cap G/K$  be a cohomogeneity one action of a compact group  $H (\subset G)$  on a rank one symmetric space G/K and M a principal orbit of this action. Since the H-action is of cohomogeneity one, it is hyperpolar. Hence M is an equifocal (hence isoparametric) hypersurface (see [13]). In 1979, D'Atri [8] obtained a Cartan type identity for M in the case where M is amenable (i.e., curvature-adapted). On the other hand, in 1989–1991, Berndt [1, 2] obtained a Cartan type identity (in algebraic method) for curvature-adapted hypersurfaces with constant principal curvature in rank one symmetric spaces other than spheres and hyperbolic spaces. Here we note that, for a curvature-adapted hypersurface in a rank one symmetric space of non-compact type, it has constant principal curvature if and only if it is isoparametric.

In this paper, we obtain the Cartan type identities for curvature-adapted isoparametric hypersurfaces in symmetric spaces and, furthermore, by using the Cartan type identity, we prove that certain kind of curvature-adapted isoparametric hypersurfaces in a symmetric space of non-compact type are principal orbits of Hermann actions. Let M be a hypersurface in a symmetric space N = G/K of compact type or non-compact type and v a unit normal vector field of M. Set  $R(v_x) := R(\cdot, v_x)v_x|_{T_xM}$ , where R is the curvature tensor of N. For each  $r \in \mathbb{R}$ , we define a function  $\tau_r$  over  $[0, \infty)$  by

$$\tau_r(s) := \begin{cases} \frac{\sqrt{s}}{\tan(r\sqrt{s})} & (s>0) \\ \frac{1}{r} & (s=0) \,. \end{cases}$$

Also, for each  $r \in \mathbb{C}$ , we define a complex-valued function  $\hat{\tau}_r$  over  $(-\infty, 0]$  by

$$\hat{\tau}_r(s) := \begin{cases} \frac{\mathbf{i}\sqrt{-s}}{\tan(\mathbf{i}r\sqrt{-s})} & (s < 0) \\ \frac{1}{r} & (s = 0) \end{cases},$$

where **i** is the imaginary unit. First we prove the following Cartan type identity for a curvatureadapted isoparametric hypersurface in a simply connected symmetric space of compact type.

THEOREM A. Let M be a curvature-adapted isoparametric hypersurface in a simply connected symmetric space N := G/K of compact type. For each focal radius  $r_0$  of M, we have

(1.2) 
$$\sum_{(\lambda,\mu)\in S_{r_0}^x} \frac{\mu + \lambda \tau_{r_0}(\mu)}{\lambda - \tau_{r_0}(\mu)} \times m_{\lambda,\mu} = 0,$$

where  $S_{r_0}^x := \{(\lambda, \mu) \in \operatorname{Spec} A_x \times \operatorname{Spec} R(v_x); \operatorname{Ker}(A_x - \lambda I) \cap \operatorname{Ker}(R(v_x) - \mu I) \neq \{0\}, \lambda \neq \tau_{r_0}(\mu)\}$  and  $m_{\lambda,\mu} := \dim(\operatorname{Ker}(A_x - \lambda I) \cap \operatorname{Ker}(R(v_x) - \mu I)).$ 

REMARK 1.1. (i) If  $\text{Ker}(A_x - \lambda_0 I) \cap \text{Ker}(R(v_x) - \mu_0 I)$  is included by the focal space for the focal radius  $r_0$ , then we have  $\tau_{r_0}(\mu_0) = \lambda_0$ .

(ii) If G/K is a sphere of constant curvature *c*, then Spec  $R(v_x) = \{c\}$  and  $\tau_{r_0}(c)$  is equal to the principal curvature corresponding to  $r_0$ . Hence the identity (1.2) coincides with (1.1).

(iii) In the case where G/K is a rank one symmetric space of compact type, the identity (1.2) coincides with the identity obtained by D'Atri [8] (see [8, Theorems 3.7 and 3.9]).

(iv) In the case where G/K is a rank one symmetric space of compact type other than spheres, the identity (1.2) is different from the identity obtained by Berndt [1, 2].

Next, in this paper, we prove the following Cartan type identity for a curvature-adapted isoparametric  $C^{\omega}$ -hypersurface in a symmetric space of non-compact type, where  $C^{\omega}$  means the real analyticity.

THEOREM B. Let M be a curvature-adapted isoparametric  $C^{\omega}$ -hypersurface in a symmetric space N := G/K of non-compact type. Assume that M has no focal point of non-Euclidean type on the ideal boundary  $N(\infty)$  of N. Then M admits a complex focal radius and, for each complex focal radius  $r_0$  of M, we have

(1.3) 
$$\sum_{(\lambda,\mu)\in S_{r_0}^x} \frac{\mu + \lambda \hat{\tau}_{r_0}(\mu)}{\lambda - \hat{\tau}_{r_0}(\mu)} \times m_{\lambda,\mu} = 0,$$

where  $S_{r_0}^x := \{(\lambda, \mu) \in \operatorname{Spec} A_x \times \operatorname{Spec} R(v_x); \operatorname{Ker}(A_x - \lambda I) \cap \operatorname{Ker}(R(v_x) - \mu I) \neq \{0\}, \lambda \neq \hat{\tau}_{r_0}(\mu)\}$  and  $m_{\lambda,\mu} := \dim(\operatorname{Ker}(A_x - \lambda I) \cap \operatorname{Ker}(R(v_x) - \mu I)).$ 

REMARK 1.2. (i) The notion of a complex focal radius was introduced in [18]. This quantity indicates the position of a focal point of the complexification  $M^{\mathbb{C}} (\subset G^{\mathbb{C}}/K^{\mathbb{C}})$  of a submanifold M in a symmetric space G/K of non-compact type (see [19]).

(ii) If  $\operatorname{Ker}(A_x - \lambda_0 I) \cap \operatorname{Ker}(R(v_x) - \mu_0 I)$  is included by the focal space for the complex focal radius  $r_0$ , then we have  $\hat{\tau}_{r_0}(\mu_0) = \lambda_0$ .

(iii) If G/K is a hyperbolic space of constant curvature c, then  $\text{Spec}R(v_x) = \{c\}$  and  $\hat{\tau}_{r_0}(c)$  is equal to the principal curvature corresponding to  $r_0$ . Hence the identity (1.3) coincides with (1.1).

(iv) In the case where G/K is a rank one symmetric space of non-compact type and  $r_0$  is a real focal radius, the identity (1.3) coincides with the identity obtained by D'Atri [8] (see [8, Theorems 3.7 and 3.9]).

(v) In the case where G/K is a rank one symmetric space of non-compact type other than hyperbolic spaces, the identity (1.3) is different from the identity obtained by J. Berndt [1, 2].

(vi) For a curvature-adapted and isoparametric hypersurface M in G/K, the following conditions (a)–(c) are equivalent:

(a) *M* has no focal point of non-Euclidean type on  $N(\infty)$ ,

(b) M is proper complex equifocal in the sense of [20],

(c)  $\operatorname{Ker}(A_x \pm \sqrt{-\mu}I) \cap \operatorname{Ker}(R(v_x) - \mu I) = \{0\}$  holds for each  $\mu \in \operatorname{Spec}(R(v_x) \setminus \{0\})$ .

(vii) Principal orbits of a Hermann type action of cohomogeneity one on G/K are curvature-adapted isoparametric  $C^{\omega}$ -hypersurface having no focal point of non-Euclidean type on  $N(\infty)$  (see [20, Theorem B] and the above (iii)).

The proof of Theorem B is performed by showing **the minimality of the focal submanifold**  $F := \{\exp^{\perp}((\operatorname{Re} r_0)v_x + (\operatorname{Im} r_0)Jv_x); x \in M^{\mathbb{C}}\}$  of the complexification  $M^{\mathbb{C}}$  of M (see Figure 1), where  $\exp^{\perp}$  is the normal exponential map of the submanifold  $M^{\mathbb{C}}$  in  $G^{\mathbb{C}}/K^{\mathbb{C}}$ , Jis the complex structure of  $G^{\mathbb{C}}/K^{\mathbb{C}}$  and v is a unit normal vector field of M (in G/K). Here we note that  $\exp^{\perp}((\operatorname{Re} r_0)v_x + (\operatorname{Im} r_0)Jv_x)$  is equal to the point  $\gamma_{v_x}^{\mathbb{C}}(r_0)$  of the complexified geodesic  $\gamma_{v_x}^{\mathbb{C}}$  in  $G^{\mathbb{C}}/K^{\mathbb{C}}$ . In the case where G/K is of rank greater than one and M is not homogeneous, the proof of the minimality of F is performed by showing **the minimality of the lift**  $\widetilde{F} := (\pi \circ \phi)^{-1}(F)$  of F to the path space  $H^0([0, 1], \mathfrak{g}^{\mathbb{C}})$ , where  $\phi$  is the parallel transport map for  $G^{\mathbb{C}}$  (which is an anti-Kaehlerian submersion of  $H^0([0, 1], \mathfrak{g}^{\mathbb{C}})$  onto  $G^{\mathbb{C}}$ ) and  $\pi$ is the natural projection of  $G^{\mathbb{C}}$  onto  $G^{\mathbb{C}}/K^{\mathbb{C}}$  (which also is an anti-Kaehlerian submersion). Here we note that the minimality of F is trivial in the case where M is homogeneous. By using Theorem B, we prove the following fact for the number of distinct principal curvatures

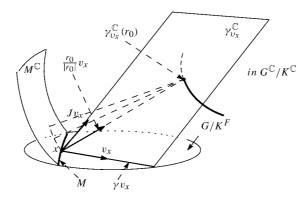


FIGURE 1.

of a curvature-adapted isoparametric  $C^{\omega}$ -hypersurfaces in a symmetric sapce of non-compact type.

By using Theorem B, we prove the following main result.

THEOREM C. Let M be a curvature-adapted isoparametric  $C^{\omega}$ -hypersurface in a symmetric space N of non-compact type. Assume that M has no focal point of non-Euclidean type on  $N(\infty)$ . Then M is a principal orbit of a Hermann action.

REMARK 1.3. In this theorem, are indispensable both the condition of the curvatureadaptedness and the condition for the non-existenceness of non-Euclidean type focal point on the ideal boundary. In fact, we have the following examples. Let G/K be an irreducible symmetric space of non-compact type such that the (restricted) root system of G/K is nonreduced. Let  $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$  ( $\mathfrak{g} = \text{Lie } G$ ,  $\mathfrak{k} = \text{Lie } K$ ) be the Cartan decomposition associated with a symmetric pair (G, K) and a maximal abelian subspace of  $\mathfrak{p}$ . Also, let  $\triangle_+$  be the positive root system of G/K with respect to a and  $\Pi$  the simple root system of  $\Delta_+$ , where we fix a lexicographic ordering of the dual space  $\mathfrak{a}^*$  of  $\mathfrak{a}$ . Set  $\mathfrak{n} := \sum_{\lambda \in \Delta_+} \mathfrak{g}_{\lambda}$  and  $N := \exp \mathfrak{n}$ , where  $\mathfrak{g}_{\lambda}$  is the root space for  $\lambda$  and exp is the exponential map of G. If G/K is of rank one, then any orbit of the N-action on G/K is a full irreducible curvature-adapted isoparametric  $C^{\omega}$ hypersurface but it has a focal point of non-Euclidean type on  $N(\infty)$  (see [25]). On the other hand, it is a principal orbit of no Hermann action. Thus, in this theorem, is indispensable the condition for the non-existenceness of a focal point of non-Euclidean type on the ideal boundary. Let  $H_{\lambda}$  be the element of a defined by  $\langle H_{\lambda}, \bullet \rangle = \lambda(\bullet)$ . Assume that the (restricted) root system of G/K is of type  $(BC_n)$ . Take an element  $\lambda$  of  $\Pi$  such that  $2\lambda$  belongs to  $\Delta_+$ , and one-dimensional subspaces l of  $\mathbb{R}H_{\lambda} + \mathfrak{g}_{\lambda}$ . Set  $S := \exp((\mathfrak{a} + \mathfrak{n}) \ominus l)$ , where exp is the exponential map of G and  $(\mathfrak{a} + \mathfrak{n}) \ominus l$  is the orthogonal complement of l in  $\mathfrak{a} + \mathfrak{n}$ . Then S is a subgroup of  $AN := \exp(\mathfrak{a} + \mathfrak{n})$  and any orbit of the S-action on G/K is a full irreducible isoparametric  $C^{\omega}$ -hypersurface but it is not curvature-adapted (see [25]). Furthermore, we can find an orbit having no focal point of non-Euclidean type on  $N(\infty)$  among orbits of the S-action. On the other hand, it is a principal orbit of no Hermann action. Thus the condition of the curvature-adaptedness is indispensable in this theorem.

In Section 2, we recall basic notions. In Section 3, we prove Theorem A. In Section 4, we define the mean curvature of a proper anti-Kaehlerian Fredholm submanifold and prepare a lemma to prove Theorem B. In Section 5, we prove Theorems B and C.

**2. Basic notions.** In this section, we recall basic notions which are used in the proof of Theorems A and B. First we recall the notion of an equifocal hypersurface in a symmetric space. Let M be a complete (oriented embedded) hypersurface in a symmetric space N = G/K and fix a global unit normal vector field v of M. Let  $\gamma_{v_x}$  be the normal geodesic of M with  $\gamma'_{v_x}(0) = v_x$ , where  $x \in M$  and  $\gamma'_{v_x}(0)$  is the velocity vector of  $\gamma_{v_x}$  at 0. If  $\gamma_{v_x}(s_0)$  is a focal point of M along  $\gamma_{v_x}$ , then  $s_0$  is called a *focal radius of* M at x. Denote by  $\mathcal{FR}_{M,x}$  the set of all focal radii of M at x. If M is compact and if  $\mathcal{FR}_{M,x}$  is independent of the choice

of *x*, then it is called an *equifocal hypersurface*. This notion is the hypersurface version of an equifocal submanifold defined in [37].

Next we recall the notion of a complex equifocal hypersurface in a symmetric space of non-compact type. Let M be a complete (oriented embedded) hypersurface in a symmetric space N = G/K of non-compact type and fix a global unit normal vector field v of M. Let  $\mathfrak{g}$  be the Lie algebra of G and  $\theta$  be the Cartan involution of G with Fix  $\theta = K$ , where Fix  $\theta$  is the fixed point group of  $\theta$ . Denote by the same symbol  $\theta$  the involution of  $\mathfrak{g}$  induced from  $\theta$ . Set  $\mathfrak{p} := \operatorname{Ker}(\theta + \operatorname{id})$ . The subspace  $\mathfrak{p}$  is identified with the tangent space  $T_{eK}N$  of N at eK, where e is the identity element of G. Let M be a complete (oriented embedded) hypersurface in N. Fix a global unit normal vector field v of M. Denote by A the shape operator of M (for v). Take  $X \in T_X M$  (x = gK). The M-Jacobi field Y along  $\gamma_X$  with Y(0) = X (hence  $Y'(0) = -A_X X$ ) is given by

$$Y(s) = (P_{\gamma_x|_{[0,s]}} \circ (D_{sv_x}^{co} - sD_{sv_x}^{si} \circ A_x))(X),$$

where  $P_{\gamma_x|_{[0,s]}}$  is the parallel translation along  $\gamma_x|_{[0,s]}$ ,  $D_{sv_x}^{co}$  (resp.  $D_{sv_x}^{si}$ ) is given by

$$D_{sv_x}^{co} = g_* \circ \cos(\operatorname{iad}(sg_*^{-1}v_x)) \circ g_*^{-1}$$
  
(resp.  $D_{sv_x}^{si} = g_* \circ \frac{\sin(\operatorname{iad}(sg_*^{-1}v_x))}{\operatorname{iad}(sg_*^{-1}v_x)} \circ g_*^{-1}$ ).

Here ad is the adjoint representation of the Lie algebra g of G. All focal radii of M at x are catched as real numbers  $s_0$  with  $\operatorname{Ker}(D_{s_0v_x}^{co} - s_0 D_{s_0v_x}^{si} \circ A_x) \neq \{0\}$ . So, we [18] defined the notion of a *complex focal radius of M at x* as a complex number  $z_0$  with  $\operatorname{Ker}(D_{z_0v_x}^{co} - z_0 D_{z_0v_x}^{si} \circ A_x) \neq \{0\}$ , where  $D_{z_0v_x}^{co}$  (resp.  $D_{z_0v_x}^{si}$ ) is a  $\mathbb{C}$ -linear transformation of  $(T_x N)^{\mathbb{C}}$  defined by

$$D_{z_0v_x}^{co} = g_*^{\mathbb{C}} \circ \cos(\operatorname{iad}^{\mathbb{C}}(z_0g_*^{-1}v_x)) \circ (g_*^{\mathbb{C}})^{-1}$$
  
(resp.  $D_{sv_x}^{si} = g_*^{\mathbb{C}} \circ \frac{\sin(\operatorname{iad}^{\mathbb{C}}(z_0g_*^{-1}v_x))}{\operatorname{iad}^{\mathbb{C}}(z_0g_*^{-1}v_x)} \circ (g_*^{\mathbb{C}})^{-1}$ ),

where  $g_*^{\mathbb{C}}$  (resp.  $\mathrm{ad}^{\mathbb{C}}$ ) is the complexification of  $g_*$  (resp. ad). Also, we call  $\mathrm{Ker}(D_{z_0v_x}^{co} - z_0 D_{z_0v_x}^{si} \circ A_x^{\mathbb{C}})$  the *foccal space* of the complex focal radius  $z_0$  and its complex dimension the *multiplicity* of the complex focal radius  $z_0$ , In [19], it was shown that, in the case where M is of class  $C^{\omega}$ , complex focal radii of M at x indicate the positions of focal points of the extrinsic complexification  $M^{\mathbb{C}} (\hookrightarrow G^{\mathbb{C}}/K^{\mathbb{C}})$  of M along the complexified geodesic  $\gamma_{v_x}^{\mathbb{C}}$ , where  $G^{\mathbb{C}}/K^{\mathbb{C}}$  is the anti-Kaehlerian symmetric space associated with G/K. See [19] (also [26]) about the detail of the definition of the extrinsic complexification. Denote by  $\mathcal{CFR}_x$  the set of all complex focal radii of M at x. If  $\mathcal{CFR}_x$  is independent of the choice of x, then M is called a *complex quifocal hypersurface*. Here we note that we should call such a hypersurface an equi-complex focal hypersurface but, for simplicity, we call it a complex equifocal hypersurface [18].

Next we recall the notion of an anti-Kaehlerian equifocal hypersurface in an anti-Kaehlerian symmetric space. Let J be a parallel complex structure on an even dimensional pseudo-Riemannian manifold  $(M, \langle , \rangle)$  of half index. If  $\langle JX, JY \rangle = -\langle X, Y \rangle$  holds for every X,  $Y \in TM$ , then  $(M, \langle , \rangle, J)$  is called an *anti-Kaehlerian manifold*. Let N = G/K be a symmetric space of non-compact type and  $G^{\mathbb{C}}/K^{\mathbb{C}}$  the anti-Kaehlerian symmetric space associated with G/K. See [19] about the anti-Kaehlerian structure of  $G^{\mathbb{C}}/K^{\mathbb{C}}$ . Let f be an isometric immersion of an anti-Kaehlerian manifold  $(M, \langle , \rangle, J)$  into  $G^{\mathbb{C}}/K^{\mathbb{C}}$ . If  $\tilde{J} \circ f_* = f_* \circ J$ , then M is called an *anti-Kaehlerian submanifold* immersed by f. Let A be the shape tensor of M. We have  $A_{Jv}X = A_v(JX) = J(A_vX)$ , where  $X \in TM$  and  $v \in T^{\perp}M$ . If  $A_v X = aX + bJX$   $(a, b \in \mathbb{R})$ , then X is called a J-eigenvector for  $a + b\mathbf{i}$ . Let  $\{e_i\}_{i=1}^n$ be an orthonormal system of  $T_x M$  such that  $\{e_i\}_{i=1}^n \cup \{Je_i\}_{i=1}^n$  is an orthonormal base of  $T_x M$ . We call such an orthonormal system  $\{e_i\}_{i=1}^n$  a *J*-orthonormal base of  $T_x M$ . If there exists a J-orthonormal base consisting of J-eigenvectors of  $A_v$ , then we say that  $A_v$  is diagonalizable with respect to a J-orthonormal base. Then we set  $\operatorname{Tr}_J A_v := \sum_{i=1}^n \lambda_i$  as  $A_v e_i = (\operatorname{Re} \lambda_i) e_i + (\operatorname{Im} \lambda_i) J e_i$  (i = 1, ..., n). We call this quantity the J-trace of  $A_v$ . If, for each unit normal vector  $v \in M$ , the shape operator  $A_v$  is diagonalizable with respect to a J-orthonormal tangent base, if the normal Jacobi operator R(v) preserves the tangent space  $T_x M$  (x : the base point of v) invariantly and if  $A_v$  and R(v) commute, then we call M a curvature-adapted anti-Kaehlerian submanifold, where R is the curvature tensor of  $G^{\mathbb{C}}/K^{\mathbb{C}}$ . Assume that M is an anti-Kaehlerian hypersurface (i.e., codim M = 2) and that it is orientable. Denote by  $\exp^{\perp}$  the normal exponential map of M. Fix a global parallel orthonormal normal base  $\{v, Jv\}$  of M. If  $\exp^{\perp}(av_x + bJv_x)$  is a focal point of (M, x), then we call the complex number  $a + b\mathbf{i}$  a complex focal radius along the geodesic  $\gamma_{v_x}$ . Assume that the number (which may be 0 and  $\infty$ ) of distinct complex focal radii along the geodesic  $\gamma_{v_x}$  is independent of the choice of  $x \in M$ . Furthermore assume that the number is not equal to 0. Let  $\{r_{i,x}; i = 1, 2, ...\}$  be the set of all complex focal radii along  $\gamma_{v_x}$ , where  $|r_{i,x}| < |r_{i+1,x}|$  or " $|r_{i,x}| = |r_{i+1,x}|$  & Re $r_{i,x} > \text{Re}r_{i+1,x}$ " or " $|r_{i,x}| = |r_{i+1,x}| \& \operatorname{Re} r_{i,x} = \operatorname{Re} r_{i+1,x} \& \operatorname{Im} r_{i,x} = -\operatorname{Im} r_{i+1,x} < 0$ ". Let  $r_i$  (i = 1, 2, ...)be complex-valued functions on M defined by assigning  $r_{i,x}$  to each  $x \in M$ . We call this function  $r_i$  the *i*-th complex focal radius function for v. If the number of distinct complex focal radii along  $\gamma_{v_x}$  is independent of the choice of  $x \in M$ , complex focal radius functions for v are constant on M and they have constant multiplicity, then M is called an *anti-Kaehlerian* equifocal hypersurface. We ([19]) showed the following fact.

# FACT 3. Let M be a complete (embedded) $C^{\omega}$ -hypersurface in G/K. Then M is complex equifocal if and only if $M^{\mathbb{C}}$ is anti-Kaehler equifocal.

Next we recall the notion of an anti-Kaehlerian isoparametric hypersurface in an infinite dimensional anti-Kaehlerian space. Let f be an isometric immersion of an anti-Kaehlerian Hilbert manifold  $(M, \langle , \rangle, J)$  into an infinite dimensional anti-Kaehlerian space  $(V, \langle , \rangle, \tilde{J})$ . See [19, Section 5] about the definitions of an anti-Kaehlerian Hilbert manifold and an infinite dimensional anti-Kaehlerian space. If  $\tilde{J} \circ f_* = f_* \circ J$  holds, then we call M an

anti-Kaehlerian Hilbert submanifold in  $(V, \langle , \rangle, \widetilde{J})$  immersed by f. If M is of finite codimension and there exists an orthogonal time-space decomposition  $V = V_- \oplus V_+$  such that  $\widetilde{J}V_{\pm} = V_{\mp}$ ,  $(V, \langle , \rangle_{V_{\pm}})$  is a Hilbert space, the distance topology associated with  $\langle , \rangle_{V_{\pm}}$  coincides with the original topology of V and, for each  $v \in T^{\perp}M$ , the shape operator  $A_v$  is a compact operator with respect to  $f^*\langle , \rangle_{V_{\pm}}$ , then we call M an *anti-Kaehlerian Fredholm submanifold* (rather than *anti-Kaehlerian Fredholm Hilbert submanifold*). Let  $(M, \langle , \rangle, J)$  be an orientable anti-Kaehlerian Fredholm hypersurface in an anti-Kaehlerian space  $(V, \langle , \rangle, \widetilde{J})$  and A be the shape tensor of  $(M, \langle , \rangle, J)$ . Fix a global unit normal vector field v of M. If there exists  $X (\neq 0) \in T_x M$  with  $A_{v_x} X = aX + bJX$ , then we call the complex number  $a + b\mathbf{i}$  a J-eigenvalue of  $A_{v_x}$  (or a complex principal curvature of M at x) and call X a J-eigenvector of  $A_{v_x}$  for  $a + b\mathbf{i}$ . Here we note that this relation is rewritten as  $A_{v_x}^{\mathbb{C}} X^{(1,0)} = (a + b\mathbf{i})X^{(1,0)}$ , where  $X^{(1,0)} := \frac{1}{2}(X - \mathbf{i}JX)$ . Also, we call the space of all J-eigenvalues of  $A_{v_x}$  for  $a + b\mathbf{i}$ . We call the set of all J-eigenvalues of  $A_{v_x}$  the J-spectrum of  $A_{v_x}$  and denote it by  $\text{Spec}_J A_{v_x}$ . Spec $_J A_{v_x} \setminus \{0\}$  is described as follows:

 $\text{Spec}_{I} A_{v_{x}} \setminus \{0\} = \{\lambda_{i} ; i = 1, 2, ... \}$ 

$$\left(\begin{array}{c} |\lambda_i| > |\lambda_{i+1}| \text{ or } ``|\lambda_i| = |\lambda_{i+1}| \& \operatorname{Re} \lambda_i > \operatorname{Re} \lambda_{i+1} ``\\ \text{ or } ``|\lambda_i| = |\lambda_{i+1}| \& \operatorname{Re} \lambda_i = \operatorname{Re} \lambda_{i+1} \& \operatorname{Im} \lambda_i = -\operatorname{Im} \lambda_{i+1} > 0 ``\end{array}\right).$$

Also, the *J*-eigenspace for each *J*-eigenvalue of  $A_{v_x}$  other than 0 is of finite dimension. We call the *J*-eigenvalue  $\lambda_i$  the *i*-th complex principal curvature of *M* at *x*. Assume that the number (which may be  $\infty$ ) of distinct complex principal curvatures of *M* is constant over *M*. Then we can define functions  $\lambda_i$  (i = 1, 2, ...) on *M* by assigning the *i*-th complex principal curvature of *M* at *x* to each  $x \in M$ . We call this function  $\lambda_i$  the *i*-th complex principal curvature function of *M*. If the number of distinct complex principal curvatures of *M* and it has constant over *M*, each complex principal curvature function is constant over *M* and it has constant multiplicity, then we call *M* an *anti-Kaehler isoparametric hypersurface*. Let  $\{e_i\}_{i=1}^{\infty}$  be an orthonormal system of  $(T_xM, \langle , \rangle_x)$ . If  $\{e_i\}_{i=1}^{\infty} \cup \{Je_i\}_{i=1}^{\infty}$  is an orthonormal base consisting of *J*-eigenvectors of  $A_{v_x}$ , then  $A_{v_x}$  is said to be diagonalized with respect to the *J*-orthonormal base. If *M* is anti-Kaehlerian isoparametric and, for each  $x \in M$ , the shape operator  $A_{v_x}$  is diagonalized with respect to a *J*-orthonormal base, then we call *M* a *proper anti-Kaehlerian isoparametric hypersurface*.

In [18], we defined the notion of the parallel transport map for a semi-simple Lie group G as a pseudo-Riemannian submersion of a pseudo-Hilbert space  $H^0([0, 1], \mathfrak{g})$  onto G. See [18] in detail. Also, in [19], we defined the notion of the parallel transport map for the complexification  $G^{\mathbb{C}}$  of a semi-simple Lie group G as an anti-Kaehlerian submersion of an infinite dimensional anti-Kaehlerian space  $H^0([0, 1], \mathfrak{g}^{\mathbb{C}})$  onto  $G^{\mathbb{C}}$ . See [19] in detail. Let G/K be a symmetric space of non-compact type and  $\phi : H^0([0, 1], \mathfrak{g}^{\mathbb{C}}) \to G^{\mathbb{C}}$  the parallel transport map for  $G^{\mathbb{C}}$  and  $\pi : G^{\mathbb{C}} \to G^{\mathbb{C}}/K^{\mathbb{C}}$  the natural projection. We [19] showed the following fact.

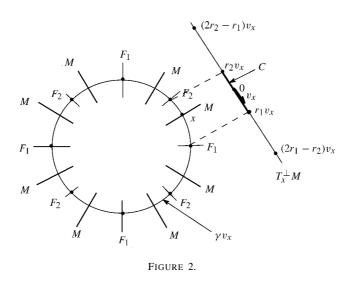
FACT. 4. Let M be a complete anti-Kaehlerian hypersurface in an anti-Kaehlerian symmetric space  $G^{\mathbb{C}}/K^{\mathbb{C}}$ . Then M is anti-Kaehlerian equifocal if and only if each component of  $(\pi \circ \phi)^{-1}(M)$  is anti-Kaehlerian isoparametric.

Next we recall the notion of a focal point of non-Euclidean type on the ideal boundary  $N(\infty)$  of a hypersurface M in a Hadamard manifold N which was introduced in [23] for a submanifold of general codimension. Assume that M is orientable. Let v be a unit normal vector field of M and  $\gamma_{v_x} : [0, \infty) \to N$  the normal geodesic of M of direction  $v_x$ . If there exists an M-Jacobi field Y along  $\gamma_{v_x}$  satisfying  $\lim_{t\to\infty} ||Y(t)||/t = 0$ , then we call  $\gamma_{v_x}(\infty) (\in N(\infty))$  a *focal point* of M on the ideal boundary  $N(\infty)$  along  $\gamma_{v_x}$ , where  $\gamma_{v_x}(\infty)$  is the asymptotic class of  $\gamma_{v_x}$ . Also, if there exists an M-Jacobi field Y along  $\gamma_{v_x}$ , satisfying  $\lim_{t\to\infty} ||Y(t)||/t = 0$  and  $\operatorname{Sec}(v_x, Y(0)) \neq 0$ , then we call  $\gamma_{v_x}(\infty)$  a *focal point of non-Euclidean type of M on*  $N(\infty)$  along  $\gamma_{v_x}$ , where  $\operatorname{Sec}(v_x, Y(0))$  is the sectional curvature for the 2-plane spanned by  $v_x$  and Y(0). If, for any point x of M,  $\gamma_{v_x}(\infty)$  and  $\gamma_{-v_x}(\infty)$  are not a focal point of non-Euclidean type on the ideal boundary  $N(\infty)$ . According to [19, Theorem 1] and [23, Theorem A], we have the following fact.

FACT 5. Let M be a curvature-adapted and isoparametric  $C^{\omega}$ -hypersurface in a symmetric space N := G/K of non-compact type. Then the following conditions (i) and (ii) are equivalent:

- (i) *M*has no focal point of non-Euclidean type on the ideal boundary  $N(\infty)$ .
- (ii) Each component of  $(\pi \circ \phi)^{-1}(M^{\mathbb{C}})$  is proper anti-Kaehlerian isoparametric.

3. Proof of Theorem A. In this section, we shall prove Theorem A. Let M be a curvature-adapted isoparametric hypersurface in a simply connected symmetric space G/Kof compact type, v a unit normal vector field of M and  $C (\subset T_x^{\perp} M)$  the Coxeter domain (i.e., the fundamental domain (containing 0) of the Coxeter group of M at x). The boundary  $\partial C$ of C consists of two points and it is described as  $\partial C = \{r_1 v_x, r_2 v_x\}$   $(r_2 < 0 < r_1)$ . We may assume that  $|r_1| \leq |r_2|$  by replacing v with -v if necessary. Note that the set  $\mathcal{FR}_M$  of all focal radii of *M* is equal to  $\{kr_1 + (1-k)r_2; k \in \mathbb{Z}\}$ . Set  $F_i := \{\gamma_{v_x}(r_i); x \in M\}$  (i = 1, 2), which are all of focal submanifolds of M. The hypersurface M is the  $r_i$ -tube over  $F_i$  (i = 1, 2). Let  $\pi$  be the natural projection of G onto G/K and  $\phi$  the parallel transport map for G. Let M be a component of  $(\pi \circ \phi)^{-1}(M)$ , which is an isoparametric hypersurface in  $H^0([0, 1], \mathfrak{g})$ . The set  $\mathcal{PC}_{\widetilde{M}}$  of all principal curvatures other than zero of  $\widetilde{M}$  is equal to  $\{\frac{1}{kr_1+(1-k)r_2}; k \in \mathbb{Z}\}$ . Set  $\lambda_{2k-1} := \frac{1}{kr_1 + (1-k)r_2}$  (k = 1, 2, ...) and  $\lambda_{2k} := \frac{1}{-(k-1)r_1 + kr_2}$  (k = 1, 2, ...). Then we have  $|\lambda_{i+1}| < |\lambda_i|$  or  $\lambda_i = -\lambda_{i+1} > 0$  for any  $i \in \mathbb{N}$ . Denote by  $m_i$  the multiplicity of  $\lambda_i$ . Denote by A (resp.  $\widetilde{A}$ ) the shape operator of M for v (resp.  $\widetilde{M}$  for  $v^L$ ), where  $v^L$  is the horizontal lift of v to  $\widetilde{M}$  with respect to  $\pi \circ \phi$ . Fix  $r_0 \in \mathcal{FR}_M$ . The focal map  $f_{r_0} : M \to G/K$  is defined by  $f_{r_0}(x) := \gamma_{v_x}(r_0)$  ( $x \in M$ ). Let  $F := f_{r_0}(M)$ , which is either  $F_1$  or  $F_2$ . Denote by  $A^F$  the shape tensor of F and  $\psi_t$  the geodesic flow of G/K.



PROOF OF THEOREM A. Define a set  $S_x$  by

 $S_x := \{(\lambda, \mu) \in \operatorname{Spec} A_x \times \operatorname{Spec} R(v_x); \operatorname{Ker}(A_x - \lambda I) \cap \operatorname{Ker}(R(v_x) - \mu I) \neq \{0\}\}.$ Since *M* is curvature adapted, we have

$$T_{x}M = \bigoplus_{(\lambda,\mu)\in S_{x}} \left(\operatorname{Ker}(A_{x} - \lambda I) \cap \operatorname{Ker}(R(v_{x}) - \mu I)\right).$$

Define a distribution D on M by  $D_x := \bigoplus_{(\lambda,\mu) \in S_{r_0}^x} (\operatorname{Ker}(A_x - \lambda I) \cap \operatorname{Ker}(R(v_x) - \mu I))$  and  $D^{\perp}$  the orthogonal complementary distribution of D in TM. Let  $X \in \operatorname{Ker}(A_x - \lambda I) \cap \operatorname{Ker}(R(v_x) - \mu I)$   $((\lambda, \mu) \in S_{r_0}^x)$  and Y be the Jacobi field along  $\gamma_{r_0v_x}$  with Y(0) = X and  $Y'(0) = -A_{r_0v_x}X$   $(= -r_0\lambda X)$ . This Jacobi field Y is described as

$$Y(s) = \left(\cos(sr_0\sqrt{\mu}) - \frac{\lambda\sin(sr_0\sqrt{\mu})}{\sqrt{\mu}}\right) P_{\gamma_{r_0v}|_{[0,s]}}(X) \,.$$

Since  $Y(1) = f_{r_0*}X$ , we have

(3.1) 
$$f_{r_0*}X = \left(\cos(r_0\sqrt{\mu}) - \frac{\lambda\sin(r_0\sqrt{\mu})}{\sqrt{\mu}}\right)P_{\gamma_{r_0v_x}}(X),$$

which is not equal to 0 because  $(\lambda, \mu) \in S_{r_0}^{\chi}$ . From this relation, we have  $T_{f_{r_0}(\chi)}F = P_{\gamma_{r_0}v_{\chi}}(D)$ . On the other hand, we have

(3.2) 
$$\widetilde{\nabla}_{f_{r_0*}X}\psi_{r_0}(v_X) = \frac{1}{r_0}Y'(1) \\ = -\left(\sqrt{\mu}\sin(r_0\sqrt{\mu}) + \lambda\cos(r_0\sqrt{\mu})\right)P_{\gamma_{r_0v_X}}(X).$$

From (3.1) and (3.2), we have

$$A_{\psi_{r_0}(v_x)}^F f_{r_0*} X = -\frac{\mu + \lambda \tau_{r_0}(\mu)}{\lambda - \tau_{r_0}(\mu)} f_{r_0*} X \,.$$

#### A CARTAN TYPE IDENTITY FOR ISOPARAMETRIC HYPERSURFACES

Hence we can derive the following relation:

(3.3) 
$$\operatorname{Tr} A_{\psi_{r_0}(v_{\lambda})}^F = -\sum_{(\lambda,\mu)\in S_{r_0}^x} \frac{\mu + \lambda \tau_{r_0}(\mu)}{\lambda - \tau_{r_0}(\mu)} \times m_{\lambda,\mu},$$

where  $S_{r_0}^x$  and  $m_{\lambda,\mu}$  are as in the statement of Theorem A. On the other hand, it is not difficult to show the existence of a transnormal function on G/K having M and F as a regular level and a singular level, respectively. Hence, according to [28, Theorem 1.3], F is austere and hence minimal. Therefore, we obtain the desired identity from (3.3).

4. The mean curvature of a proper anti-Kaehlerian Fredholm submanifold. In this section, we define the notion of a proper anti-Kaehlerian Fredholm submanifold and its mean curvature vector. Let M be an anti-Kaehlerian Fredholm submanifold in an infinite dimensional anti-Kaehlerian space V and A be the shape tensor of M. Denote by the same symbol J the complex structures of M and V. If  $A_v$  is diagonalized with respect to a Jorthonormal base for each unit normal vector v of M, then we call M a proper anti-Kaehlerian Fredholm submanifold. Assume that M is such a submanifold. Let v be a unit normal vector of M. If the series  $\sum_{i=1}^{\infty} m_i \lambda_i$  exists, then we call it the J-trace of  $A_v$  and denote it by  $\text{Tr}_J A_v$ , where  $\{\lambda_i; i = 1, 2, ...\} = \text{Spec}_J A_v \setminus \{0\}$  ( $\lambda_i$ 's are ordered as stated in Section 2) and  $m_i = \frac{1}{2} \text{dimKer}(A_v - \lambda_i I)$  (i = 1, 2, ...), where  $\lambda_i I$  means ( $\text{Re } \lambda_i$ )  $I + (\text{Im } \lambda_i) J$ . Note that, if  $\sharp(\text{Spec}_J A_v)$  is finite, then we promise  $\lambda_i = 0$  and  $m_i = 0$  ( $i > \sharp(\text{Spec}_J A_v \setminus \{0\})$ ), where  $\sharp(\cdot)$  is the cardinal number of ( $\cdot$ ). Define a normal vector field H of M by  $\langle H_x, v \rangle = \text{Tr}_J A_v$ ( $x \in M$ ,  $v \in T_x^{\perp} M$ ). We call H the mean curvature vector of M.

Let G/K be a symmetric space of non-compact type and  $\phi : H^0([0, 1], \mathfrak{g}^{\mathbb{C}}) \to G^{\mathbb{C}}$  be the parallel transport map for the complexification  $G^{\mathbb{C}}$  of G and  $\pi$  be the natural projection of  $G^{\mathbb{C}}$  onto the anti-Kaehlerian symmetric space  $G^{\mathbb{C}}/K^{\mathbb{C}}$ . We have the following fact, which will be used in the proof of Theorem B in the next section.

LEMMA 4.1. Let M be a curvature-adapted anti-Kaehlerian submanifold in  $G^{\mathbb{C}}/K^{\mathbb{C}}$ and A (resp.  $\widetilde{A}$ ) be the shape tensor of M (resp.  $(\pi \circ \phi)^{-1}(M)$ ). Assume that, for each unit normal vector v of M and each J-eigenvalue  $\mu$  of R(v),  $\operatorname{Ker}(A_v - \sqrt{-\mu}I) \cap \operatorname{Ker}(R(v) - \mu I) = \{0\}$  holds. Then the following statements (i) and (ii) hold:

(i)  $(\pi \circ \phi)^{-1}(M)$  is a proper anti-Kaehlerian Fredholm submanifold.

(ii) For each unit normal vector v of M,  $\operatorname{Tr}_J \widetilde{A}_{v^L} = \operatorname{Tr}_J A_v$  holds, where  $v^L$  is the horizontal lift of v to  $(\pi \circ \phi)^{-1}(M)$  and  $\operatorname{Tr}_J A_v$  is the *J*-trace of  $A_v$ .

PROOF. We can show the statement (i) in terms of [19, Lemmas 9, 12 and 13]. By imitating the proof of [18, Theorem C], we can show the statement (ii), where we also use the above lemmas in [19].  $\Box$ 

5. Proofs of Theorems B and C. In this section, we first prove Theorem B. Let M be a curvature-adapted isoparametric  $C^{\omega}$ -hypersurface in a symmetric space G/K of non-compact type. Assume that M admits no focal point of non-Euclidean type on the ideal boundary of G/K. Denote by A the shape tensor of M and R the curvature tensor of G/K.

Let v be a unit normal vector field of M, which is uniquely extended to a unit normal vector field of the extrinsic complexification  $M^{\mathbb{C}}(\subset G^{\mathbb{C}}/K^{\mathbb{C}})$  of M. Since M is a curvature-adapted isoparametric hypersurface admitting no focal point of non-Euclidean type on the ideal boundary  $N(\infty)$ , it admits a complex focal radius. Let  $r_0$  be one of complex focal radii of M. The focal map  $f_{r_0} : M^{\mathbb{C}} \to G^{\mathbb{C}}/K^{\mathbb{C}}$  for  $r_0$  is defined by  $f_{r_0}(x) := \exp^{\perp}(r_0v_x)(=\gamma_{v_x}^{\mathbb{C}}(r_0))$  $(x \in M^{\mathbb{C}})$ , where  $r_0v_x$  means  $(\operatorname{Re} r_0)v_x + (\operatorname{Im} r_0)Jv_x$   $(J : the complex structure of <math>G^{\mathbb{C}}/K^{\mathbb{C}})$ . Let  $F := f_{r_0}(M^{\mathbb{C}})$ , which is an anti-Kaehlerian submanifold in  $G^{\mathbb{C}}/K^{\mathbb{C}}$  (see Figure 1). Without loss of generality, we may assume  $o := eK \in M$ . Denote by  $\widehat{A}$  and  $A^F$  the shape tensor of  $M^{\mathbb{C}}$  and F, respectively. Let  $\psi_t$  be the geodesic flow of  $G^{\mathbb{C}}/K^{\mathbb{C}}$ . Then we have the following fact.

LEMMA 5.1. For any  $x \in M (\subset M^{\mathbb{C}})$ , the following relation holds:

$$\mathrm{Tr}_J A^F_{\psi_{|r_0|}\left(\frac{r_0}{|r_0|}v_x\right)} = -\frac{r_0}{|r_0|} \sum_{(\lambda,\mu)\in S^x_{r_0}} \frac{\mu + \lambda \hat{r}_{r_0}(\mu)}{\lambda - \hat{\tau}_{r_0}(\mu)} \times m_{\lambda,\mu} \,,$$

where  $S_{r_0}^{\chi}$  and  $m_{\lambda,\mu}$  are as in the statement of Theorem B.

PROOF. Let  $S_x := \{(\lambda, \mu) \in \operatorname{Spec} A_{v_x} \times \operatorname{Spec} R(v_x); \operatorname{Ker}(A_{v_x} - \lambda I) \cap \operatorname{Ker}(R(v_x) - \mu I) \neq \{0\}\}$ . Since M is curvature adapted, we have  $T_x M = \bigoplus_{(\lambda,\mu) \in S_x} (\operatorname{Ker}(A_x - \lambda I) \cap \operatorname{Ker}(R(v_x) - \mu I))$ . Set  $D_x := \bigoplus_{(\lambda,\mu) \in S_{r_0}} (\operatorname{Ker}(A_x - \lambda I) \cap \operatorname{Ker}(R(v_x) - \mu I))$  and  $D_x^{\perp}$  the orthogonal complement of  $D_x$  in  $T_x M$ . The tangent space  $T_x(M^{\mathbb{C}})$  is identified with the complexification  $(T_x M)^{\mathbb{C}}$ . Under this identification, the shape operator  $\widehat{A}_{v_x}$  is identified with the complexification  $A_x^{\mathbb{C}}$  of  $A_x$ . Let  $X \in \operatorname{Ker}(A_x - \lambda I)^{\mathbb{C}} \cap \operatorname{Ker}(R(v_x) - \mu I)^{\mathbb{C}} ((\lambda, \mu) \in S_{r_0}^x)$  and Y be the Jacobi field along  $\gamma_{r_0v_x}$  with Y(0) = X and  $Y'(0) = -\widehat{A}_{r_0v_x}X (= -r_0\lambda X = -\lambda ((\operatorname{Rer}_0)X + (\operatorname{Im}_r_0)JX))$ , where  $\gamma_{r_0v_x}$  is the geodesic in  $G^{\mathbb{C}}/K^{\mathbb{C}}$  with  $\dot{\gamma}_{r_0v_x}(0) = r_0v_x(= (\operatorname{Rer}_0)v_x + (\operatorname{Im}_r_0)Jv_x)$ . This Jacobi field Y is described as

$$Y(s) = \left(\cos(\mathbf{i}sr_0\sqrt{-\mu}) - \frac{\lambda\sin(\mathbf{i}sr_0\sqrt{-\mu})}{\mathbf{i}\sqrt{-\mu}}\right)P_{\gamma_{r_0v_X}|_{[0,s]}}(X)$$

Since  $Y(1) = f_{r_0*}X$ , we have

(5.1) 
$$f_{r_0*}X = \left(\cos(\mathbf{i}r_0\sqrt{-\mu}) - \frac{\lambda\sin(\mathbf{i}r_0\sqrt{-\mu})}{\mathbf{i}\sqrt{-\mu}}\right)P_{\gamma_{r_0v_x}}(X)$$

which is not equal to 0 because  $(\lambda, \mu) \in S_{r_0}^x$ . This relation implies that  $T_{f_{r_0}(x)}F = P_{\gamma_{r_0}v_x}(D_x^{\mathbb{C}})$ . On the other hand, we have

(5.2) 
$$\widetilde{\nabla}_{f_{r_0*}X}\psi_{|r_0|}\left(\frac{r_0}{|r_0|}v_x\right) = \frac{1}{|r_0|}Y'(1) \\ = -\frac{r_0}{|r_0|}\left(\mathbf{i}\sqrt{-\mu}\sin(\mathbf{i}r_0\sqrt{-\mu}) + \lambda\cos(\mathbf{i}r_0\sqrt{-\mu})\right)P_{\gamma_{r_0v_x}}(X) .$$

From (5.1) and (5.2), we have

(5.3) 
$$A_{\psi_{|r_0|}\left(\frac{r_0}{|r_0|}v_x\right)}^F f_{r_0*} X = \frac{-\frac{r_0}{|r_0|} \left(\mu + \lambda \hat{\tau}_{r_0}(\mu)\right)}{\lambda - \hat{\tau}_{r_0}(\mu)} f_{r_0*} X.$$

The desired relation follows from this relation.

Set  $\kappa(\lambda, \mu) := \frac{-\frac{r_0}{|r_0|}(\mu + \lambda \hat{r}_{r_0}(\mu))}{\lambda - \hat{r}_{r_0}(\mu)} ((\lambda, \mu) \in S_{r_0}^x)$ . Next we prepare the following lemma.

LEMMA 5.2. Let  $(\lambda_1, \mu_1) \in S_{r_0}^x$ . Then we have

(i) 
$$(\exp_{G^{\mathbb{C}}} r_0 v_x)_*^{-1} \psi_{|r_0|} \left( \frac{r_0}{|r_0|} v_x \right) = \frac{r_0}{|r_0|} v_x,$$

where  $\exp_{G^{\mathbb{C}}}$  is the exponential map of  $G^{\mathbb{C}}$ ,

(ii) 
$$(\exp_{G^{\mathbb{C}}} r_0 v_x)_*^{-1} \left( \operatorname{Ker} \left( A_{\psi_{|r_0|}(\frac{r_0}{|r_0|} v_x)}^F - \kappa(\lambda_1, \mu_1) I \right) \right)$$
  

$$= \bigoplus_{(\lambda, \mu) \in S_{x}^{\infty}(\lambda_1, \mu_1)} \left( \operatorname{Ker} (A_{v_x} - \lambda I)^{\mathbb{C}} \cap \operatorname{Ker} (R(v_x) - \mu I)^{\mathbb{C}} \right),$$

where  $S_{r_0}^{x}(\lambda_1, \mu_1) = \{(\lambda, \mu) \in S_{r_0}^{x}; \kappa(\lambda, \mu) = \kappa(\lambda_1, \mu_1)\},\$ (iii) if  $\lambda_1 \neq \pm \sqrt{-\mu_1}$ , then  $\kappa(\lambda_1, \mu_1) \neq \pm \frac{r_0}{|r_0|} \sqrt{-\mu_1}$ .

PROOF. The relation of (i) is trivial. Let  $(\lambda, \mu) \in S_{r_0}^x(\lambda_1, \mu_1)$ . The restriction  $f_{r_0*}|_{\operatorname{Ker}(A_{v_x}-\lambda I)^{\mathbb{C}}\cap\operatorname{Ker}(R(v_x)-\mu I)^{\mathbb{C}}}$  of  $f_{r_0*}$  is equal to  $P_{\gamma_{r_0v_x}}|_{\operatorname{Ker}(A_{v_x}-\lambda I)^{\mathbb{C}}\cap\operatorname{Ker}(R(v_x)-\mu I)^{\mathbb{C}}}$  up to constant multiple by (5.1). Also, we have  $P_{\gamma_{r_0v_x}} = (\exp_G \mathbb{C} r_0 v_x)_*$ . These facts together with (5.3) deduce

$$(\exp_{G^{\mathbb{C}}} r_{0}v_{x})_{*} \left( \operatorname{Ker}(A_{v_{x}} - \lambda I)^{\mathbb{C}} \cap \operatorname{Ker}(R(v_{x}) - \mu I)^{\mathbb{C}} \right)$$
  
=  $f_{r_{0}*} \left( \operatorname{Ker}(A_{v_{x}} - \lambda I)^{\mathbb{C}} \cap \operatorname{Ker}(R(v_{x}) - \mu I)^{\mathbb{C}} \right)$   
 $\subset \operatorname{Ker} \left( A_{\psi_{|r_{0}|}(\frac{r_{0}}{|r_{0}|}v_{x})}^{F} - \kappa(\lambda_{1}, \mu_{1})I \right).$ 

From this fact, the relation of (ii) follows. Now we shall show the statement (iii). Let  $r_0 = a_0 + b_0 \sqrt{-1}$  ( $a_0, b_0 \in \mathbb{R}$ ). Suppose that  $\kappa(\lambda_1, \mu_1) = \pm \frac{r_0}{|r_0|} \sqrt{-\mu_1}$ . By squaring both sides of this relation, we have

$$(\hat{\tau}_{r_0}(\mu_1)^2 + \mu_1)(\lambda_1^2 + \mu_1) = 0.$$

Hence we have  $\lambda_1 = \pm \sqrt{-\mu_1}$ . Thus the statement (iii) is shown.

Denote by  $\hat{R}$  the curvature tensor of  $G^{\mathbb{C}}/K^{\mathbb{C}}$ . By using these lemmas, we prove Theorem B. According to Lemma 5.1, we have only to show  $\operatorname{Tr}_J A^F_{\psi_{|r_0|}(\frac{r_0}{|r_0|}v_x)} = 0$  ( $x \in M$ ). In the case where *M* is homogeneous, we can show this relation by imitating the process of the proof of [15, Corollary 1.1].

SIMPLE PROOF OF THEOREM B IN RANK ONE CASE. We have only to show  $\operatorname{Tr}_J A_{\psi_{|r_0|}(\frac{r_0}{|r_0|}v_x)}^F = 0$ . Assume that G/K is of rank one. Define a complex linear function  $\Phi: T_{f_{r_0}(x)}^{\perp}F \to \mathbb{C}$  by  $\Phi(w) = \operatorname{Tr}_J A_w^F (w \in T_{f_{r_0}(x)}^{\perp}F)$ . Since M is curvature-adapted, we have  $T_x M = \bigoplus_{(\lambda,\mu)\in S_x} (\operatorname{Ker}(A_{v_x} - \lambda I) \cap \operatorname{Ker}(R(v_x) - \mu I))$ . Set  $\hat{S}^Y := \{(\lambda,\mu)\in S_x (\hat{S}_{\operatorname{POR}}, \hat{A}_{-})\} \times (S_{\operatorname{POR}}, \hat{R}(w)) : K_{\operatorname{POR}}(\hat{A}_{-} - \lambda I) \cap \operatorname{Ker}(\hat{R}(w) - \mu I)\}$ .

$$S_{r_0}^{y} := \{(\lambda, \mu) \in (\operatorname{Spec}_J A_{v_y}) \times (\operatorname{Spec}_J R(v_y)) ; \operatorname{Ker}(A_{v_y} - \lambda I) \cap \operatorname{Ker}(R(v_y) - \mu I) \neq \{0\} \\ \& \lambda \neq \hat{f}_{r_0}(\mu) \}$$

 $(y \in M^{\mathbb{C}})$ . Define a distribution  $\hat{D}$  on  $M^{\mathbb{C}}$  by

$$\hat{D}_{y} := \bigoplus_{(\lambda,\mu)\in\hat{S}_{r_{0}}^{y}} \left( \operatorname{Ker}(\hat{A}_{v_{y}} - \lambda I) \cap \operatorname{Ker}(\hat{R}(v_{y}) - \mu I) \right) \quad (y \in M^{\mathbb{C}})$$

and  $\hat{D}^{\perp}$  the orthogonal complementary distribution of  $\hat{D}$  in  $T(M^{\mathbb{C}})$ . Also, define a distribution D on M by  $D_x := \bigoplus_{(\lambda,\mu) \in \hat{S}_{r_0}^x} (\operatorname{Ker}(A_x - \lambda I) \cap \operatorname{Ker}(R(v_x) - \mu I)) (x \in M)$  and  $D^{\perp}$  the orthogonal complementary distribution of D in TM. Under the identification of  $T_x(M^{\mathbb{C}})$  with  $(T_x M)^{\mathbb{C}}$ ,  $\hat{D}_x$  is identified with the complexification  $(D_x)^{\mathbb{C}}$  of  $D_x$ . The focal map  $f_{r_0}$  is a submersoin of  $M^{\mathbb{C}}$  onto F and the fibres of  $f_{r_0}$  are integral manifolds of  $\hat{D}^{\perp}$ . Let L be the integral manifold of  $\hat{D}^{\perp}$  through x and set  $L_{\mathbb{R}} := L \cap M$ . It is shown that L is the extrinsic complexification of  $L_{\mathbb{R}}$ . Set  $Q := \{\psi_{|r_0|}(\frac{r_0}{|r_0|}v_x); x \in L\}$  and  $Q_{\mathbb{R}} := \{\psi_{|r_0|}(\frac{r_0}{|r_0|}v_x); x \in L_{\mathbb{R}}\}$ . It is shown that Q is the extrinsic complexification of  $Q_{\mathbb{R}}$  and that Q is a complex hypersurface without geodesic point in  $T_{f_{r_0}(x)}^{\perp}F$ , that is, it is not contained in any complex affine hyperplane of  $T_{f_{r_0}(x)}^{\perp}F$ . According to Lemma 5.1, we have

$$\varPhi\Big(\psi_{|r_0|}\Big(\frac{r_0}{|r_0|}v_y\Big)\Big) = -\frac{r_0}{|r_0|}\sum_{\substack{(\lambda,\mu)\in S_{r_0}^y\\\lambda-\hat{\tau}_{r_0}(\mu)}}\frac{\mu+\lambda\hat{\tau}_{r_0}(\mu)}{\lambda-\hat{\tau}_{r_0}(\mu)}\times m_{\lambda,\mu}.$$

Let  $(\tilde{\lambda}, \tilde{\mu})$  be a pair of continuous functions on  $L_{\mathbb{R}}$  such that  $(\tilde{\lambda}(y), \tilde{\mu}(y)) \in S_{r_0}^y$  for any  $y \in L$ . Since G/K is of rank one,  $\tilde{\mu}$  is constant on  $L_{\mathbb{R}}$ . The complex focal radius having  $\operatorname{Ker}(A_y - \tilde{\lambda}(y)I) \cap \operatorname{Ker}(R(v_y) - \tilde{\mu}(y)I)$  as a part of the focal space is the complex number  $z_0$  satisfying  $\operatorname{Ker}(D_{z_0v_y}^{c_0} - z_0 D_{z_0v_y}^{s_i} \circ A_y^{\mathbb{C}})|_{\operatorname{Ker}(A_y - \tilde{\lambda}(y)I) \cap \operatorname{Ker}(R(v_y) - \tilde{\mu}(y)I)} \neq \{0\}$ , that is, it is equal to  $(1/\sqrt{\tilde{\mu}(y)}) \arctan(\sqrt{\tilde{\mu}(y)}/\tilde{\lambda}(y))$ , which is independent of the choice of  $y \in L_{\mathbb{R}}$  by the isoparametricness (hence complex equifocality) of M. Hence  $\tilde{\lambda}$  is constant on  $L_{\mathbb{R}}$ . Therefore  $\Phi$  is constant along  $Q_{\mathbb{R}}$ . Since  $\Phi$  is of class  $C^{\omega}$  and  $Q_{\mathbb{R}}$  is a half-dimensional totally real submanifold in Q,  $\Phi \equiv 0$ . In particular, we have  $\operatorname{Tr} A_{\psi_{T_0}(v_x)}^F = 0$ .

PROOF OF THEOREM B (GENERAL CASE). According to Lemma 5.1, we have only to show  $\operatorname{Tr}_J A_{\psi|r_0|}^F(\frac{r_0}{|r_0|}v_{x_0}) = 0$  ( $x_0 \in M$ ). We shall show this relation by investigating the focal submanifold of  $(\pi \circ \phi)^{-1}(M^{\mathbb{C}})$  corresponding to  $r_0$ , where  $\phi$  (:  $H^0([0, 1], \mathfrak{g}^{\mathbb{C}}) \to G^{\mathbb{C}}$ ) is the parallel transport map for  $G^{\mathbb{C}}$  and  $\pi$  is the natural projection of  $G^{\mathbb{C}}$  onto  $G^{\mathbb{C}}/K^{\mathbb{C}}$ . Let  $\widetilde{M}^{\mathbb{C}}$ be the complete extension of  $(\pi \circ \phi)^{-1}(M^{\mathbb{C}})$ . Let  $v^L$  be the horizontal lift of v to  $\widetilde{M}^{\mathbb{C}}$ . Since  $\pi \circ \phi$  is an anti-Kaehlerian submersion, the complex focal radii of  $M^{\mathbb{C}}$  (hence M) are those of  $\widetilde{M}^{\mathbb{C}}$ . Let  $r_0$  be a complex focal radius of M (hence  $\widetilde{M}^{\mathbb{C}}$ ). The focal map  $\widetilde{f}_{r_0}$  for  $r_0$  is defined by  $\widetilde{f}_{r_0}(x) = x + r_0 v_x^L$  ( $x \in \widetilde{M}^{\mathbb{C}}$ ). Set  $\widetilde{F} := \widetilde{f}_{r_0}(\widetilde{M}^{\mathbb{C}})$ . Denote by  $\widetilde{A}$  (resp.  $A^{\widetilde{F}}$ ) the shape tensor of  $\widetilde{M}^{\mathbb{C}}$  (resp.  $\widetilde{F}$ ). Let  $\operatorname{Spec}_J \widetilde{A}_{v_0^L} \setminus \{0\} = \{\lambda_i; i = 1, 2, \ldots\}$  (" $|\lambda_i| > |\lambda_{i+1}|$ " or " $|\lambda_i| =$  $|\lambda_{i+1}|$  &  $\operatorname{Re}_{\lambda_i} > \operatorname{Re}_{\lambda_{i+1}}$ " or " $|\lambda_i| = |\lambda_{i+1}|$  &  $\operatorname{Re}_{\lambda_i} = \operatorname{Re}_{\lambda_{i+1}}$  &  $\operatorname{Im}_{\lambda_i} = -\operatorname{Im}_{\lambda_{i+1}} > 0$ "). The set of all complex focal radii of  $M^{\mathbb{C}}$  (hence M) is equal to  $\{1/\lambda_i; i = 1, 2, \ldots\}$ . We have  $r_0 = 1/\lambda_{i_0}$  for some  $i_0$ . Define a distribution  $\widetilde{D}_i$  ( $i = 0, 1, 2, \ldots$ ) on  $\widetilde{M}^{\mathbb{C}}$  by

$$\begin{split} &(\widetilde{D}_{0})_{u}:=\operatorname{Ker}\widetilde{A}_{\widetilde{v}_{u}^{L}} \text{ and }(\widetilde{D}_{i})_{u}:=\operatorname{Ker}(\widetilde{A}_{\widetilde{v}_{u}^{L}}-\lambda_{i}I) \ (i=1,2,\ldots), \text{ where } u\in \widetilde{M}^{\mathbb{C}}. \text{ Since } M \text{ is a curvature-adapted isoparametric submanifold admitting no focal point of non-Euclidean type on <math>N(\infty), \widetilde{M}^{\mathbb{C}}$$
 is proper anti-Kaehlerian isoparametric by Fact 5. Therefore, we have  $T\widetilde{M}^{\mathbb{C}} = \widetilde{D}_{0} \oplus (\bigoplus_{i} \widetilde{D}_{i})$  and  $\operatorname{Spec}_{J}\widetilde{A}_{\widetilde{v}_{u}^{L}}$  is independent of the choice of  $u \in \widetilde{M}^{\mathbb{C}}. \text{ Take } u_{0} \in \widetilde{M}^{\mathbb{C}}$  with  $(\pi \circ \phi)(u_{0}) = x_{0}. \text{ Let } X_{i} \in (\widetilde{D}_{i})_{u_{0}} \ (i \neq i_{0}) \text{ and } X_{0} \in (\widetilde{D}_{0})_{u_{0}}. \text{ Then we have } \widetilde{f}_{r_{0}}X_{i} = (1 - r_{0}\lambda_{i})X_{i} \text{ and } \widetilde{f}_{r_{0}}X_{0} = X_{0}. \text{ Hence we have } T_{\widetilde{f}_{r_{0}}(u_{0})}\widetilde{F} = (\widetilde{D}_{0})_{u_{0}} \oplus (\bigoplus_{i\neq i_{0}}(\widetilde{D}_{i})_{u_{0}}) \text{ and } \operatorname{Ker}(\widetilde{f}_{r_{0}})_{*u_{0}} = (\widetilde{D}_{i_{0}})_{u_{0}}, \text{ which implies that } \widetilde{D}_{i_{0}} \text{ is integrable. On the other hand, we have } A_{\widetilde{\psi}_{|r_{0}|}(\frac{r_{0}}{r_{0}}v_{u_{0}})}^{\widetilde{F}}\widetilde{f}_{r_{0}}X_{1} = (\lambda_{i}r_{0})/|r_{0}|X_{i} \text{ and } A_{\widetilde{\psi}_{|r_{0}|}(\frac{r_{0}}{r_{0}}v_{u_{0}})}^{\widetilde{F}}\widetilde{f}_{r_{0}}X_{1} = \frac{\lambda_{i}|\lambda_{i_{0}}|}{\lambda_{i_{0}}-\lambda_{i}} \widetilde{f}_{r_{0}}\times X_{i} = 0, \text{ where } \widetilde{\psi} \text{ is the geodesic} flow of H^{0}([0, 1], \mathfrak{g}^{\mathbb{C}}). \text{ Therefore, we obtain } A_{\widetilde{\psi}_{|r_{0}|}(\frac{r_{0}}{r_{0}}v_{u_{0}})}^{\widetilde{F}}\widetilde{f}_{r_{0}}X_{i} = \frac{\lambda_{i}|\lambda_{i_{0}}|}{\lambda_{i_{0}}-\lambda_{i}}\widetilde{f}_{r_{0}}\times X_{i} = \frac{\lambda_{i}|\lambda_{i_{0}}|}{\lambda_{i_{0}}-\lambda_{i}} \widetilde{f}_{r_{0}}\times X_{i} = \frac{\lambda_{i}|\lambda_{i_{0}}|}{\lambda_{i_{0}}-\lambda_{i}} \widetilde{f}_{r_{0}}\times X_{i} = \frac{\lambda_{i}|\lambda_{i_{0}}|}{\lambda_{i_{0}}-\lambda_{i}}\times m_{i}, \text{ where } m_{i} := \frac{1}{2}\dim\widetilde{D}_{i}. \text{ According to Theorem 2 of [19], each leaf of <math>\widetilde{D}_{i_{0}}$  is a complex sphere. Let L be the leaf of  $\widetilde{D}_{i}$  through  $u_{0}$  and  $u_{0}^{*}$  be the anti-podal point of  $u_{0}$  in the complex sphere L. Similarly we can show  $\operatorname{Tr}_{J}A_{\widetilde{\psi}_{|r_{0}|}(\frac{r_{0}}{|r_{0}|}v_{u_{0}})} = \sum_{i\neq i_{0}} \frac{\lambda_{i}|\lambda_{i_{0}}|}{\lambda_{i_{0}}-\lambda_{i}}\times m_{i}. \text{ Thus we have }\operatorname{Tr}_{J}A_{\widetilde{\psi}_{|r_{0}|}(\frac{r_{$ 

(5.4) 
$$\operatorname{Tr}_{J}A_{\widetilde{\psi}_{|r_0|}(\frac{r_0}{|r_0|}v_{u_0}^L)}^{\widetilde{F}} = 0.$$

It follows from (i) and (ii) of Lemma 5.2 that  $F := f_{r_0}(M^{\mathbb{C}})$  is a curvature adapted anti-Kaehlerian submanifold. Also, it follows from (iv) of Remark 1.2, (5.3), (i) and (iii) of Lemma 5.2 that, for each unit normal vector w of F and each  $\mu \in \operatorname{Spec}_J R(w) \setminus \{0\}$ ,  $\operatorname{Ker}(A_w^F \pm \sqrt{-\mu I}) \cap \operatorname{Ker}(R(w) - \mu I) = \{0\}$  holds. Therefore, it follows from Lemma 4.1 that  $\widetilde{F}$  is a proper anti-Kaehlerian Fredholm submanifold and, for each unit normal vector w of F, we have  $\operatorname{Tr}_J A_{wL}^{\widetilde{F}} = \operatorname{Tr}_J A_w^F$ . It is clear that  $\widetilde{\psi}_{|r_0|}(\frac{r_0}{|r_0|}v_{u_0}^L)$  is the horizontal lift of  $\psi_{|r_0|}(\frac{r_0}{|r_0|}v_{x_0})$  to  $\widetilde{f}_{r_0}(u_0)$ . Hence we have

(5.5) 
$$\operatorname{Tr}_{J} A_{\psi_{|r_{0}|}(\frac{r_{0}}{|r_{0}|}v_{x_{0}})}^{F} = \operatorname{Tr}_{J} A_{\widetilde{\psi}_{|r_{0}|}(\frac{r_{0}}{|r_{0}|}v_{u_{0}})}^{\widetilde{F}}$$

From (5.4) and (5.5), we have  $\operatorname{Tr}_J A^F_{\psi_{|r_0|}(\frac{r_0}{|r_0|}v_{x_0})} = 0$ . This completes the proof.

Now we prepare the following lemma to prove Theorem C.

LEMMA 5.3. Let M be a curvature-adapted isoparametric  $C^{\omega}$ -hypersurface in a symmetric space N := G/K of non-compact type. Assume that M has no focal point of non-Euclidean type on  $N(\infty)$ . Then, for any complex focal radius r of M, we have

Spec 
$$(A_x|_{\operatorname{Ker} R(v_x)}) \subset \left\{\frac{1}{\operatorname{Re} r}, 0\right\}$$

and

$$\operatorname{Spec}\left(A_{x}|_{\operatorname{Ker}(R(v_{x})-\mu I)}\right) \subset \left\{\frac{\sqrt{-\mu}}{\tanh(\sqrt{-\mu}\operatorname{Re} r)}, \sqrt{-\mu}\tanh(\sqrt{-\mu}\operatorname{Re} r)\right\}$$
  
for  $\mu \in \operatorname{Spec}R(v_{x}) \setminus \{0\}$ , where x is an arbitrary point of M.

PROOF. For simplicity, we set  $D_{\mu} := \operatorname{Ker}(R(v_x) - \mu \operatorname{id})$  for each  $\mu \in \operatorname{Spec} R(v_x)$ . Let  $r_0$  be the complex focal radius of M with  $\operatorname{Rer}_0 = \max \operatorname{Rer}$ , where r runs over the set of all complex focal radii of M. Let  $(\lambda, \mu) \in S_{r_0}^x \setminus \{(0, 0)\}$  and r a complex focal radius including  $\operatorname{Ker}(A_v - \lambda I) \cap D_{\mu}$  as the focal space, that is,  $\lambda = \hat{\tau}_r(\mu)$  (see (ii) of Remark 1.2). Set  $c_{\lambda,\mu} := -\frac{\mu + \lambda \hat{\tau}_{r_0}(\mu)}{\lambda - \hat{\tau}_{r_0}(\mu)}$ . We shall show  $\operatorname{Re} c_{\lambda,\mu} \leq 0$ . The argument divides into the following three cases:

(i) 
$$\mu = 0$$
 (ii)  $0 < \sqrt{-\mu} < |\lambda|$  (iii)  $|\lambda| < \sqrt{-\mu}$ .

First we consider the case (i). Then we have  $c_{\lambda,\mu} = \frac{\lambda}{1-\lambda r_0}$ . Also, we can show  $\lambda = 1/r$ . Hence we have

Furthermore, we have  $\operatorname{Re} c_{\lambda,\mu} \leq 0$  from the choice of  $r_0$ . Next we consider the case (ii). Since  $\lambda = \hat{\tau}_r(\mu)$  and  $\lambda$  is a real number with  $|\lambda| > \sqrt{-\mu}$ , we can show  $\lambda = \hat{\tau}_{\operatorname{Re} r}(\mu) (= \frac{\sqrt{-\mu}}{\tanh(\sqrt{-\mu}\operatorname{Re} r)})$  and  $r \equiv \operatorname{Re} r \pmod{(\pi \mathbf{i})}/{\sqrt{-\mu}}$ . Hence we have  $c_{\lambda,\mu} = \hat{\tau}_{(r_0-\operatorname{Re} r)}(\mu)$ , where we note that  $\operatorname{Re} r \neq r_0 \pmod{(\pi \mathbf{i})}/{\sqrt{-\mu}}$  because  $(\lambda, \mu) \in S_{r_0}^x$ . Therefore, we obtain

(5.7) 
$$\operatorname{Re} c_{\lambda,\mu} = \frac{\sqrt{-\mu} \left( 1 + \tan^2(\sqrt{-\mu}\operatorname{Im} r_0) \right) \tanh(\sqrt{-\mu}(\operatorname{Re} r - \operatorname{Re} r_0))}{\tanh^2(\sqrt{-\mu}(\operatorname{Re} r - \operatorname{Re} r_0)) + \tan^2(\sqrt{-\mu}\operatorname{Im} r_0)} \le 0$$

because Rer  $\leq$  Rer<sub>0</sub>. Next we consider the case (iii). Since  $\lambda = \hat{\tau}_r(\mu)$  and  $\lambda$  is a real number with  $|\lambda| < \sqrt{-\mu}$ , we can show  $\lambda = \hat{\tau}_{(\operatorname{Re} r + \frac{\pi i}{2\sqrt{-\mu}})}(\mu) (= \sqrt{-\mu} \tanh(\sqrt{-\mu}\operatorname{Re} r))$  and  $r \equiv \operatorname{Re} r + \frac{\pi i}{2\sqrt{-\mu}} (\operatorname{mod} \frac{\pi i}{\sqrt{-\mu}})$ . Hence we have  $c_{\lambda,\mu} = \hat{\tau}_{(r_0 - \operatorname{Re} r + \frac{\pi i}{2\sqrt{-\mu}})}(\mu)$ . Therefore, we obtain

(5.8) 
$$\operatorname{Re}_{c_{\lambda,\mu}} = \frac{\sqrt{-\mu} \left( 1 + \tan^2(\sqrt{-\mu}\operatorname{Im} r_0) \right) \tanh(\sqrt{-\mu}(\operatorname{Re} r - \operatorname{Re} r_0))}{1 + \tanh^2(\sqrt{-\mu}(\operatorname{Re} r - \operatorname{Re} r_0)) \tan^2(\sqrt{-\mu}\operatorname{Im} r_0)} \le 0$$

Thus  $\operatorname{Re}_{\lambda,\mu} \leq 0$  is shown in general. Hence, from the identity in Theorem B,  $\operatorname{Re}_{\lambda,\mu} = 0$  $((\lambda, \mu) \in S_{r_0}^x)$  follows, where we note that  $c_{0,0} = 0$ . In case of (i), it follows from (5.6) that  $\operatorname{Re}\left(\frac{1}{r-r_0}\right) = 0$ . Hence we have  $\operatorname{Re} r = \operatorname{Re} r_0(<\infty)$  or  $r = \infty$ . If  $\operatorname{Re} r = \operatorname{Re} r_0(<\infty)$ , then we have  $\lambda = 1/r = 1/\operatorname{Re} r_0 = \hat{\tau}_{\operatorname{Re} r_0}(0)$  (which does not happen if  $r_0$  is real because  $(\lambda, 0) \in S_{r_0}^x$ ). Also, if  $r = \infty$ , then we have  $\lambda = 0$ . Thus we have

(5.9) 
$$\operatorname{Spec}(A_x|_{D_0}) \subset \left\{\frac{1}{\operatorname{Re} r_0}, 0\right\}.$$

In case of (ii), it follows from (5.7) that  $\operatorname{Re} r = \operatorname{Re} r_0$ . Hence we have  $\lambda = \hat{\tau}_{\operatorname{Re} r_0}(\mu)$  (which does not happen if  $r_0 \equiv \operatorname{Re} r_0 \pmod{(\pi \mathbf{i})}/{\sqrt{-\mu}}$  because  $(\lambda, \mu) \in S_{r_0}^{\chi}$ ). In case of (iii), it

follows from (5.8) that  $\operatorname{Re} r = \operatorname{Re} r_0$ . Hence we have  $\lambda = \hat{\tau}_{(\operatorname{Re} r_0 + \frac{\pi i}{2\sqrt{-\mu}})}(\mu)$  (which does not happen if  $r_0 \equiv \operatorname{Re} r_0 + \frac{\pi \mathbf{i}}{2\sqrt{-\mu}} \pmod{(\pi \mathbf{i})}{\sqrt{-\mu}}$  because  $(\lambda, \mu) \in S_{r_0}^{\chi}$ . Hence we have

(5.10) 
$$\operatorname{Spec}(A_x|_{D_{\mu}}) \subset \left\{ \frac{\sqrt{-\mu}}{\tanh(\sqrt{-\mu}\operatorname{Rer}_0)}, \sqrt{-\mu}\tanh(\sqrt{-\mu}\operatorname{Rer}_0) \right\}.$$
  
This complets the proof.

This complets the proof.

Next we prove Theorem C in terms of this Lemma and its proof.

PROOF OF THEOREM C. According to the proof of Lemma 5.3, the real parts of complex focal radii of M coincide with one another. Denote by  $s_0$  this real part. Then, according to Lemma 5.3, we have

$$\operatorname{Spec}(A_x|_{D_0}) \subset \left\{\frac{1}{s_0}, 0\right\}$$

and

$$\operatorname{Spec}(A_{x}|_{D_{\mu}}) \subset \left\{ \frac{\sqrt{-\mu}}{\tanh(\sqrt{-\mu}s_{0})}, \sqrt{-\mu} \tanh(\sqrt{-\mu}s_{0}) \right\} \quad (\mu \in \operatorname{Spec} R(v_{x}) \setminus \{0\}).$$
  
Set  $D_{0}^{V} := \operatorname{Ker}\left(A_{x}|_{D_{0}} - \frac{1}{s_{0}}\operatorname{id}\right), D_{0}^{H} := \operatorname{Ker}A_{x}|_{D_{0}},$ 
$$D_{\mu}^{V} := \operatorname{Ker}\left(A_{x}|_{D_{\beta}} - \frac{\sqrt{-\mu}}{\tanh(\sqrt{-\mu}s_{0})}\operatorname{id}\right)$$
  
and

and

$$D^H_{\mu} := \operatorname{Ker} \left( A_x |_{D_{\beta}} - \sqrt{-\mu} \tanh(\sqrt{-\mu} s_0) \operatorname{id} \right) \,.$$

According to (ii) of Remark 1.2, if  $D_0^V \oplus \left( \bigoplus_{\mu \in \text{Spec } R(v_x) \setminus \{0\}} D_\mu^V \right) \neq \{0\}$ , then  $s_0$  is a (real) focal radius of M whose focal space is equal to  $D_0^V \oplus \left(\bigoplus_{\mu \in \text{Spec } R(v_x) \setminus \{0\}} D_{\mu}^V\right) \neq \{0\}$ . Let  $\eta_{sv}$ ( $s \in \mathbb{R}$ ) be the end-point map for sv. Set  $M_s := \eta_{sv}(M)$ . Set  $F := M_{s_0}$ . If  $s_0$  is a (real) focal radius of M, then F is the only focal submanifold of M, and if  $s_0$  is not a (real) focal radius of M, then F is a parallel submanifold of M. Without loss of generality, we may assume that  $eK \in F$ . Define a unit normal vector field  $v^s$  of  $M_s$   $(0 \le s < s_0)$  by  $v_{\eta_{sv}(x)}^s = \gamma'_{v_x}(s)$   $(x \in M)$ . Denote by  $A^s$   $(0 \le s < s_0)$  the shape operator of  $M_s$  (for  $v^s$ ) and  $A^F$  the shape tensor of F. Set  $(D_0^V)^s := (\eta_{sv})_*(D_0^V)$   $(0 \le s < s_0)$  and  $(D_{\mu}^V)^s := (\eta_{sv})_*(D_{\mu}^V)$   $(0 \le s < s_0, \mu \in \mathbb{R})$ Spec  $R(v_x) \setminus \{0\}$ ). Also, set  $(D_0^H)^s := (\eta_{sv})_*(D_0^H)$   $(s \in \mathbb{R})$  and  $(D_\mu^H)^s := (\eta_{sv})_*(D_\mu^H)$  $(s \in \mathbb{R}, \mu \in \text{Spec } R(v_x) \setminus \{0\})$ . Easily we have

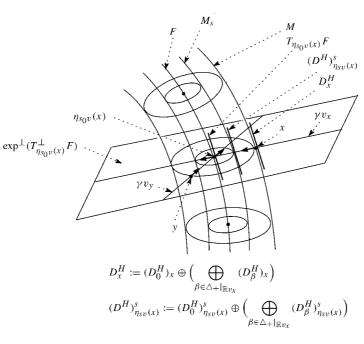
(5.11) 
$$T_{\eta_{s_0v}(x)}F = (D_0^H)^{s_0}_{\eta_{s_0v}(x)} \oplus \left(\bigoplus_{\mu \in \text{Spec } R(v_x) \setminus \{0\}} (D_\mu^H)^{s_0}_{\eta_{s_0v}(x)}\right).$$

Also, we can show

$$A^{s}_{\eta_{sv}(x)}|_{(D^{H}_{0})^{s}_{\eta_{sv}(x)}} = 0 \quad (0 \le s < s_{0})$$

and

$$A_{\eta_{sv}(x)}^{s}|_{(D_{\beta}^{H})_{\eta_{sv}(x)}^{s}} = \mu \tanh(\sqrt{-\mu}(s_{0} - s)) \text{ id } (0 \le s < s_{0})$$





Hence we have

$$A_{\psi_{s_0}(v_x)}^F|_{(D_0^H)_{\eta_{s_0}v^{(x)}}^{s_0}} = 0$$

and

$$A_{\psi_{s_0}(v_x)}^F|_{(D_{\beta}^H)_{\eta_{s_0}v(x)}^{s_0}} = \left(\lim_{s \to s_0 - 0} \sqrt{-\mu} \tanh(\sqrt{-\mu}(s_0 - s))\right) \mathrm{id} = 0,$$

where  $\psi$  is the geodesic flow of G/K. From these relations and (5.11), we obtain  $A_{\psi_{x_0}(v_x)}^F = 0$ . Since this relation holds for any  $x \in M$ , F is totally geodesic. Denote by  $\exp^{\perp}$  the normal exponential map for F. Since the real parts of complex focal radii of M coincide with one another, the normal umbrella  $\exp^{\perp}(T_x^{\perp}F)$ 's  $(x \in F)$  do not intersect with one another. From this fact, an involutive diffeomorphism  $\tau : G/K \to G/K$  having F as the fixed point set is well-defined by  $\tau(\exp^{\perp}(w)) := \exp^{\perp}(-w)$   $(w \in T^{\perp}F)$ . For each  $s \in \mathbb{R} \setminus \{s_0\}$ , the restriction  $\tau|_{M_s}$  of  $\tau$  to  $M_s$  coincides with the end-point map  $\eta_{2(s_0-s)v^s}$  for  $2(s_0-s)v^s$ . Since F is totally geodesic, we see that  $\eta_{2(s_0-s)v^s}$  (hence  $\tau|_{M_s}$ ) is an isometry of  $M_s$ . From this fact, it follows that  $\tau$  is an isometry of G/K. Hence F is reflective. Furthermore, by imitating the proof of [16, Proposition 1.12], we can show that F is an orbit of a Hermann action on G/K as follows. Take  $\exp Z_0 \in F$ , where  $\exp$  is the exponential map of G/K at o. Set  $\mathfrak{m} := \operatorname{Ad}(\exp(-Z_0))((\exp Z_0)_*^{-1}(T_{\operatorname{Exp}}Z_0F))$ , where Ad is the adjoint operator of G. Define a subalgebra  $\mathfrak{k}'$  of  $\mathfrak{g}$  by  $\mathfrak{k}' := \{X \in \mathfrak{k}; \operatorname{ad}(X)\mathfrak{m} = \mathfrak{m}\}$  and set  $\mathfrak{h} := \mathfrak{k}' + \mathfrak{m}$ , which is a subalgebra of  $\mathfrak{g}$ .

exp  $Z_0$ . Easily we can show that  $T_{\operatorname{Exp} Z_0}(H\operatorname{Exp} Z_0) = T_{\operatorname{Exp} Z_0}F$  and hence  $H\operatorname{Exp} Z_0 = F$ . Define an involution  $\hat{\tau}$  of G by  $\hat{\tau}(g) := \tau \circ g \circ \tau^{-1}$  ( $g \in G$ ). It is easy to show that  $(\operatorname{Fix} \hat{\tau})_0 \subset H \subset \operatorname{Fix} \hat{\tau}$ . Thus  $H \curvearrowright G/K$  is a Hermann action. Let  $H^{\mathbb{C}}$  be the complexification of H and  $M^{\mathbb{C}}(\subset G^{\mathbb{C}}/K^{\mathbb{C}})$  be the complete complexification of M. See [22] about the definition of the complete complexification of M. Since both  $H^{\mathbb{C}} \cdot o$  and  $M^{\mathbb{C}}$  are anti-Kaehler equifocal submanifolds having  $F^{\mathbb{C}}$  as a focal submanifold, they are equal to one of the partial tubes over  $F^{\mathbb{C}}$  stated in Section 5 in [22]. Thus they coincides with each other. Furthermore, from this fact, we can derive  $H \cdot o = M$ . This completes the proof.  $\Box$ 

## REFERENCES

- J. BERNDT, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132–141.
- [2] J. BERNDT, Real hypersurfaces in quaterionic space forms, J. Reine Angew. Math. 419 (1991), 9–26.
- [3] J. BERNDT AND L. VANHECKE, Curvature adapted submanifolds, Nihonkai Math. J. 3 (1992), 177-185.
- [4] J. BERNDT AND M. BRÜCK, Cohomogeneity one actions on hyperbolic spaces, J. Reine Angew. Math. 541 (2001), 209–235.
- [5] J. BERNDT, S. CONSOLE AND C. OLMOS, Submanifolds and holonomy, Chapman & Hall/CRC Res. Notes Math.\434, Chapman & Hall/CRC, Boca Raton, FL, 2003.
- [6] J. BERNDT AND H. TAMARU, Homogeneous codimension one foliations on noncompact symmetric space, J. Differential Geom. 63 (2003), 1–40.
- [7] J. BERNDT AND H. TAMARU, Cohomogeneity one actions on noncompact symmetric spaces with a totally geodesic singular orbit, Tohoku Math. J. 56 (2004), 163–177.
- [8] J. E. D'ATRI, Certain isoparametric families of hypersurfaces in symmetric spaces, J. Differential Geom. 14 (1979), 21–40.
- [9] H. EWERT, Equifocal submanifolds in Riemannian symmetric spaces, Doctoral thesis.
- [10] L. GEATTI, Complex extensions of semisimple symmetric spaces, Manuscripta Math. 120 (2006), 1–25.
- O. GOERTSCHES AND G. THORBERGSSON, On the geometry of the orbits of Hermann actions, Geom. Dedicata 129 (2007), 101–118.
- [12] E. HEINTZE, X. LIU AND C. OLMOS, Isoparametric submanifolds and a Chevalley type restriction theorem, Integrable systems, geometry, and topology, 151–190, AMS/IP Stud. Adv. Math. 36, Amer. Math. Soc., Providence, RI, 2006.
- [13] E. HEINTZE, R. S. PALAIS, C. L. TERNG AND G. THORBERGSSON, Hyperpolar actions on symmetric spaces, Geometry, topology, & physics, 214–245, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995.
- [14] S. HELGASON, Differential geometry, Lie groups and symmetric spaces, Pure Appl. Math. 80, Academic Press, Inc., New York-London, 1978.
- [15] W. Y. HSIANG AND H. B. LAWSON JR., Minimal submanifolds of low cohomogeneity, J. Differential Geom. 5 (1971), 1–38.
- [16] T. KIMURA AND M. S. TANAKA, Stability of certain minimal submanifolds in compact symmetric spaces of rank two, Differential Geom. Appl. 27 (2009), 23–33.
- [17] N. KOIKE, On proper Fredholm submanifolds in a Hilbert space arising from submanifolds in a symmetric space, Japan. J. Math. (N.S.) 28 (2002), 61–80.
- [18] N. KOIKE, Submanifold geometries in a symmetric space of non-compact type and a pseudo-Hilbert space, Kyushu J. Math. 58 (2004), 167–202.
- [19] N. KOIKE, Complex equifocal submanifolds and infinite dimensional anti-Kaehlerian isoparametric submanifolds, Tokyo J. Math. 28 (2005), 201–247.

- [20] N. KOIKE, Actions of Hermann type and proper complex equifocal submanifolds, Osaka J. Math. 42 (2005), 599–611.
- [21] N. KOIKE, A splitting theorem for proper complex equifocal submanifolds, Tohoku Math. J. 58 (2006), 393– 417.
- [22] N. KOIKE, The homogeneous slice theorem for the complete complexification of a proper complex equifocal submanifold, Tokyo J. Math. 33 (2010), 1–30.
- [23] N. KOIKE, On curvature-adapted and proper complex equifocal submanifolds, Kyungpook Math. J. 50 (2010), 509–536.
- [24] N. KOIKE, Hermann type actions on a pseudo-Riemannian symmetric space, Tsukuba J. Math. 34 (2010), 137–172.
- [25] N. KOIKE, Examples of a complex hyperpolar action without singular orbit, Cubo A Math. 12 (2010), 127– 143.
- [26] N. KOIKE, The complexifications of pseudo-Riemannian manifolds and anti-Kaehler geometry, arXiv:math.DG/0807.1601v3.
- [27] A. KOLLROSS, A Classification of hyperpolar and cohomogeneity one actions, Trans. Amer. Math. Soc. 354 (2001), 571–612.
- [28] R. MIYAOKA, Transnormal functions on a Riemannian manifold, Differential Geom. Appl. 31 (2013), 130– 139.
- [29] T. MURPHY, Curvature-adapted submanifolds of symmetric spaces, Indiana Univ. Math. J. 61 (2012), 831– 847.
- [30] B. O'NEILL, Semi-Riemannian Geometry, with Applications to Relativity, Academic Press, New York, 1983.
- [31] R. S. PALAIS, Morse theory on Hilbert manifolds, Topology 2 (1963), 299-340.
- [32] R. S. PALAIS AND C. L. TERNG, Critical point theory and submanifold geometry, Lecture Notes in Math. 1353, Springer-Verlag, Berlin, 1988.
- [33] R. SZÖKE, Adapted complex structures and geometric quantization, Nagoya Math. J. 154 (1999), 171-183.
- [34] R. SZÖKE, Involutive structures on the tangent bundle of symmetric spaces, Math. Ann. 319 (2001), 319–348.
- [35] R. SZÖKE, Canonical complex structures associated to connections and complexifications of Lie groups, Math. Ann. 329 (2004), 553–591.
- [36] Z. TANG, Multiplicities of equifocal hypersurfaces in symmetric spaces, Asian J. Math. 2 (1998), 181–214.
- [37] C. L. TERNG AND G. THORBERGSSON, Submanifold geometry in symmetric spaces, J. Differential Geom. 42 (1995), 665–718.
- [38] Q. M. WANG, Isoparametric functions on Riemannian manifolds I, Math. Ann. 277 (1987), 639-646.
- [39] B. WU, Isoparametric submanifolds of hyperbolic spaces, Trans. Amer. Math. Soc. 331 (1992), 609-626.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE TOKYO UNIVERSITY OF SCIENCE 1–3 KAGURAZAKA SHINJUKU-KU TOKYO 162–8601 JAPAN

E-mail address: koike@ma.kagu.tus.ac.jp