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Abstract: This paper reports a new Cartesian-grid collocation method based on radial-

basis-function networks (RBFNs) for numerically solving elliptic partial differential equa-

tions (PDEs) in irregular domains. The domain of interest is embedded in a Cartesian

grid, and the governing equation is discretized by using a collocation approach. The

new features here are (a) One-dimensional integrated RBFNs are employed to represent

the variable along each line of the grid, resulting in a significant improvement of com-

putational efficiency, (b) The present method does not require complicated interpolation

techniques for the treatment of Dirichlet boundary conditions in order to achieve a high

level of accuracy, and (c) Normal derivative boundary conditions are imposed by means

of integration constants. The method is verified through the solution of second- and

fourth-order PDEs; accurate results and fast convergence rates are obtained.

Key words: integrated radial-basis-function network, collocation method, Cartesian grid,

irregular domain.

1 INTRODUCTION

Partial differential equations arise in the mathematical modelling of physical phenom-

ena. Solutions to these equations can be obtained by means of numerical discretization

methods. It is well known that the finite-element method (FEM) is the most popular

discretization method in engineering computations. A salient feature of the FEM is that

it requires a mesh to support the interpolation of a solution variable and the integration

of a Galerkin weak form. For problems involving complex geometries, generating a mesh

is typically the most costly and time-consuming part of the solution process. As a result,

much effort has been devoted to the development of the so-called meshless methods and

Cartesian-grid methods.

Meshless methods have attracted a great deal of attention in recent decades. The domain
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of interest is simply represented by a set of unstructured discrete points. For a local,

truly-meshless method, only a small region associated with a point, a node’s region of

influence, is activated to construct the approximations for that point, and the governing

equation is solved by employing a variety of approaches, including point collocation, local

symmetric weak form and local boundary-integral-equation formulation. The two most

common shapes of an influence domain are circles and rectangles. Implementing local

background overlapping cells is much easier than implementing a mesh (non-overlapping

and fixed topology). Comprehensive discussions on meshless methods can be found in

review articles and monographs, see for example [1-4].

Cartesian-grid methods have a long history. In recent years, there has been a renewed

interest in the development of these methods, and their applications have become much

more widespread. The irregular domain of interest is embedded in a Cartesian grid.

Generating a Cartesian grid is a straightforward task, and hence the computational costs

associated with mesh generation are greatly reduced. However, attention must be paid to

the issue of how to handle irregular boundaries. The incorporation of boundary conditions

on the immersed boundaries needs to be conducted in a way that does not adversely

impact the accuracy of the method. There is a vast amount of literature on this subject,

see for example [5-10] and references therein. For most Cartesian-grid methods reported,

they are based on a finite-difference or a finite-volume discretization, which usually lead

to methods that are second-order accurate.

Radial-basis-function networks (RBFNs) can be considered as a universal approximation

scheme [11]. Madych and Nelson [12,13] showed that the RBF interpolation scheme using

multiquadrics (MQ) exhibits exponential convergence/spectral accuracy. The application

of MQ-RBFNs for the solution of PDEs has been an active research area over the past

fifteen years. A great number of publications are available, see for example [14-19] and

references therein. The MQ collocation method is truly meshless, and it is extremely easy

to implement. The main drawback of the method is the lack of mathematical theories
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for finding the appropriate values of network parameters. For example, the RBF width,

which strongly affects the performance of RBFNs, has still been chosen either by empirical

approaches or by optimization techniques, see for example [16,17]. On the other hand, in a

computation, only a finite number of digits can be retained by the computer. As a result,

it remains very difficult to achieve such exponential convergence in practice, even for the

case of function approximation. As an alternative to the conventional direct/differentiated

RBFN (DRBFN) method, Mai-Duy and Tran-Cong [18,20] proposed using integration to

construct the RBFN expressions (the indirect/integrated RBFN (IRBFN) method) for the

approximation of a function and its derivatives and for the solution of PDEs. Numerical

results showed that the IRBFN method achieves superior accuracy. The improvement is

attributable to the fact that integration is a smoothing operation and is more numerically

stable.

In this study, a Cartesian-grid method based on IRBFNs for solving PDEs in irregular

domains is proposed. One-dimensional IRBFNs are employed to represent the variable

along each line of the grid. The construction of RBF approximations for a point x

involves only points that lie on lines intersected at x and parallel to the x− and y−axes,

rather than the whole set of data points. The inversion is now conducted for a series of

small matrices rather than for a large matrix. This use of 1D-IRBFNs thus leads to a

considerable economy in forming the system matrix over the 2D-IRBFN method reported

in [18,21-24].

The main challenge faced by Cartesian-grid methods is how to represent the boundary

conditions, especially for normal derivatives, on non-rectangular boundaries accurately.

For the classical finite-difference method (FDM), the point adjacent to the boundary

requires forms with changing ∆x and ∆y in order to impose boundary conditions, and

such changes deteriorate the order of truncation error [25]. The proposed method does

not require an underlying mesh along a grid line, and one can impose Dirichlet boundary

conditions in a straightforward manner. In addition, the use of integration to construct the

4



RBF approximations provides a good means for implementing normal derivative boundary

conditions. These can be seen as advantages of the 1D-IRBFN method over the FDM.

Three types of problems, namely the Poisson equation with Dirichlet boundary conditions,

the biharmonic equation with Dirichlet boundary conditions, and the Poisson equation

with Dirichlet and Neumann boundary conditions, are considered. The obtained results

are compared with those of the conventional DRBFN method where appropriate; the

proposed method outperforms the conventional one with respect to the condition num-

ber of the system matrix, accuracy and convergence rate. For all test problems, the

method yields accurate results and fast convergence rates. It is worth mentioning that its

performance for fourth-order PDEs is far superior to that for second-order PDEs.

The remainder of the paper is organized as follows. The proposed method is presented

and verified for the three types of problems in sections 2, 3 and 4, respectively. Section 5

gives some concluding remarks.

2 POISSON EQUATION WITH DIRICHLET BOUND-

ARY CONDITIONS

2.1 Formulation

Consider the Poisson equation

∇2u = b, (1)

in a bounded two-dimensional domain with Dirichlet boundary conditions, where b is a

driving function. The irregular domain of interest is embedded in a rectangular domain

(Figure 1) and it is then discretized using a Cartesian grid, i.e. an array of straight lines

that run parallel to the x− and y−axes. Let Nx and Ny be the numbers of grid lines
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in the x− and y−directions, respectively. The interior points are defined as grid points

inside the problem domain, while the boundary points are generated by the intersection of

the grid lines with boundaries. Grid nodes outside the problem domain are removed from

the computations. It can be seen that the task of generating a Cartesian grid is much

easier than the task of generating a finite-element mesh. How to automatically choose

the boundary and interior points from Cartesian grids is beyond the scope of this study.

Consider a grid point/regular point x (x = (x, y)T ) (Figure 1). Along the horizontal

line passing through this point, one can use IRBFNs to construct the expressions for

the function u and its derivatives with respect to x. The construction process can be

described as follows. The second-order derivative of u is first decomposed into RBFs;

the RBF network is then integrated twice to obtain the expressions for the first-order

derivative and the function itself

∂2u(x)

∂x2
=

N∑

i=1

w(i)g(i)(x) =
N∑

i=1

w(i)H
(i)
[2] (x), (2)

∂u(x)

∂x
=

N∑

i=1

w(i)H
(i)
[1] (x) + c1, (3)

u(x) =
N∑

i=1

w(i)H
(i)
[0] (x) + c1x + c2, (4)

where N is the number of nodal points (interior and boundary points) on the line, {w(i)}N
i=1

are RBF weights to be determined, {g(i)(x)}N
i=1 are known RBFs, H[1](x) =

∫
H[2](x)dx,

H[0](x) =
∫

H[1](x)dx, and c1 and c2 are integration constants. Here, it is referred to

as a second-order 1D-IRBFN scheme, denoted by IRBFN-2. The present study employs

multiquadrics (MQ) whose form is

g(i)(x) =
√

(x − c(i))2 + a(i)2, (5)

where c(i) and a(i) are the centre and the RBF width/shape parameter of the ith RBF.

The set of centres is chosen to be the same as the set of the collocation points.
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It is more convenient to work in the physical space than in the network-weight space. The

values of the variable u at the N nodal points can be expressed as

u(x(1)) =
N∑

i=1

w(i)H
(i)
[0] (x

(1)) + c1x
(1) + c2, (6)

u(x(2)) =
N∑

i=1

w(i)H
(i)
[0] (x

(2)) + c1x
(2) + c2, (7)

· · · · · · · · · · · · · · ·

u(x(N)) =
N∑

i=1

w(i)H
(i)
[0] (x

(N)) + c1x
(N) + c2, (8)

or in a matrix form

û = H




ŵ

ĉ


 , (9)

where û = (u(1), u(2), · · · , u(N))T , ŵ = (w(1), w(2), · · · , w(N))T , ĉ = (c1, c2)
T , and H is a

known matrix of dimension N × (N + 2) defined as

H =




H
(1)
[0] (x(1)) H

(2)
[0] (x(1)) · · · H

(N)
[0] (x(1)) x(1) 1

H
(1)
[0] (x(2)) H

(2)
[0] (x(2)) · · · H

(N)
[0] (x(2)) x(2) 1

· · · · · · · · · · · · · · · · · ·

H
(1)
[0] (x(N)) H

(2)
[0] (x(N)) · · · H

(N)
[0] (x(N)) x(N) 1




.

Using the singular value decomposition (SVD) technique, one can write the RBF co-

efficients including two integration constants in terms of the meaningful nodal variable

values 


ŵ

ĉ


 = H−1û. (10)

It is noted that the purpose of using SVD here is to provide a solution whose norm is the

smallest in the least-squares sense. By substituting (10) into (2)-(4), the values of u and
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its derivatives with respective to x at point x can now be computed by

∂2u(x)

∂x2
=
(
H

(1)
[2] (x), H

(2)
[2] (x), · · · , H

(N)
[2] (x), 0, 0

)
H−1û, (11)

∂u(x)

∂x
=
(
H

(1)
[1] (x), H

(2)
[1] (x), · · · , H

(N)
[1] (x), 1, 0

)
H−1û, (12)

u(x) =
(
H

(1)
[0] (x), H

(2)
[0] (x), · · · , H

(N)
[0] (x), x, 1

)
H−1û. (13)

It is noted that the above expressions are applicable to any point on the line through

x parallel to the x−axis. Since u(1) and u(N) are given (Dirichlet boundary conditions),

(11)-(13) can be rewritten in the form

∂2u(x)

∂x2
= D2xûip + k2x, (14)

∂u(x)

∂x
= D1xûip + k1x, (15)

u(x) = D0xûip + k0x, (16)

where ûip = (u(2), u(3), · · · , u(N−1))T , Dix (i = {0, 1, 2}) are known matrices of dimension

1 × (N − 2), and kix (i = {0, 1, 2}) are known constants whose values depend on the

boundary conditions.

Similarly, along the vertical line passing through point x, one can obtain the 1D-IRBFN

expressions for u and its derivatives with respect y

∂2u(y)

∂y2
= D2yûip + k2y, (17)

∂u(y)

∂y
= D1yûip + k1y, (18)

u(y) = D0yûip + k0y. (19)

It can be seen that the 1D-IRBFN approximations for u and its derivatives are written

in terms of interior nodal values of u. Let Nip be the total number of interior points, and

Nbpx and Nbpy be the numbers of boundary points generated by the intersection of the
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horizontal and vertical grid lines with the boundaries, respectively. Applying (14), (15),

(17) and (18) to the nodal points over the whole domain, and then putting the obtained

results together (like the assembly process in the FEM), one can obtain the following

compact matrix-vector forms

∂̃2u

∂x2
= D̃2xũip + k̃2x, (20)

∂̃u

∂x
= D̃1xũip + k̃1x, (21)

∂̃2u

∂y2
= D̃2yũip + k̃2y, (22)

∂̃u

∂y
= D̃1yũip + k̃1y, (23)

where ∂̃2u
∂x2 =

(
∂2u(1)

∂x2 , ∂2u(2)

∂x2 , · · · , ∂2u
(Nbpx+Nip)

∂x2

)T

, ũip is a vector that consists of all interior

nodal values of u, D̃2x is a known matrix of dimension (Nbpx + Nip)×Nip, k̃2x is a known

vector, and so on.

Since the variable u is prescribed along the boundary, one only needs to find the values of

u at the interior points. The objective here is to generate a number of algebraic equations

equal to the number of unknowns. This can be achieved by collocating the governing

equation (1) at the interior points (ip). Making use of (20) and (22), the discrete form of

(1) can be written as (
∂̃2u

∂x2

)

ip

+

(
∂̃2u

∂y2

)

ip

=
(
b̃
)

ip
, (24)

or [(
D̃2x

)
ip

+
(
D̃2y

)
ip

]
ũip =

(
b̃
)

ip
−
(
k̃2x

)
ip
−
(
k̃2y

)
ip

, (25)

or

Ãũip = r̃, (26)

where Ã is an Nip × Nip matrix, and r̃ is a vector that is determined by the prescribed

boundary values and the known driving function in the differential equation.
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2.2 Numerical Results

For all numerical examples presented in this study, the width of the ith MQ-RBF, a(i),

is simply chosen to be the minimum distance from the ith centre to its neighbours, and

the interior points that fall very close to the boundary (within the distance of h/8, h−the

spacing (grid size)) are removed from the set of nodal points.

The accuracy of an approximation scheme is measured by means of the discrete relative

L2 error defined as

Ne =

√
∑M

i=1

(
u

(i)
e − u(i)

)2

√
∑M

i=1

(
u

(i)
e

)2
, (27)

where M is the number of unknown nodal values of u, and ue and u are the exact and

computed solutions, respectively. Another important measure is the convergence rate of

the solution with respect to the refinement of spatial discretization

Ne(h) ≈ γhα = O(hα) (28)

in which α and γ are exponential model’s parameters. Given a set of observations, these

parameters can be found by the general linear least squares technique.

Consider the following Poisson equation

∇2u = −18π2 sin(3πx) sin(3πy) (29)

in a hollow domain (the region lying between a circle R = 1/2 and a square of 1/2 × 1/2

(Figure 2) with Dirichlet boundary conditions. The exact solution, which is plotted in

(Figure 2), is given by

u = sin(3πx) sin(3πy). (30)

To provide the basis for the assessment of the proposed method, the conventional DRBFN
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method is also considered here. It uses the same sets of interior points and inner boundary

points as the proposed method. However, the outer boundary points are replaced with

(Nx + Ny) points that are uniformly distributed along the circular boundary for a better

performance. Since the DRBFN approximations are written in terms of network weights,

it leads to the system matrix of dimension (Nip + Nbp) × (Nip + Nbp).

A number of uniform Nx×Ny grids, namely 9×9, 13×13, · · · , 101×101, are employed to

study the convergence behaviour of the solution. Results concerning the condition number

of the system matrix and the discrete relative L2 error of the interior solution are given

in Table 1. In terms of the condition number of the system, the proposed method yields

condition numbers about four orders of magnitude lower than those associated with the

conventional method. In terms of accuracy, more accurate results and faster convergence

are achieved; for example, the convergence order and the L2 error (Ne at the finest grid

of 101 × 101) are O(h3.23) and 9.93 × 10−6 for the 1D-IRBFN method, and O(h1.52) and

2.02 × 10−3 for the DRBFN method. It can also be seen that the obtained convergence

rate O(h3.23) is faster than those of the standard Cartesian-grid methods reported in the

literature (about O(h2)). However, the present system matrix is not as sparse as those of

finite- difference and finite-volume methods. A theoretical proof of the superior accuracy

of the IRBFN method and the non-singularity of indirect RBFN matrices cannot be

offered at this stage. Further studies are needed.
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3 BIHARMONIC EQUATION WITH DIRICHLET

BOUNDARY CONDITIONS

3.1 Formulation

The process of deriving the 1D-IRBFN formulation for biharmonic equations is similar to

that for Poisson equations. However, the corresponding equations involve more terms, and

one needs to pay attention to the following two issues: (a) the implementation of double

boundary conditions (u and ∂u/∂n) and (b) the treatment of mixed partial derivatives

∂4u/∂x2∂y2. Notations used in this section and in the previous one have similar meanings.

Consider a grid point x (Figure 1). The nodal points along the horizontal line pass-

ing through point x are used to construct the approximations for u and ∂iu/∂xi (i =

{1, 2, 3, 4})

∂4u(x)

∂x4
=

N∑

i=1

w(i)g(i)(x) =
N∑

i=1

w(i)H
(i)
[4] (x), (31)

∂3u(x)

∂x3
=

N∑

i=1

w(i)H
(i)
[3] (x) + c1, (32)

∂2u(x)

∂x2
=

N∑

i=1

w(i)H
(i)
[2] (x) + c1x + c2, (33)

∂u(x)

∂x
=

N∑

i=1

w(i)H
(i)
[1] (x) + c1

x2

2
+ c2x + c3, (34)

u(x) =
N∑

i=1

w(i)H
(i)
[0] (x) + c1

x3

6
+ c2

x2

2
+ c3x + c4, (35)

in which the fourth-order derivative of u is decomposed into RBFs. Here, it is referred to

as a fourth-order 1D-IRBF scheme, denoted by IRBF-4.
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Some relevant matrices and vectors to be used for the conversion process are given below

H =




H
(1)
[0] (x(1)) H

(2)
[0] (x(1)) · · · H

(N)
[0] (x(1)) x(1)3/6 x(1)2/2 x(1) 1

H
(1)
[0] (x(2)) H

(2)
[0] (x(2)) · · · H

(N)
[0] (x(2)) x(2)3/6 x(2)2/2 x(2) 1

· · · · · · · · · · · · · · · · · · · · · · · ·

H
(1)
[0] (x(N)) H

(2)
[0] (x(N)) · · · H

(N)
[0] (x(N)) x(N)3/6 x(N)2/2 x(N) 1




ŵ =




w(1)

w(2)

· · ·

w(N)




, ĉ =




c1

c2

c3

c4




, û =




u(1)

u(2)

· · ·

u(N)




.

It can be seen that the presence of integration constants allows the addition of some extra

equations to the conversion system. Given the double boundary conditions u and ∂u/∂n,

it is straightforward to obtain the values of ∂u/∂x and ∂u/∂y along the boundaries. The

additional matrix and vector can be generated as follows

K =




H
(1)
[1] (x(1)) H

(2)
[1] (x(1)) · · · H

(N)
[1] (x(1)) x(1)2/2 x(1) 1 0

H
(1)
[1] (x(N)) H

(2)
[1] (x(N)) · · · H

(N)
[1] (x(N)) x(N)2/2 x(N) 1 0


 ,

f̂ =




∂u
∂x

(x(1))

∂u
∂x

(x(N))


 .

The conversion process thus becomes




û

f̂


 =




H

K







ŵ

ĉ


 = C




ŵ

ĉ


 , (36)




ŵ

ĉ


 = C−1




û

f̂


 . (37)
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Substitution of (37) into (31)-(34) yields

∂4u(x)

∂x4
=
(
H

(1)
[4] (x), H

(2)
[4] (x), · · · , H

(N)
[4] (x), 0, 0, 0, 0

)
C−1




û

f̂


 , (38)

∂3u(x)

∂x3
=
(
H

(1)
[3] (x), H

(2)
[3] (x), · · · , H

(N)
[3] (x), 1, 0, 0, 0

)
C−1




û

f̂


 , (39)

∂2u(x)

∂x2
=
(
H

(1)
[2] (x), H

(2)
[2] (x), · · · , H

(N)
[2] (x), x, 1, 0, 0

)
C−1




û

f̂


 , (40)

∂u(x)

∂x
=

(
H

(1)
[1] (x), H

(2)
[1] (x), · · · , H

(N)
[1] (x),

x2

2
, x, 1, 0

)
C−1




û

f̂


 . (41)

Since u(1), u(N) and f̂ are known, the above expressions can be rewritten as

∂iu(x)

∂xi
= DIV

ix ûip + kIV
ix , i = {1, 2, 3, 4}, (42)

where the superscript IV is used to indicate that Dix and kix are obtained using the

IRBF-4 scheme, DIV
ix are known matrices of dimension 1 × (N − 2), and kix are known

constants.

Similarly, the approximations for ∂iu/∂yi (i = {1, 2, 3, 4}) at point x are constructed

using the nodal points along the vertical line passing through that point

∂iu(y)

∂yi
= DIV

iy ûip + kIV
iy , i = {1, 2, 3, 4}. (43)

Applying (42) and (43) to the nodal points over the whole domain leads to

∂̃iu

∂xi
= D̃IV

ix ũip + k̃IV
ix , (44)

∂̃iu

∂yi
= D̃IV

iy ũip + k̃IV
iy , (45)
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where D̃IV
ix and D̃IV

iy are known matrices of dimensions (Nip + Nbpx) × Nip and (Nip +

Nbpy) × Nip, respectively.

The mixed fourth-order partial derivative ∂4u/∂x2∂y2 can be computed by means of

relevant second-order derivatives according to the following relation

∂4u

∂x2∂y2
=

1

2

(
∂2

∂x2

(
∂2u

∂y2

)
+

∂2

∂y2

(
∂2u

∂x2

))
. (46)

Due to the fact that the cross derivative needs information from both x− and y− direc-

tions, it is straightforward to obtain the values of this derivative only at the grid points

(i.e interior points). Fortunately, the governing equation is required to be discretized at

the interior points only. Expression (46) can be computed by

2

(
∂̃4u

∂x2∂y2

)

ip

= D̃∗

2x

(
∂̃2u

∂y2

)

ip

+ D̃∗

2y

(
∂̃2u

∂x2

)

ip

, (47)

where the construction of D̃∗

2x and D̃∗

2y is similar to that of D̃2x (20) and D̃2y (22), except

that the present training points do not include the boundary points (k̃∗

2x = k̃∗

2y = []).

Substitution of (44) and (45) with i = 2 into (47) yields

2

(
∂̃4u

∂x2∂y2

)

ip

= D̃∗

2x

(
D̃IV

2y

)
ip

ũip + D̃∗

2y

(
D̃IV

2x

)
ip

ũip + k̃∗

4xy, (48)

= D̃∗

4xyũip + k̃∗

4xy, (49)

where D̃∗

4xy is a known matrix of dimension Nip × Nip and k̃∗

4xy is a known vector.

Using (44), (45) with i = 4 and (49), the biharmonic equation ∇4u = b can be reduced

to the following square system of algebraic equations

(
∂̃4u

∂x4

)

ip

+ 2

(
∂̃4u

∂x2∂y2

)

ip

+

(
∂̃4u

∂y4

)

ip

= (b)ip , (50)
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or

((
D̃IV

4x

)
ip

+ D̃∗

4xy +
(
D̃IV

4y

)
ip

)
ũip = (b)ip −

((
k̃4x

)
ip

+ k̃∗

4xy +
(
k̃4y

)
ip

)
, (51)

or

Ãũip = r̃, (52)

where Ã is an Nip × Nip matrix.

3.2 Numerical Results

The problem here is to find a function u(x, y) satisfying the following biharmonic equation

∇4u = 256(π2 − 1)2 [sin(4πx) cosh(4y) − cos(4πx) sinh(4y)] (53)

defined on an annulus domain of radii R1 = 1/4 and R2 = 1/2 (Figure 3) and subject to

Dirichlet boundary conditions (u and ∂u/∂n). The exact solution (Figure 3) is given by

u = [sin(4πx) cosh(4y) − cos(4πx) sinh(4y)] (54)

from which the boundary data can be easily obtained.

The convergence behaviour of the method is numerically investigated using a number of

uniform Cartesian grids, 11 × 11, 17 × 17, · · · , 67 × 67. Table 2 shows that the proposed

method produces a very high convergence rate, O(h5.39). The condition numbers of the

system matrix are relatively low, only up to O(105). When compared to the case of

Poisson equation (Table 1), it can be seen that the accuracy of the proposed method is

enhanced with increasing order of the PDE. It appears that the method is particularly well

suited to the solution of high-order PDEs. This observation is similar to those reported

in [22,24].
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4 POISSON EQUATION WITH DIRICHLET AND

NEUMANN BOUNDARY CONDITIONS

4.1 Formulation

Special treatment is required for the imposition of Neumann boundary conditions at

immersed boundaries. Viswanathan [26] proposed constructing a FD approximation at

grid nodes that lie adjacent to the curved boundary by taking into account the rate of

change of the normal gradient of u along the boundary. In the work of Thuraisamy [6], the

normal derivative at a boundary point was approximated using two lines that intersect at

that point and make angles of π/4 on either side of the local normal direction. Recently,

Sanmigue-Rojas et al [27] reported a technique for generating a non-uniform Cartesian

grid in which all the boundary nodes are regular nodes of the grid. As a result, the

values of derivatives with respect to x and y at the boundary points can be computed in

a straightforward manner. The technique of Sanmigue-Rojas and his co-workers will be

applied here to discretize sub-regions involving the Neumann boundary condition.

Consider a domain as shown in Figure 4. A Neumann boundary condition is specified on

the segment CD, while Dirichlet boundary conditions are applied along AB, BC, DE, EF

and FA (AB=BC=DE=EF=1/2). The requirement here is that the boundary points on

the segment CD are also grid nodes, thereby avoiding the usual complicated interpolations

at the boundaries. Let bp∗ denote the boundary points on CD. Since ip and bp∗ are grid

nodes, one can easily obtain their 1D-IRBFN expressions for derivatives with respect to x

and y. To obtain the values of u at ip and bp∗, one needs to generate a set of (Nip +Nbp∗)

algebraic equations.
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4.1.1 Approach 1

The system of equations is generated here by applying the governing equation to the

interior points ip and by collocating the Neumann boundary condition at the boundary

points bp∗.

The construction of the 1D-IRBFN approximations for this case is similar to the previous

case of Poisson equation with Dirichlet boundary conditions. One only needs to pay a

little attention to lines that cross the segment CD. For the vector û in (11)-(12), only the

first component u(1) is given, while the remaining components {u(2), u(3), · · · , u(N)} are

unknowns to be found. Expressions (14) and (16) thus become

∂2u(x)

∂x2
= D2x




ûip

u(x(N))


+ k2x, (55)

∂u(x)

∂x
= D1x




ûip

u(x(N))


+ k1x, (56)

u(x) = D0x




ûip

u(x(N))


+ k1x, (57)

where kix (i = {0, 1, 2}) are known constants whose values depend on u(1).

The assembly process leads to

∂̃2u

∂x2
= D̃2xũip+bp∗ + k̃2x, (58)

∂̃u

∂x
= D̃1xũip+bp∗ + k̃1x, (59)

∂̃2u

∂y2
= D̃2yũip+bp∗ + k̃2y, (60)

∂̃u

∂y
= D̃1yũip+bp∗ + k̃1y, (61)
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For this approach, the system of equations can be written as

(
∂̃2u

∂x2

)

ip

+

(
∂̃2u

∂y2

)

ip

=
(
b̃
)

ip
(62)

nx

(
∂̃u

∂x

)

bp∗

+ ny

(
∂̃u

∂y

)

bp∗

=

(
∂̃u

∂n

)

bp∗

, (63)

or

[(
D̃2x

)
ip

+
(
D̃2y

)
ip

]
ũip+bp∗ =

(
b̃
)

ip
−
(
k̃2x

)
ip
−
(
k̃2y

)
ip

, (64)

[
nx

(
D̃1x

)
bp∗

+ ny

(
D̃1y

)
bp∗

]
ũip+bp∗ =

(
∂̃u

∂n

)

bp∗

− nx

(
k̃1x

)
bp∗

− ny

(
k̃1y

)
bp∗

, (65)

or

Ãũip+bp∗ = r̃, (66)

where nx and ny are the components of the unit vector normal to the boundary CD, and

Ã is an (Nip + Nbp∗) × (Nip + Nbp∗) matrix.

4.1.2 Approach 2

Unlike Approach 1, the nodal values of the Neumann boundary condition on the bound-

ary CD are imposed through the conversion process. Consequently, it allows the exact

satisfaction of the governing equation not only at the interior points ip but also at the

boundary points bp∗.

Consider a horizontal line that crosses the line CD. The conversion process is based on
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the following equations

u(x(1)) =
N∑

i=1

w(i)H
(i)
[0] (x

(1)) + c1x
(1) + c2, (67)

u(x(2)) =
N∑

i=1

w(i)H
(i)
[0] (x

(2)) + c1x
(2) + c2, (68)

· · · · · · · · · · · · · · ·

u(x(N)) =
N∑

i=1

w(i)H
(i)
[0] (x

(N)) + c1x
(N) + c2, (69)

nx

∂u

∂x
(x(N)) =

N∑

i=1

w(i)H
(i)
[1] (x

(N)) + c1, (70)

or in a matrix form 


û

nx
∂u
∂x

(x(N))


 = C




ŵ

ĉ


 , (71)

or 


ŵ

ĉ


 = C−1




û

nx
∂u
∂x

(x(N))


 = C−1




û

∂u
∂n

(x(N)) − ny
∂u
∂y

(x(N))


 . (72)

Since ∂u(x(N))/∂n is given and the value of ∂u(x(N))/∂y can be replaced with a linear

combination of nodal values of u using (61) (the expression of ∂u/∂y from Approach 1),

one can express the RBF coefficients in terms of nodal variable values. The remainder of

the construction process is similar to those of the previous sections.

For this approach, the system of equations can be written as

(
∂̃2u

∂x2

)

ip+bp∗

+

(
∂̃2u

∂y2

)

ip+bp∗

=
(
b̃
)

ip+bp∗
, (73)

or

[(
D̃2x

)
ip+bp∗

+
(
D̃2y

)
ip+bp∗

]
ũip+bp∗ =

(
b̃
)

ip+bp∗
−
(
k̃2x

)
ip+bp∗

−
(
k̃2y

)
ip+bp∗

, (74)
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or

Ãũip+bp∗ = r̃, (75)

where Ã is an (Nip + Nbp∗) × (Nip + Nbp∗) matrix.

4.2 Numerical Results

The proposed method is applied to solve the Poisson equation of the form

∇2u = 4 [cos(2x) cosh(2y) + sin(2x) sinh(2y)] (76)

with the exact solution being

u = x [sin(2x) cosh(2y) − cos(2x) sinh(2y)] . (77)

The variation of (77) over the square that covers the problem domain is plotted in Figure

4. A number of uniform grids, 7×7, 11×11, · · · , 81×81, are employed. Table 3 reveals that

Approach 2 is superior to Approach 1 with respect to the condition number of the system

matrix, accuracy and convergence rate. The proposed method converges apparently as

O(h1.93) for Approach 1 and O(h2.40) for Approach 2. At the finest grid, Nes are 6.88×10−5

and 3.34×10−6 for Approach 1 and Approach 2, respectively. Imposing normal derivatives

by means of integration constants is recommended for use.

5 CONCLUDING REMARKS

This paper reports a new Cartesian-grid RBF collocation method for numerically solving

elliptic PDEs in irregular domains. The proposed method combines the efficiency of a

Cartesian-grid method and the property of high-order convergence of a 1D-integrated RBF
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interpolation scheme. Three types of problems, namely Poisson equation with Dirich-

let boundary condition, biharmonic equation with Dirichlet boundary condition, Poisson

equation with Dirichlet and Neumann boundary conditions, are investigated. The nodal

values of the variable along the boundary can be accommodated straightforwardly, while

the boundary values of its normal derivative can be imposed effectively through the pro-

cess of converting network weights into nodal variable values. The proposed method

requires much less computational effort than the 2D-IRBFN method. Numerical tests

show that the method yields fast convergence, i.e third- and fifth-order accuracy with

respect to grid size for the the solution of second- and fourth-order PDEs, respectively.
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Table 1: Example 1 (Poisson equation, Dirichlet boundary conditions): Condition number
and accuracy obtained by the conventional DRBFN and the proposed 1D-IRBF methods.
Notice that h is the spacing (grid size) and a(−b) means a × 10−b.

Grid cond(Ã) Ne(u)
DRBFN 1D-IRBFN DRBFN 1D-IRBFN

9 × 9 1.67(4) 3.81(0) 1.27(-1) 1.08(-1)
13 × 13 6.96(4) 1.98(1) 4.24(-2) 8.30(-3)
17 × 17 1.68(5) 3.52(1) 3.14(-2) 1.78(-3)
21 × 21 3.34(5) 6.03(1) 2.56(-2) 1.06(-3)
25 × 25 5.88(5) 4.55(1) 1.71(-2) 5.57(-4)
29 × 29 9.39(5) 6.19(1) 1.25(-2) 4.26(-4)
33 × 33 1.44(6) 1.31(2) 9.26(-3) 2.46(-4)
37 × 37 2.05(6) 1.62(2) 7.72(-3) 1.91(-4)
41 × 41 2.83(6) 2.62(2) 6.96(-3) 1.39(-4)
45 × 45 3.76(6) 2.59(2) 7.57(-3) 1.11(-4)
49 × 49 4.94(6) 3.77(2) 5.94(-3) 8.27(-5)
53 × 53 6.26(6) 3.37(2) 4.86(-3) 6.71(-5)
57 × 57 7.88(6) 4.90(2) 4.29(-3) 5.27(-5)
61 × 61 9.69(6) 5.24(2) 3.91(-3) 4.36(-5)
65 × 65 1.17(7) 5.94(2) 4.16(-3) 3.71(-5)
69 × 69 1.41(7) 6.84(2) 3.87(-3) 3.13(-5)
73 × 73 1.67(7) 8.00(2) 3.32(-3) 2.59(-5)
77 × 77 1.97(7) 8.13(2) 2.91(-3) 2.21(-5)
81 × 81 2.30(7) 9.21(2) 2.68(-3) 1.89(-5)
85 × 85 2.66(7) 1.31(3) 2.51(-3) 1.64(-5)
89 × 89 3.06(7) 1.39(3) 2.48(-3) 1.45(-5)
93 × 93 3.50(7) 1.03(3) 2.45(-3) 1.30(-5)
97 × 97 3.98(7) 1.45(3) 2.22(-3) 1.12(-5)

101 × 101 4.50(7) 1.34(3) 2.02(-3) 9.93(-6)
O(h1.52) O(h3.23)

26



Table 2: Example 2 (biharmonic equation, Dirichlet boundary conditions): Condition
number and accuracy. Notice that h is the spacing (grid size) and a(−b) means a× 10−b.

Grid cond(Ã) Ne(u)
11 × 11 2.93(1) 1.15(-2)
17 × 17 5.40(2) 1.05(-3)
21 × 21 2.12(3) 5.56(-4)
27 × 27 3.53(3) 4.81(-5)
31 × 31 1.41(4) 2.47(-5)
37 × 37 1.24(4) 1.46(-5)
41 × 41 3.41(4) 8.37(-6)
47 × 47 5.80(4) 1.97(-6)
51 × 51 8.37(4) 1.77(-6)
57 × 57 1.50(5) 1.37(-6)
61 × 61 2.29(5) 8.85(-7)
67 × 67 2.70(5) 5.87(-7)

O(h5.39)
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Table 3: Example 3 (Poisson equation, Dirichlet and Neumann boundary conditions):
Condition number and accuracy obtained by the proposed method. The Neumann bound-
ary conditions are imposed by adding addition equations to the system for Approach 1,
and by means of integration constants for Approach 2. Notice that h is the spacing (grid
size) and a(−b) means a × 10−b.

Grid cond(Ã) Ne(u)
Approach 1 Approach 2 Approach 1 Approach 2

7 × 7 2.01(2) 9.21(1) 1.00(-2) 2.20(-3)
11 × 11 5.47(2) 3.35(2) 3.91(-3) 4.13(-4)
17 × 17 2.06(3) 9.18(2) 1.62(-3) 1.17(-4)
21 × 21 3.99(3) 1.45(3) 1.05(-3) 6.85(-5)
27 × 27 9.34(3) 2.47(3) 6.33(-4) 3.70(-5)
31 × 31 1.51(4) 3.30(3) 4.79(-4) 2.69(-5)
37 × 37 1.67(4) 4.76(3) 3.34(-4) 1.79(-5)
41 × 41 2.25(4) 5.89(3) 2.72(-4) 1.42(-5)
47 × 47 3.40(4) 7.79(3) 2.06(-4) 1.05(-5)
51 × 51 4.43(4) 9.21(3) 1.75(-4) 8.84(-6)
57 × 57 6.85(4) 1.15(4) 1.39(-4) 7.01(-6)
61 × 61 7.95(4) 1.32(4) 1.21(-4) 6.04(-6)
67 × 67 1.08(5) 1.60(4) 1.00(-4) 4.96(-6)
71 × 71 1.32(5) 1.80(4) 8.98(-5) 4.40(-6)
77 × 77 1.48(5) 2.12(4) 7.62(-5) 3.71(-6)
81 × 81 1.68(5) 2.35(4) 6.88(-5) 3.34(-6)

O(h1.93) O(h2.40)
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1 2 3 Nx

Figure 1: Domain discretization. The boundary and interior points used for constructing
the IRBFN approximations at point x are highlighted.
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Figure 2: Example 1 (Poisson equation, Dirichlet boundary conditions): discretization
and exact solution. Notice that the exact solution is plotted over the square covering the
problem domain.
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Figure 3: Example 2 (biharmonic equation, Dirichlet boundary conditions): discretization
and exact solution. Notice that the exact solution is plotted over the square covering the
problem domain.
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Figure 4: Example 3 (Poisson equation, Dirichlet and Neumann boundary conditions):
discretization and exact solution. Notice that the exact solution is plotted over the square
covering the problem domain.
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