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Abstract: The performance of a facial expression recognition network degrades obviously under
situations of uneven illumination or partial occluded face as it is quite difficult to pinpoint the
attention hotspots on the dynamically changing regions (e.g., eyes, nose, and mouth) as precisely as
possible. To address the above issue, by a hybrid of the attention mechanism and pyramid feature,
this paper proposes a cascade attention-based facial expression recognition network on the basis of a
combination of (i) local spatial feature, (ii) multi-scale-stereoscopic spatial context feature (extracted
from the 3-scale pyramid feature), and (iii) temporal feature. Experiments on the CK+, Oulu-CASIA,
and RAF-DB datasets obtained recognition accuracy rates of 99.23%, 89.29%, and 86.80%, respectively.
It demonstrates that the proposed method outperforms the state-of-the-art methods in both the
experimental and natural environment.

Keywords: facial expression recognition; cascade attention; ResNeXt; pyramid feature; RAF-DB

1. Introduction

Human facial expression is one of the most natural and universal physiological signals
by which humans can convey their feelings and behavioral trends. According to Ekman’s
six basic cross-cultural emotions theory, facial expressions can be divided into six categories
(i.e., anger, disgust, fear, happiness, sadness, and surprise) [1]. Most studies relevant to
neutral emotions are based on the six basic emotions. Over the last 20 years, the field of
computer vision has advanced rapidly, with facial expression recognition being a focal
point due to its widespread application in human life such as human–computer interaction,
virtual reality, intelligent course systems, and so on [2]. A variety of novel methods
have greatly improved the accuracy of facial expression recognition. Among them, the
mainstream methods of static facial expression recognition include traditional manual
feature methods such as LBP [3] and SIFT [4]; nevertheless, the aforementioned traditional
methods have difficulty extracting powerful temporal features hidden in facial images by
manual descriptors. Because facial expression reflected in video sequences is a dynamic
process, many studies now employ dynamic methods to learn face image features while
incorporating face networks to extract temporal and spatial features of facial expression
images [5]. Mengyi Liu et al. proposed a spatio-temporal model obtained from the dense
low-level features of the video; subsequently, the generalized flow model is learned and
fitted from all low-level features [6]. Hasani et al. created a network that extends the
well-known 2D Inception-ResNet module, which is followed by a long short-term memory
(LSTM) that classifies the sequences using these temporal relationships [7]. Nonetheless,
the accuracy of facial expression recognition in video sequences is still influenced by
lighting, deflection, occlusion, and other objective factors affecting image quality [8]. To
address the issue, a variety of facial expression recognition methods [9–11] learn facial
expression features by eliminating the interference caused by various interference factors
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such as posture, identity, and illumination, and have improved recognition performance
for many public datasets collected in the laboratory or through various ways such as
CK+ [12,13], MMI [14], Oulu-CASIA [15], SFEW/AFEW [16], FERPlus [17], AffectNet [18],
EmotioNet [19], and RAF-DB [20,21].

Although the previously mentioned methods have some effects on expression recogni-
tion, there are some limitations; for example, eliminating interference factors may weaken
some important facial features. As a result, researchers want to use the human visual
mechanism (i.e., embed attention modules in neural networks to mimic human visual
perception) to enable the neural network to ignore irrelevant information and focus more
on the important information. For example, Jiyoung Lee et al. used recurrent attention
in the spatial encoder and sequential decoder networks to improve the accuracy of facial
expression recognition [22]. Jiaolong Yang et al. added double-layer attention blocks to
the aggregation network, effectively improving the performance of the neural network for
video facial recognition [23]. Qiangchang Wang et al. proposed a hierarchical pyramid
diversified attention network that could enrich the feature context information and make
the network more efficient in face recognition by considering hierarchical multi-scale lo-
cal features and combining them with attention [24]. Even though the existing attention
methods have contributed greatly to facial expression recognition, there is a problem of
the insufficient utilization of spatial features, in addition, the method of attention to ob-
tain the focal region also needs to be further improved. Consequently, there is still room
for improvement in recognition accuracy (by extracting stereoscopic spatial information
additionally) when they are used in a natural environment.

Fortunately, deep reinforcement learning (DRL) techniques have recently been pro-
posed, which enables the artificial agents to learn both the knowledge and experience
directly from the actual data. As demonstrated in [25], DRL, which integrates the con-
cepts of reinforcement learning and deep learning, can lead to better application results
in anomaly detection. In other words, DRL can augment spatial features in multi-layer
convolutional networks, which illuminated the idea of this study initially.

Under such a background, in this study, a pyramid structure was added into the
proposed network and the contextual information (provided by the multi-level structure
of the pyramid) was used, thereby constructing context-aware features and strengthening
the spatial features. Specifically, we proposed a cascade attention-based facial expression
recognition network to solve the facial expression recognition problems in video sequences
such as attitude, identity, head posture, lighting conditions, and occlusion. The cascade
attention-based facial expression recognition network consists of three parts: (i) local and
multi-scale-stereoscopic spatial context feature extraction module; (ii) cascaded attention
module; and (iii) temporal sequential feature extraction module. Given a batch of the face
image sequence, local spatial features will be extracted through the ResNeXt network [26]
first. The high-level features of the ResNeXt network will be saved and input into the
pyramid multi-scale-stereoscopic feature extractor during the extraction process. The two
parts’ local and multi-scale-stereoscopic spatial context features are then superimposed
and fused to form a complete spatial context. The entire spatial context is fed into the
cascaded attention module to obtain the attention aggregation feature. Then, the attention
aggregation features are input into the temporal sequential feature module to extract the
temporal information. Finally, the basic seven (anger, contempt, disgust, fear, happiness,
sadness, and surprise) facial expressions can be classified.

The main contributions of our work are summarized as follows:

(i) We used a two-branch network form to extract multi-scale-stereoscopic features of
faces using the pyramid mechanism so that the network can focus on key regions of
faces and thus improve the recognition accuracy.

(ii) We proposed a novel attention aggregation method for the feature-weighted ag-
gregation of local and multi-scale-stereoscopic spatial context features to focus on
regions that contribute more to facial expression recognition, and we investigated the
efficiency of single attention and cascading attention blocks for feature aggregation.
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(iii) We used cascading to combine the spatial feature extraction network and tempo-
ral feature extraction network to make the feature contextual information of facial
expressions richer, which results in better recognition performance of the network.

The rest of this paper is organized as follows. Section 2 introduces the research of
the attention aggregation method and the application of the pyramid feature. Section 3
describes the specific method of this research and provides the model’s overall framework.
Section 4 describes the specific experimental process and the analysis of the results. The
research is summarized in Section 5.

2. Related Work
2.1. Attention Mechanism

The attention mechanism has been widely used to enhance the performance of neu-
ral networks after SE-Net (the first channel attention mechanism) showed good perfor-
mance [27]. Attention development can be roughly divided into two branches: (i) feature
aggregation and (ii) a combination of channel attention and spatial attention. Y Li et al. pro-
posed a CNN with the attention mechanism, which consists primarily of two parts (region
segmentation and occlusion perception) to identify the occluded areas of the face and focus
on the unobscured areas [28]; GE adopts deep convolution, explores spatial expansion, and
implements feature aggregation [29]. In the second branch, Sanghyun Woo, Jongchan Park,
and colleagues adopted channel attention and spatial attention modules in neural networks
using the average pooling and maximum pooling methods and then sequentially combined
these two attention mechanisms to improve feature aggregation [30]. ScSE calculated
spatial attention using 2D convolution and then combined it with channel attention [31].
Wang Y. et al. proposed methods of time-series data (including text and video) classification
using LSTM with multi-residual attention mechanism [32,33]. In A2-Net, a new method
for image or video recognition based on NL block relation function was introduced [34].
Dual attention network for scene segmentation considers both NL-based channel attention
and spatial attention for semantic segmentation [35].

2.2. Pyramid Feature

Pyramid is usually used as a multi-scale feature extractor [36]. The simplest pyramid
feature is an image that goes through a convolutional layer for feature extraction, which is
then fed into multiple pooling layers, each of which outputs a feature map so that different
feature maps at multiple scales can be extracted.

In the ordinary feature extraction process, convolution operation and non-local atten-
tion operation are both used for feature extraction on the same scale of the image, which
results in a common drawback without using the regional information relationship of dif-
ferent spatial on the image [37]. Because non-local attention units are placed on higher-level
feature maps for feature extraction, long-term semantic information and correlation can
be calculated [38]. Dongyoon Han et al. proposed a deep pyramidal residual network,
which combines the idea of pyramid hierarchy with the residual network to effectively
improve the ability of image classification [39], illuminating us to take full advantage of
both attention mechanism and pyramid features.

3. Proposed Methodology
3.1. Method Overview

We proposed a multiple attention mechanism to classify the facial expression se-
quences in videos. In the preprocess period, we divided the video sequence into T parts
and randomly selected one frame in each part, and then obtained the selected T-frame
image sequence X as the input of the neural network to extract the facial expression features
of faces.

X =
{

x1, x2, . . . , xT
}

, (T ≤ N) (1a)
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where

T =

{
vthrehold, if N ≥ vthrehold = 3

N, else
(1b)

In Equations (1a) and (1b), xT is a random selection of image frames in each part
of the processed video sequence, and N denotes the total number of image frames after
processing the video. It should be noted that the division of the T parts is determined by
the size of N. In our study, we referred to the experimental results of the frame attention
network and set vthrehold to 3 [40] (i.e., vthrehold = 3). When the total number of image
frames obtained after processing the video is greater than or equal to 3 (i.e., N ≥ 3), the
sequence of image frames is automatically divided into three consecutive parts, which will
contain the starting or peak frames of the human facial expression, so three image frames
are randomly selected in the three parts (one from each part) for further processing, and
when the total number of image frames obtained after processing the video is less than
3 (i.e., N < 3), all the divided parts are processed (one from each part) (i.e., T = N). Our
goal was to obtain a good dynamic characteristic representation and classification for the
video image frame sequence xT .

Our proposed network model, the cascaded attention-based facial expression recogni-
tion network, is based on a combination of multiple attentions and consists of three main
modules: (i) a local and multi-scale-stereoscopic spatial context feature extraction module
Msp to extract features in the spatial dimension (we note that three different scales were
used in our study where the downsampling parameters were [1.0, 0.9, 0.8] to extract 3-scale
pyramid features), which was similar to [41]; (ii) a cascading attention module Matt to
extract attention features; and (iii) a temporal sequential feature extraction module Mtem to
extract features in the temporal dimension. The model structure is shown in Figure 1.

Figure 1. The architecture of the cascade attention-based facial expression recognition network model.
We note that X represents the input to the network; Conv-1, Pool-1, Conv-2, Conv-3, Conv-4, and
Conv-5 are the inner layers of the ResNeXt network; Pyramid denotes the pyramid feature extractor;
Fpa(x) denotes the output of the pyramid feature extractor; Fconv−4

(
xT) and Fconv−5

(
xT) represent

the output characteristics of Conv-4 and Conv-5 of the ResNeXt network, respectively; Fpc
(

xT)
denotes the input characteristics of the cascaded attention module; and

⊕
denotes the superimposed

fusion operation of the features. The face image in this figure is from the CK+ database “S113”.
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As shown in Figure 1, the local and multi-scale-stereoscopic spatial context feature
extraction module Msp selects a variant of the residual network, the ResNeXt network,
as the local and multi-scale-stereoscopic spatial context feature extractor and inputs the
extracted local and multi-scale-stereoscopic spatial context features into the cascaded
attention module Matt. Matt uses a two-layer attention cascade to learn the attention
weights from the local and multi-scale-stereoscopic spatial fusion features. The temporal
sequential feature extraction module Mtem takes the cascaded attention features as input
and extracts the temporal features using the gate recurrent unit (GRU). Finally, the temporal
features are fed to the fully connected layer to output the classification results.

3.2. Local and Multi-Scale-Stereoscopic Spatial Context Feature Extraction Module

As an advanced version of the traditional local spatial feature, multi-scale-stereoscopic
spatial context is proposed in this study, which correlates the facial image regions that are
concentrated across three different scales, and then used this correlation to extend the local
spatial feature.

The local and multi-scale-stereoscopic spatial context feature extraction module uses
the ResNeXt-50 network as the backbone network and incorporates pyramidal features.
ResNeXt is a hybrid of ResNet [42] and Inception [43], and it learns the local spatial context
features using grouped convolution. When a deep learning network reaches a certain depth,
it encounters the vanishing gradient and exploding gradient problems, causing the network
to lose its original performance. In addition, shortcut connections do not generate addi-
tional parameters to increase the learning pressure of the network and do not increase the
computational complexity of the network, thus ensuring the performance of the network.
The various convolutional branches in Inception networks that use grouped convolution
have many hyperparameters that are especially difficult to adjust. The ResNeXt incorpo-
rates a simplified Inception concept based on the powerful residual network, which not only
eliminates the effect of inception containing many hyperparameters, but also highlights
the benefits of ResNet. As a result, the network can effectively prevent the deep network’s
performance degradation. Meanwhile, the batch normalization [44] and dropout [45] layers
included in the network effectively prevent the network overfitting and gradient problems.
Table 1 shows the detailed structure of each layer of the ResNeXt network.

F
(

xT
)
= xT +

C

∑
i=1
Ji

(
xT
)

(2)

Table 1. Structure of ResNeXt-50.

Stage Stage Setting Output

Conv-1 7 × 7, 64, stride 2 (112, 112, 64)

Pool-1 3 × 3, MaxPool, stride 2 (56, 56, 64)

Conv-2
 1× 1, 128

3× 3, 128, C = 32
1× 1, 256

× 3
(56, 56, 128)

Conv-3
 1× 1, 256

3× 3, 256, C = 32
1× 1, 512

× 4
(28, 28, 256)

Conv-4
 1× 1, 512

3× 3, 512, C = 32
1× 1, 1024

× 6
(14, 14, 512)

Conv-5
 1× 1, 1024

3× 3, 1024, C = 32
1× 1, 2048

× 3
(7, 7, 2048)

Pool-2 Global Average Pooling (1, 1, 2048)

Dropout 0.5 (1, 1, 2048)
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In Equation (2), Ti denotes an arbitrary transform function; C is the size of the set of
transforms to be aggregated in the network; and F

(
xT) denotes the high-level local spatial

context features extracted by ResNeXt.
We input the T-frame image sequence X into the ResNeXt backbone network, saved

the high-level features Fconv−4
(
xT) of Conv-4 of ResNeXt-50, and then extracted the multi-

scale-stereoscopic spatial context features at different scales from its pyramidal feature
extractor, which consists of two parts: the down-sampled pyramid and the attention
layer. The saved high-level features of Conv-4 were downsampled, and the downsampling
operation downsampled the high-level feature maps of Conv-4 to three different scale size
feature maps

{
S1; S2; S3}; then, the image information of multiple scales were subjected

to the Fi

(
H
si
× W

si

)
operation to obtain the feature maps and input to the scale attention for

multi-scale feature extraction to obtain the spatial contextual features of feature maps of
different scale sizes. The scale attention was used to weight spatial contextual features at
different scales based on feature similarity at different scales; the spatial contextual features
of each large-scale feature map was also fed into the scale attention, which was linked to
adjacent small-scale feature maps, for feature weighting to obtain multi-scale-stereoscopic
spatial context features Fpa

(
Fconv−4

(
xT)).

Wpa

(
Fconv−4

(
xT
))

=
m

∑
j=1

σ
(

f ∗ g
(

Fconv−4

(
xT
)

, Concat
(

θ
(

r, Si
))))

(3)

Fpa

(
Fconv−4

(
xT
))

=
1

σ
(
Si
) θ
(

Fconv−4

(
xT
))
∗Wpa

(
Fconv−4

(
xT
))

(4)

where σ denotes the sigmoid function; Si denotes the i-th feature map of scaling; r repre-
sents the regional features of feature maps of different scale sizes; Concat means splicing
operation; Fconv−4

(
xT) represents the facial expression texture feature; m represents the

number of scaling scales; θ represents the spatial contextual feature transfer function of
feature maps of different scale sizes; f ∗ g is the two-dimensional convolution operation;
and Wpa

(
Fconv−4

(
xT)) represents the correlation weights of the context features in different

regions of feature maps with different scale sizes.

3.3. Cascaded Attention Module

We now present the cascaded attention module to read the fused local and multi-scale-
stereoscopic spatial context feature vectors from the ResNeXt network and the pyramid
extractor and then generated a linear layer weight for them. Specifically, we let the local
and multi-scale-stereoscopic spatial contextual feature vector Fpc

(
xT), which is fused by

the local and multi-scale-stereoscopic spatial context feature extraction module, be input to
an attention block, and then the attention block performs filtering of the features using a dot
product operation with kernel k. The filtered feature vector is passed through the sigmoid
function to generate the As1 global attention weights, which are then loaded onto the image.
Because the important features have higher attentional weights than the secondary features,
the loaded attentional face feature vector can globally highlight more important features
of the face, resulting in the global key spatial domain contextual feature vector FAs1. The
upper three operations can be described as follows:

As1

(
Fpc

(
xT
))

=
1

1 + exp(KT∗Fpc(xT))
(5)

FAs1

(
Fpc

(
xT
))

=
1
n

n

∑
t=1

As1

(
Fpc

(
xT
))
∗ Fpc

(
xT
)

(6)

where n is the number of initial input (facial expression images) of the network.



Sensors 2022, 22, 1350 7 of 16

3.3.1. Single Attention Block

We first tried to add an attention block to the network to filter and weight the local
and multi-scale-stereoscopic spatial context feature vectors. In this case, the vector K is
a network-learnable parameter. The local and multi-scale-stereoscopic spatial contextual
feature vectors Fpc

(
xt) of the three-frame face image sequence are input to the attention

block, and the attention weights obtained after attention filtering are stitched into a set and
loaded onto the face image feature vectors using the dot product method. The weighted
attention features are aggregated using the attention superimposed fusion method to obtain
the output feature FAs1 of the final attention block. The single attention block composition
is shown in Figure 2.

Figure 2. Attention block structure diagram. We note that Fpc
(

xT) is the output of the local and
stereo space feature extraction module, As1 represents the attention weights of the facial expression
images, and FAs1 represents the weighted attention aggregated feature vector.

3.3.2. Cascaded Attention Block

Cascaded attention blocks are feature aggregation after the extraction of multiple
kinds of feature contexts using two-layer attention blocks. After extracting local and multi-
scale-stereoscopic spatial context feature vectors as well as the global spatial context of
faces, the second attention block performs feature aggregation using attention superim-
posed fusion after weighting the feature vectors. The process can be described using the
following equation:

As2

(
FAs1

(
Fpc

(
xT
)))

=
1

1 + exp
(
QT∗FAs1

(
Fpc(xT)

)) (7)

FAs2

(
FAs1

(
Fpc

(
xT
)))

=
1
n

n

∑
t=1

As2

(
FAs1

(
Fpc

(
xT
)))
∗ FAs1

(
Fpc

(
xT
))

(8)

3.4. Temporal Sequential Feature Extraction Module

The GRU network [46] is used in the temporal feature extraction module. Compared
with the LSTM [47], the GRU has one less unit of “gating”. The gradient problem in long-
term memory and back-propagation is solved by the GRU, which has fewer parameters
than the LSTM (long short-term memory). As a result, we employed a GRU network to
read the aggregated feature vectors of cascaded attention blocks and extract the temporal
features from the facial image sequences. The temporal sequential feature extraction
module is a GRU network with 128 hidden neural units. The process can be described
using the following equation:

zt = σ(Wz · [ht−1, xt]) (9)

rt = σ(Wt·[ht−1, xt]) (10)

h̃t = tanh(W · [rt ∗ ht−1, xt]) (11)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (12)

In these equations, xt is the input to the GRU network; zt and rt are the outputs of the
“update and reset gates,” respectively; h̃t is the new memory value; and ht represents the
hidden state value.
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4. Experiment and Results
4.1. Datasets

The CK+, Oulu-CASIA, and RAF-DB datasets were used in our experiments. The
CK+ dataset is a collection of facial expressions gathered and compiled by a team of
researchers from the University of Pittsburgh. The dataset contains 593 facial expression
image sequences ranging from 10 to 60 frames in length, in which the facial expression
gradually shifts from neutral to peak. There are 327 facial expression labels included in
the 593 facial expression image sequences. The dataset for our study consisted of 327 face
images with facial expression labels. The expressions in the dataset were classified into
seven categories, namely, anger, contempt, disgust, fear, happiness, sadness, and surprise.

The Oulu–CASIA dataset is a publicly available facial expression dataset jointly pub-
lished by Oulu University and the Chinese Academy of Sciences. The dataset contains face
image sequences captured under three different lighting conditions: normal lighting, low
lighting, and no lighting. The subjects were split into 50 Finns and 30 Chinese, with ages
ranging from 23 to 58 years. Surprise, happiness, sadness, anger, fear, and disgust were the
six categories for facial expressions.

The RAF–DB dataset is a large-scale database of facial expressions with 29,672 diverse
facial images collected from the Internet. The dataset contains face image sequences
captured under three different lighting conditions: normal lighting, low lighting, and no
lighting. The subjects were split into 50 Finns and 30 Chinese, with ages ranging from 23 to
58 years. Surprise, happiness, sadness, anger, fear, and disgust were the six categories for
facial expressions.

4.2. Data Preprocessing

In the face image data preprocessing period, facial expressions may be affected by
factors such as head pose, lighting conditions, and occlusion (e.g., glasses, facial hair, or
self-occlusion), which leads to the different performance of neural networks for different
environmental facial expressions. Subsequently, an optimal preprocessing can effectively
improve the recognition performance of facial expression [48].

In this study, we used the MTCNN method for the facial expression dataset, for all
images using the standard MTCNN for the detection of the five landmark points (eyes,
nose, and corners of mouth) of the face [49]. After performing similarity transformations,
we obtained aligned facial expression images. Finally, the facial expression images were
re-sized to 224 × 224 pixels and normalized. On the CK+ and Oulu–CASIA datasets, we
ran a fivefold cross-validation test, dividing the original dataset equally into five sets of
data, one of which was used as the validation set each time and the other four were used as
the training set to train our network, and the final classification accuracy was the average
accuracy obtained after five sets of tests. We present both the accuracy and average accuracy
of the dataset on RAF–DB because the dataset has a training set and a test set, and there
is an imbalance between the various categories of the RAF–DB dataset (i.e., the average
accuracy is the average of the sum of all category accuracies).

4.3. Implementation Details

Our network model was based on the Pytorch deep learning framework and was
experimented on an Ubuntu 16.04 system environment with an Intel i7-6800k CPU and
an NVIDIA GTX1080Ti GPU. In the training phase of the network, we used a stochastic
gradient descent optimizer and L2 regularization to avoid overfitting the network. The
momentum of the network optimizer was set to 0.9, and the batch size was set to 8. The
classification loss function used for the network weights was the cross-entropy loss function.

Loss =
1
N ∑

i
Li = −

1
N ∑

i

M

∑
c=1

yiclog(pic) (13)
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We set the learning rate, different weight decay parameters, and different numbers of
iteration rounds for different datasets. We set the learning rate to 0.001, the weight decay
parameter to 0.0001, and the number of iterations to 100 for the CK+ dataset. We set the
learning rate to 0.001, the weight decay parameter to 0.0001, and the number of iterations
to 100 for the Oulu–CASIA dataset. For the RAF–DB dataset, we set the learning rate to
0.001, the weight decay parameter to 0.0005, and the iteration time to 200 epochs.

4.4. Gradient Class Activation Mapping Visualization

In order to demonstrate the effect of having a pyramid extractor and the number of
attention blocks on the network performance, we applied the xgradcam method [50]. As
shown in Figures 3 and 4, the red region represents the current region with a very high
weight (i.e., the main area of attention of the neural network and the region that contributes
the most to expression classification), and the blue-green region represents the current
region with a lower weight.

Figure 3. Visual comparison of gradient class activation mapping of CK+ (the three methods include
the presence or absence of pyramids and single or cascading attention). From top to bottom, the
visualization results are shown for the methods (a) without a pyramid but with cascading attention,
(b) with a pyramid but with a single attention block, and (c) with a pyramid and cascading attention
are shown in the expression images. We note that five subjects were included in these results: S055,
S074, S106, and S111. The usage of their facial images is licensed. The use of their face images is
licensed. Copyright reference: http://www.jeffcohn.net/Resources/ (accessed on 9 March 2021).

Figure 4. Visual comparison of gradient class activation mapping of RAF–DB (the three methods
include the presence or absence of pyramids and single or cascading attention). From top to bottom,
the visualization results are shown for the methods (a) without a pyramid but with cascading
attention, (b) with a pyramid but with a single attention block, and (c) with a pyramid and cascading
attention are shown in the expression images. The expression images from top to bottom show the
visualization results for the methods without the pyramid but with cascading attention, with pyramid
but with a single attention block, and with pyramid and cascading attention. Copyright reference:
http://www.whdeng.cn/raf/model1.html (accessed on 8 June 2021).

http://www.jeffcohn.net/Resources/
http://www.whdeng.cn/raf/model1.html


Sensors 2022, 22, 1350 10 of 16

As shown in Figures 3 and 4, the first row shows the visualization of the gradient class
activation mapping extracted from the last convolutional layer in the model without the
pyramid module but with the cascaded attention; the second row shows the visualization
of the gradient class activation mapping for the model with the pyramid module and
the single attention block; and the third row shows the visualization of the gradient class
activation mapping for the model with the pyramid and the cascaded attention module. In
particular, when compared to the model without the pyramid feature extractor module,
the network model with the pyramid feature extractor could focus more precisely on
key regions of the face with variations such as the human mouth, nose, and eye regions.
In comparison to the single attention block, the gradient category activation mapping
visualization of the model with the cascaded attention block clearly showed that the red
areas on the key areas of the face were darker, indicating that the cascaded attention block
could highlight the key areas of the face better after feature aggregation, thus improving
the recognition accuracy.

4.5. Experimental Results and Analysis

Tables 2–4 show the accuracy and average accuracy of the CK+, Oulu–CASIA, and
RAF–DB datasets in the experiments, respectively.

A comparison of our proposed method with the state-of-the-art method [5–7,51–53]
on the CK+ dataset is shown in Table 2. Our proposed method had an average accuracy of
99.23%. When compared to the two most accurate methods, GCNet and PHRNN-MSCNN,
there was a 1.3% and 0.73% improvement, respectively. Table 3 shows a comparison of our
proposed method and the existing state-of-the-art methods [5,51–54] on the Oulu–CASIA
dataset. Our proposed method had an average accuracy of 89.29%, which was a 3.04% and
1.58% improvement over the two methods with the highest accuracy, PHRNN-MSCNN
and FN2EN, respectively.

A comparison between our proposed method and the state-of-the-art methods [20,28,54–56]
on the RAF–DB dataset is shown in Table 4. Facial expression images in the RAF–DB
dataset are derived from the Internet and are influenced by age, gender, and race, head
pose, lighting conditions, and occlusion (e.g., glasses, facial hair, or self-occlusion), making
it a face dataset in a natural environment. Although classifying expressions on the RAF–DB
dataset is difficult, our proposed method outperformed the state-of-the-art methods with
86.80% recognition accuracy and 78.37% average accuracy. These methods showed an
improvement in terms of performance.

We further set up three control groups to explore the effect of the number of attention
blocks and pyramid blocks on the performance of our proposed network. Here, control
group 1 used ResNeXt-50 + cascaded attention block + GRU in the proposed multi-attention
network; control group 2 used ResNeXt-50 + pyramid +single attention block + GRU in
the proposed cascade attention based facial expression recognition network; and control
group 3 used ResNeXt-50 + pyramid + cascaded attention block + GRU in the proposed
cascaded attention-based facial expression recognition network. On the CK+ dataset (as
shown in Table 2), control group 3 improved accuracy by 1.09% compared to control
group 2, and control group 3 improved accuracy by 1.54% compared to control group 1.
On the Oulu–CASIA dataset (as shown in Table 3), control group 3 improved its accuracy
by 2.39% when compared to control group 2, and it improved its accuracy by 3.58% when
compared to control group 1. On the RAF–DB dataset (e.g., Table 4), the accuracy of control
group 3 improved by 0.78% when compared to control group 2, and the accuracy of control
group 3 improved by 0.82% when compared to control group 1.

The results of our experiments demonstrate the significant effect of cascaded attention
blocks using feature fusion methods compared to single attention blocks in terms of
aggregating multiple kinds of features and enriching feature contextual information. With
the addition of a pyramid feature extractor to the network, the neural network can focus
more on key parts of the face, thus improving the accuracy of facial expression recognition.
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Table 2. Comparison on the CK+ dataset.

Methods Accuracy

FN2EN [51] 96.80%

STM-ExpLet [6] 94.19%

LOMo [53] 95.10%

3D Inception-Resnet [7] 95.53%

GCNet [52] 97.93%

PHRNN-MSCNN [5] 98.50%

ResNeXt-50 + cascaded attention block + GRU 97.69%

ResNeXt-50 + pyramid + single attention block 98.14%

ResNeXt-50 + pyramid + cascaded attention block + GRU 99.23%

Table 3. Comparison on the Oulu–CASIA dataset.

Methods Accuracy

LOMo [53] 82.10%

PPDN [54] 84.59%

GCNet [52] 86.11%

DCPN [57] 86.23%

PHRNN-MSCNN [5] 86.25%

FN2EN [51] 87.71%

ResNeXt-50 + cascaded attention block + GRU 85.71%

ResNeXt-50 + pyramid + single attention block 86.90%

ResNeXt-50 + pyramid + cascaded attention block + GRU 89.29%

Table 4. Comparison on the RAF–DB dataset.

Methods Accuracy Average Accuracy

FSN [58] 81.10% 72.46%

pACNN [55] 83.27% Not provided

DLP-CNN [20] 84.13% 74.20%

ALT [56] 84.50% 76.50%

gACNN [28] 85.07% Not provided

ResNeXt-50 + cascaded attention block + GRU 85.98% 77.66%

ResNeXt-50 + pyramid + single attention block 86.02% 77.84%

ResNeXt-50 + pyramid + cascaded attention block + GRU 86.80% 78.37%

We used the confusion matrix and ROC curves obtained from further model val-
idation experiments to measure the performance of the model. The confusion matrix
for network validation on different datasets after fivefold cross-validation is shown in
Figure 5. The confusion matrix’s rows represent the true labels of the validation samples,
while the confusion matrix’s columns represent the predicted labels of the validation
samples. Furthermore, the accuracy on the diagonal line denotes the percentage of
correct predictions for each category. As shown in Figure 5a, the prediction accuracy of
each category on the CK+ dataset was high, but three categories, namely, fear, sadness,
and surprise, were poorly predicted during the training process. On the Oulu–CASIA
dataset (Figure 5b), happiness and surprise expressions had the highest recognition rates,
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while anger and disgust expressions had lower recognition rates. In particular, anger
and disgust expressions were most likely to be confused in recognition. The recognition
rate of happy expressions was higher on the RAF–DB dataset (Figure 5c) because the
number of face images in the happy expression category was the largest in the RAF–DB
dataset. The recognition rate of disgust and fear expressions was lower because the
number of these two expressions was smaller and disgust expressions are easily confused
with sadness and neutrality expressions, and fear is easily confused with sadness and
surprise expressions.

Figure 5. Confusion matrix of the network on the (a) CK+, (b) Oulu–CASIA, and (c) RAF–DB datasets.

The ROC curve is a general indicator of network classification performance. The
horizontal coordinate of the curve represents the false positive rate, and the vertical
coordinate represents the true positive rate. The ROC generally uses the area under the
ROC curve (AUC) to analyze the model’s classification performance. AUC is the area
enclosed by the ROC curve and the coordinate axis, and its value is typically between
0.5 and 1. The higher the AUC value, the better the model’s performance.

On the CK+ dataset (Figure 6a), the macro and micro seven-category average
AUCs reached 0.99, indicating that this network had good performance on this dataset.
On the Oulu–CASIA dataset (Figure 6b), the ROC curve and AUC both reached 0.98,
indicating that the network performed well. The average AUC on the RAF–DB dataset
(Figure 6c) exceeded 0.95, indicating that the model performed well with relatively
high reliability in the natural condition.
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Figure 6. ROC curves on the CK+, Oulu–CASIA, and RAF–DB datasets. In each graph, the top two
lines respectively represent the macro-average ROC curve and micro-average ROC curves of the
dataset. In subplot (a) (i.e., the CK+ dataset), categories 0–6 correspond to happiness, anger, disgust,
fear, sadness, contempt, and surprise, respectively; in subplot (b) (i.e., the Oulu–CASIA dataset),
classes 0–6 correspond to expressions of happiness, anger, disgust, fear, sadness, neutrality, and
surprise, respectively; in subplot (c) (i.e., the RAF–DB dataset), classes 0–6 correspond to happiness,
anger, disgust, fear, sadness, neutrality, and surprise, respectively.

5. Conclusions

To improve the performance of facial expression recognition under complex natural
conditions, in this paper, a cascade attention-based network was proposed by combining
the attention mechanism and pyramid feature. The main contribution of this study is that
the proposed network not only makes full use of the contextual information to compensate
for the underutilization of spatial features, but also further improves the performance of the
attention mechanism and to a certain extent solves the problem of inaccurate localization
of key regions of faces by neural networks. In particular, the pyramid feature was used
in our study, which can (i) compensate for some high-level fineness characteristics by
scaling operations and (ii) extract correlation information between scale-varying images,
which aggregates features from different scales and thus can result in a richer feature
set. As demonstrated by the visualized experimental analysis, by means of multi-scale-
stereoscopic spatial context features, the proposed network can pinpoint the attention
hotspots on particular regions with significantly dynamical changes (e.g., eyes, nose, and
mouth) more precisely than the common attention strategy (i.e., the proposed network can
track the areas that better represent facial expressions more precisely).

To be specific, the proposed network consists of the three following modules. The first
module is a local and multi-scale-stereoscopic spatial context feature extraction module
that extracts spatial context features using the ResNeXt-50 network and a pyramidal multi-
scale-stereoscopic spatial context feature extractor. The cascaded attention module is the
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second module that performs weighted fusion of spatial features. The third module is the
time series feature extraction module, which uses the GRU network to extract temporal
features on the basis of fused features. Consequently, the multi-scale-stereoscopic spatial
information of facial expressions is fused with the high-level spatial features of the residual
network to enrich the spatial features to a great extent. The experimental verification on
three publicly available datasets showed that the proposed model had good performance
not only in the laboratory environment (i.e., with accuracy values of 99.23%, 89.29% on the
CK+ and Oulu–CASIA datasets, respectively) but also in the complex natural environment
(i.e., with an 86.80% accuracy on RAF–DB dataset).

To suit a more complex environment, our future work will include: (i) applying the
augmentation technique to further improve the universality and robustness of the proposed
network; (ii) optimizing the resource consumption of the network model in the stage of
spatial feature extraction; and (iii) exploring more novel methods to further fuse spatial
and temporal feature information.
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