Copyright WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2002.
Supporting Information for Angew. Chem. Int. Ed. Z18907

A Cascade Cycloaddition Strategy Leading to the Total Synthesis of (-)FR182877.

David A. Evans ${ }^{[*]}$ and Jeremy T. Starr

General Information. All reactions were carried out under an atmosphere of argon in flame-dried glassware. The reaction solvents: THF, $\mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were purified by passage over activated alumina. ${ }^{1}$ Reagents were used as received from the manufacturer unless otherwise stated. Flash chromatography was carried out using EM reagent silica gel 60 (230-400 mesh). Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel 60-F plates. All TLC plates were visualized by UV fluorescence quenching and were stained with either p-anisaldehyde or ceric ammonium molybdate (CAM). Optical rotations were measured on a Jasco DIP-0181 digital polarimeter with a sodium lamp and are reported as follows: $[\alpha]_{\lambda}{ }^{\mathrm{T}}{ }^{\circ} \mathrm{C}(\mathrm{c}=\mathrm{g} / 100 \mathrm{~mL}$ solvent). Infrared spectra were recorded on a Perkin-Elmer 1600 series FT-IR spectrometer. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on a Varian Inova-500 (500 MHz) spectrometer and are reported in ppm using solvent as an internal standard $\left(\mathrm{CDCl}_{3}=7.26\right.$ $\mathrm{ppm})$. Data are reported as: [δ shift] $[\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=\mathrm{quartet}$, $\mathrm{m}=$ multiplet, $\mathrm{b}=\mathrm{broad}$], [integration], and [$\mathrm{J}=$ coupling constant in Hz]). Proton decoupled ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a Varian Mercury 400 (100 MHz) spectrometer and are reported in ppm using solvent as internal standard $\left(\mathrm{CDCl}_{3}=77.0\right.$ ppm). Low and high resolution mass spectra were obtained at the Harvard University Mass Spectrometry Laboratory.

(4E)-4-methyl-7-(1,1,2,2-tetramethyl-1-silapropoxy) hept-4enal (4) To a solution of $\operatorname{TBSCl}(24.0 \mathrm{~g}, 159 \mathrm{mmol})$ in 100 mL DMF at $0{ }^{\circ} \mathrm{C}$ under argon was added imidazole ($17.3 \mathrm{~g}, 254$ $\mathrm{mmol})$ followed by 3-butenol $(10.3 \mathrm{~g}, 143 \mathrm{mmol})$. The reaction was warmed to RT and stirred for 24 h during which time the product, 1-tert-butyldimethylsilyloxy-3-butene, formed an immiscible layer on top of the reaction. The top layer was collected and the DMF layer was poured onto 300 mL water and extracted $3 \times 100 \mathrm{~mL}$ pentane. The combined organic layers were washed $1 \times 50 \mathrm{~mL} 10 \% \mathrm{aq}$. $\mathrm{CuSO}_{4}, 3 \times 100 \mathrm{~mL}$ water, $1 \times 100 \mathrm{~mL}$ brine then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration in vacuo yielded 24.0 g (90%) of 1-tert-butyldimethylsilyloxy-3-butene as a colorless oil that was used without purification. Into a solution of 1-tert-butyldimethylsilyloxy-3butene ($24.0 \mathrm{~g}, 129 \mathrm{mmol}$) in $200 \mathrm{mLCH} \mathrm{Cl}_{2}$ and 50 mL MeOH at $-78^{\circ} \mathrm{C}$ was passed a dilute stream of O_{3} in O_{2} until the reaction achieved a persistent blue color. Triphenylphosphine ($33.8 \mathrm{~g}, 129 \mathrm{mmol}$) was then added and the reaction was warmed to RT under argon and stirred 6 h . The mixture was then concentrated in vacuo to give a slurry of white precipitate and oil which was resuspended in 300 mL hexanes and filtered. The filter cake was washed $3 \times 50 \mathrm{~mL}$ hexanes and the combined filtrates were concentrated in vacuo. The resulting oil was distilled (23 torr, $90-95^{\circ} \mathrm{C}$) to give 19.9 g
(83\%) of pure 3-tert-butyldimethylsilyloxy-propanal. To a solution of isopropenylmagnesium bromide ($80 \mathrm{~mL}, 1.0 \mathrm{M}, 80 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under argon was added 3-tert-butyldimethylsilyloxy-propanal ($8.28 \mathrm{~g}, 43.9 \mathrm{mmol}$) dropwise. The reaction was immediately poured onto 100 mL sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extraced $3 \times 100 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed $1 \times 100 \mathrm{~mL}$ brine then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent removal in vacuo gave a quantitative return of unpurified (+/-)-5-tert-butyldimethylsilyloxy-2-methyl-1-penten-3-ol as a colorless oil. This oil was dissolved in 50 mL freshly distilled triethylorthoacetate and propionic acid (0.02 mL) was added. The solution was heated to reflux for 1 h then the solvent was directly distilled off the reaction under vacuum (50 torr). The residue was purified by silica gel chromatography ($20: 1$ hexanes / EtOAc) to give $9.86 \mathrm{~g}(75 \% ~ 2 ~ s t e p s) ~ o f ~ e t h y l ~ 7-t e r t-~$ butyldimethylsilyloxy-4-methyl-trans-4-heptenoate as a colorless oil. To a solution of ethyl 7-tert-butyldimethylsilyloxy-4-methyl-trans-4-heptenoate ($8.88 \mathrm{~g}, 29.5 \mathrm{mmol}$) in 50 $\mathrm{mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ under argon was added DIBAL ($29.5 \mathrm{~mL}, 1.0 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 29.5$ mmol) dropwise while maintaining the internal temperature at $<-65^{\circ} \mathrm{C}$. The reaction was quenched by the addition of 0.1 mL EtOAc then 50 mL of sat. aq. Na / K tartrate was added and the slurry was stirred vigorously at RT for 12 h . The resulting clear biphase was extracted $3 \times 100 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were washed 1×100 mL brine then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration in vacuo yielded a colorless oil that was purified by silica gel chromatography ($20: 1$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$) to give 7.37 g (97%) of aldehyde $\mathbf{4}$ as a colorless pungent oil. $\mathbf{R}_{\mathbf{f}}: 0.25\left(9: 1\right.$ hexanes $\left./ \mathrm{Et}_{2} \mathrm{O}\right){ }^{1} \mathbf{H}$-NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.76(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.57(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 2.52(\mathrm{t}, 2 \mathrm{H}, J=7.3$ Hz), 2.33 (t, 2H, $J=7.3 \mathrm{~Hz}$), $2.22(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}$), $1.64(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}$, $6 \mathrm{H}){ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.38,134.79,121.53,62.75,42.01,31.74,31.66$, 25.86, 18.25, 16.15, -5.35 FTIR \vee 2929, 2858, 1727, 1472, 1255, 1096, 938, 835, 775 HRMS (FAB) Calc'd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]: 274.2202$; found 274.2197

(6E)-1-[(4R)-2-oxo-4-benzyl (1,3-oxazolidin-3-yl)] (3S, 2R)-3-hydroxy-2, 6-dimethyl-9-(1,1,2,2-tetra-methyl-1-silapropoxy)non-6-en-1-one (5) To a solution of (R)-4-benzyl-N-propionyl-2-oxazolidinone $\left(5.74 \mathrm{~g}, 24.6 \mathrm{mmol}\right.$) in $60 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ under Ar was added $\mathrm{Bu}_{2} \mathrm{BOTf}(8.00 \mathrm{~mL}, 31.7 \mathrm{mmol})$ followed by TEA $(6.0 \mathrm{~mL}, 43.0 \mathrm{mmol})$. The reaction was cooled to $-78{ }^{\circ} \mathrm{C}$ and aldehyde $4(7.35 \mathrm{~g}, 28.6 \mathrm{mmol})$ was added in one portion. The reaction was stirred for 30 minutes then warmed to $0^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction was quenched by the addition of 40 mL of $\mathrm{pH}=7$ phosphate buffer followed by addition of 60 mL MeOH . To the resulting slurry was then added slowly 60 mL of a $2: 1 \mathrm{v} / \mathrm{v}$ mixture of $\mathrm{MeOH} / 30 \%$ aq. $\mathrm{H}_{2} \mathrm{O}_{2}$ and the mixture was stirred vigorously for 1 h . The reaction was then extracted $3 \times 100 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed $1 \times 100 \mathrm{~mL}$ water, $1 \times 50 \mathrm{~mL}$ sat. aq. $\mathrm{NaHCO}_{3}, 1 \times 100 \mathrm{~mL}$ brine, and dried over MgSO_{4}. Evaporation in vacuo yielded an oil that was purified by silica gel chromatography (grad. 4:1-2:1 hexanes/EtOAc) to give 10.52 g (88%) of $\mathbf{5}$ as a colorless oil. $\mathbf{R}_{\mathbf{f}}: 0.5\left(2: 1\right.$ hexanes / EtOAc) $[\alpha]_{0}^{\circ}=-45.8^{\circ}\left(\mathrm{c}=0.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right){ }^{\mathbf{1}} \mathbf{H} \mathbf{H} \mathbf{N M R}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.4-7.3(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 5.17(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 4.71(\mathrm{~m}$, $1 \mathrm{H}), 4.22(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{qd}, 1 \mathrm{H}, J=6.8,2.9 \mathrm{~Hz}), 3.57(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz})$, 3.24 (dd, 1H, $J=13.7,3.3 \mathrm{~Hz}$), 2.86 (bm, 1H), 2.76 (dd, $1 \mathrm{H}, J=13.7,9.3 \mathrm{~Hz}$), 2.25-2.15
$(\mathrm{m}, 3 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathbf{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.38,152.97,136.55$, 134.97, 129.39, 128.94, 127.40, 120.83, 71.14, 66.11, 62.99, 55.06, 42.15, 37.73, 36.04, 31.96, 31.79, 25.93, 18.34, 16.10, 10.53, -5.27 FTIR (film) v 3500, 2930, 1782, 1698, 1455, 1385, 1211, 1098, 836, 764, 702 HRMS (ES) Calc'd for $\mathrm{C}_{27} \mathrm{H}_{43} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]$: 490.2989; found 490.2982

(6E) (3S,2R)-9-hydroxy-N-methoxy-2, 6-dimethyl-N-methyl-3-(1,1,2,2-tetramethyl-1-silapropoxy) non-6enamide (6) To a suspension of MeNHOMe hydrochloride $(2.19 \mathrm{~g}, 22.5 \mathrm{mmol})$ in 25 mL THF at $0^{\circ} \mathrm{C}$ under Ar was added neat $\mathrm{Me}_{3} \mathrm{Al}(2.20 \mathrm{~mL}, 22.9 \mathrm{mmol})$ dropwise. Gas evolution was noted. The solution was cooled to $-78^{\circ} \mathrm{C}$ and a solution of $5(3.60 \mathrm{~g}, 7.35 \mathrm{mmol})$ in 15 mL THF was added via cannula. The reaction was then warmed to $0^{\circ} \mathrm{C}$, stirred for 1 h , then poured onto sat. aq. $200 \mathrm{~mL} \mathrm{NH}_{4} \mathrm{Cl}$, acidified with 200 mL 1 N HCl and extracted 3 x $100 \mathrm{mLEt}_{2} \mathrm{O}$. The combined organic layers were washed $1 \times 100 \mathrm{~mL} 1 \mathrm{~N} \mathrm{HCl}, 1 \times 50$ mL sat. aq. $\mathrm{NaHCO}_{3}, 1 \times 100 \mathrm{~mL}$ brine then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent removal in vacuo gave a colorless oil that was triturated by slow addition of $20 \mathrm{~mL} 10: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ and gentle agitation until the formation of copious white solid appeared to cease. The slurry was then filtered and the filter cake was washed $3 \times 100 \mathrm{~mL}$ hexanes. The combined filtrates were evaporated in vacuo to yield 2.66 g pure Weinreb amide (96%) as a colorless oil. Instead of trituration smaller runs were purified by silica gel chromatography (grad. 5:2 - 3:2 hexanes/EtOAc). To a solution of Weinreb amide $(2.66 \mathrm{~g}, 7.11 \mathrm{mmol})$, and imidazole $(2.91 \mathrm{~g}, 42.7 \mathrm{mmol})$ in 10 mL DMF was added TBSCl $(2.42 \mathrm{~g}, 16.1 \mathrm{mmol})$ and the reaction was stirred under Ar for 24 h . The reaction was then poured onto 500 mL water and extracted $3 \times 100 \mathrm{mLEt}_{2} \mathrm{O}$. The combined organics were washed $1 \times 50 \mathrm{~mL} 10 \%$ aq. $\mathrm{CuSO}_{4}, 3 \times 100 \mathrm{~mL}$ water, $1 \times 100 \mathrm{~mL}$ brine then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation in vacuo gave 3.33 g (96%) of the silylated product as a colorless oil. To a solution of the bis-silylated product $(1.50 \mathrm{~g}, 3.07 \mathrm{mmol})$ in 30 mL MeOH at 0 ${ }^{\circ} \mathrm{C}$ under argon was added tetrabutylammonium hydrogensulfate ($0.117 \mathrm{~g}, 0.345 \mathrm{mmol}$) followed by p-toluenesulfonic acid $(0.025 \mathrm{~g}, 0.13 \mathrm{mmol})$. The reaction was stirred for 1 h then 10 mL sat. aq. NaHCO_{3} was added and the mixture was poured onto 100 mL water. The aqueous mixture was extracted $3 \times 50 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed $1 \times 50 \mathrm{~mL}$ water, $1 \times 50 \mathrm{~mL}$ brine and dried over MgSO_{4}. Evaporation in vacuo gave a colorless oil that was purified by silica gel chromatography (grad. 1:1-0:1 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) to give $1.025 \mathrm{~g}(89 \%)$ of alcohol $\mathbf{6}$ as a colorless oil. \mathbf{R}_{f} : 0.33 (1:1 hexanes / EtOAc) $[\alpha]_{0}^{\circ}=+2.5^{\circ}\left(\mathrm{c}=1.34, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right){ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.12$ (t, 1H, J=7.4 Hz), 3.93 (ddd, $1 \mathrm{H}, J=7.8,4.9,4.9$), 3.69 (s, 3 H), 3.61 (m, 2H), 3.17 (s, $3 \mathrm{H}), 3.00(\mathrm{bm}, 1 \mathrm{H}), 2.26(\mathrm{q}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 2.06(\mathrm{t}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.6-1.5$ $(\mathrm{m}, 2 \mathrm{H}), 1.15(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 138.99,119.67,73.31,62.44,61.47,40.53,34.37,34.32,31.51,25.94,18.14,16.30$, 14.86, -4.10, -4.39 FTIR (film) v 3448, 2933, 2857, 1661, 1462, 1382, 1255, 1046, 995, 835, 774, 668 HRMS (ES) Calc'd for $\mathrm{C}_{19} \mathrm{H}_{39} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]: 374.2726$; found 374.2719

(3S,2R) (9Z,6E)-10,10-dibromo-N-methoxy-2, 6-dimethyl-N-methyl-3-(1,1,2,2-tetramethyl-1-silapro-
poxy) deca-6,9-dienamide (7) To a solution of alcohol 6 (1.49g, 3.98 mmol) in 30 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{NaHCO}_{3}(0.503 \mathrm{~g})$ followed by Dess-Martin periodinane $(2.32 \mathrm{~g}, 5.47 \mathrm{mmol})$. The reaction was stirred vigorously for 3 h then poured onto water and extracted $3 \times 50 \mathrm{mLEt}_{2} \mathrm{O}$. The combined organic layers were washed 2 x 50 mL sat. aq. NaHCO_{3} then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation in vacuo yielded 1.39 g of the unstable aldehyde product as a colorless resin. To a solution of $\mathrm{CBr}_{4}(2.94 \mathrm{~g}, 8.86$ mmol) in $20 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{PPh}_{3}(4.65 \mathrm{~g}, 17.7 \mathrm{mmol})$ portionwise over 10 min . The resulting orange/red solution was stirred for 30 min then cooled to $-78{ }^{\circ} \mathrm{C}$ and the aldehyde ($1.15 \mathrm{~g}, 3.09 \mathrm{mmol}$) was added via cannula as a solution in $7 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 30 min then it was directly poured onto a silica gel column. Chromatography (grad. 6:1-4:1 hexanes / $\mathrm{EtOAc})$ gave $1.20 \mathrm{~g}(74 \%)$ of the desired dibromide 7. $\mathbf{R}_{\mathbf{f}}: 0.74$ ($1: 1$ hexanes / EtOAc) $[\alpha]_{0}^{\delta_{0}^{\circ}}=+5.3^{\circ}\left(\mathrm{c}=1.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right){ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.33(\mathrm{t}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz})$, 5.09 (t, $1 \mathrm{H}, J=7.3 \mathrm{~Hz}$), 3.93 (dt, $1 \mathrm{H}, J=7.8,4.8 \mathrm{~Hz}$), $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{bm}$, $1 \mathrm{H}), 2.76(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 2.04(\mathrm{t}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.6-1.5(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~d}$, $3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}){ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.37,137.36$, $118.30,88.52,73.37,61.48,40.43,34.15,34.06,32.09,25.94,18.14,16.33,14.85,-4.12$, -4.43 FTIR (film) 2932, 2856, 1660, 1461, 1383, 1253, 1174, 1105, 1059, 997, 835, 774 HRMS (ES) Calc'd for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{Br}_{2} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]: 526.0987$; found 526.0988

(2E)-4-(2,2-dimethyl-1,1-diphenyl-1-silaprop-oxy)but-2-enal (8) To a solution of cis-2-butene-1,4-diol ($9.48 \mathrm{~g}, 107 \mathrm{mmol}$) in 300 mL THF at $0^{\circ} \mathrm{C}$ under argon was added $\mathrm{nBuLi}(41.0 \mathrm{~mL}, 2.60 \mathrm{M}$, 107 mmol) dropwise. The resulting thick milky suspension was stirred vigorously while TBDPSCl ($26.2 \mathrm{~mL}, 101 \mathrm{mmol}$) was added dropwise. After 1.5h, the reaction was quenched with $\mathrm{pH}=7$ buffer and extracted $3 \times 300 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed $1 \times 200 \mathrm{~mL}$ brine then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation in vacuo yielded 33.1 g (94%) of 1-tert-butyldiphenylsilyloxy-cis-2-butene-4-ol as a colorless oil that was used without purification. To a solution of 1-tert-butyldiphenylsilyloxy-cis-2-butene-4-ol ($10.2 \mathrm{~g}, 31.2 \mathrm{mmol}$), TEA ($18.0 \mathrm{~mL}, 129 \mathrm{mmol}$), and DMSO (20 mL) in 200 $\mathrm{mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ was added SO_{3}-pyridine complex ($9.75 \mathrm{~g}, 61.3 \mathrm{mmol}$). The reaction was warmed to RT, stirred for 2 h then poured onto 200 mL water and extracted 3 x 200 $\mathrm{mLEt}_{2} \mathrm{O}$. The combined organic layers were washed $1 \times 100 \mathrm{~mL}$ sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}, 1 \times 50$ $\mathrm{mL} 10 \%$ aq. $\mathrm{CuSO}_{4}, 3 \times 100 \mathrm{~mL}$ water, $1 \times 100 \mathrm{~mL}$ brine then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration in vacuo gave an orange oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the unpurified mixture showed a 2:1 mixture of the cis and trans isomeric aldehydes. The orange oil was allowed to stand at RT under HIVAC (<1 torr) for 24 h whereupon complete isomerization to the trans aldehyde was observed by TLC. The oil was then subjected to silica gel chromatography ($20: 1$ hexanes / EtOAc) to give 6.35 g (63%) of aldehyde $\mathbf{8}$ as a colorless solid. $\mathbf{R}_{\mathbf{f}}: 0.35$ ($4: 1$ hexanes/ EtOAc) ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 9.61$ (d, $1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.66(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 7.4(\mathrm{~m}, 3 \mathrm{H}), 6.84(\mathrm{dt}, 1 \mathrm{H}, J=15.1,1.0 \mathrm{~Hz}), 6.57$ (dd, $1 \mathrm{H}, \quad J=15.1,8.3 \mathrm{~Hz}$), $4.45(\mathrm{~d}, 2 \mathrm{H}, \quad J=1.0 \mathrm{~Hz}), 1.08(\mathrm{~s}, 9 \mathrm{H}){ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 193.38,155.94,135.37,132.66,130.52,129.94,127.83,62.91,26.67,19.18$ FTIR (film) v 3071, 2931, 2857, 1688, 1472, 1427, 1362, 1113, 965, 823, 741, 702 HRMS (FAB) Calc'd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}$ [M + Na]: 342.1890; found 342.1890

(4E)-1-[(4R)-2-oxo-4-benzyl (1,3-oxazolidin-3-yl)] (3S, 2R)-6-(2,2-dimethyl-1,1-diphenyl-1-silapropoxy)-3-hydroxy-2-methylhex-4-en-1-one (9) To a solution of (R)-4-benzyl-N-propionyl-2-oxazolidinone ($3.81 \mathrm{~g}, 16.3$ mmol) in $70 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ under Ar was added $\mathrm{Bu}_{2} \mathrm{BOTf}(5.00 \mathrm{~mL}, 19.8 \mathrm{mmol})$ followed by TEA $(3.50 \mathrm{~mL}, 25.1 \mathrm{mmol})$. The reaction was cooled to $-78{ }^{\circ} \mathrm{C}$ and trans-4-tert-butyldiphenylsilyloxy-2-butenal $(6.00 \mathrm{~g}, 18.5$ mmol) was added in one portion. The reaction was stirred for 30 minutes then warmed to $0^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction was quenched by the addition of 40 mL of $\mathrm{pH}=7$ phosphate buffer followed by addition of 60 mL MeOH . To the resulting slurry was then added slowly 60 mL of a $2: 1 \mathrm{v} / \mathrm{v}$ mixture of $\mathrm{MeOH} / 30 \%$ aq. $\mathrm{H}_{2} \mathrm{O}_{2}$ and the mixture was stirred vigorously for 1 h . The reaction was then extracted $3 \times 100 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed $1 \times 100 \mathrm{~mL}$ water, $1 \times$ sat. aq. $\mathrm{NaHCO}_{3}, 1 \times 100$ mL brine, and dried over MgSO_{4}. Evaporation in vacuo yielded an oil that was purified by silica gel chromatography (grad. 4:1-2:1 hexanes/EtOAc) to give $8.14 \mathrm{~g}(89 \%)$ of 9 as a colorless oil. $\mathbf{R}_{\mathbf{f}}: 0.62(1: 1$ hexanes $/ \mathrm{EtOAc}) .[\alpha]_{0}^{\circ}=-45.9^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right){ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, 2 \mathrm{H}, J=\mathrm{Hz}), 7.44-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.22(\mathrm{~d}, 2 \mathrm{H}, J=7$ $\mathrm{Hz}), 5.87(\mathrm{~m}, 1 \mathrm{H}), 5.79(\mathrm{dd}, 1 \mathrm{H}, J=15,4.8 \mathrm{~Hz}), 4.68(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{bs}, 1 \mathrm{H}), 4.23(\mathrm{bs}$, $2 \mathrm{H}), 4.17(\mathrm{~d}, 2 \mathrm{H}, J=4.8 \mathrm{~Hz}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~d}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}), 2.79(\mathrm{dd}, 2 \mathrm{H}, J=$ $13.5,9.2 \mathrm{~Hz}), 1.25(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.06(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathbf{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 176.66, 153.04, 135.49, 135.00, 133.59, 133.55, 131.18, 129.65, 129.41, 128.96, 128.69, 127.66, 127.42, 71.99, 66.16, 63.70, 55.15, 42.77, 37.76, 26.79, 19.21, 11.07 FTIR (film) v 3500, 2931, 1781, 1698, 1428, 1388, 1210, 1112, 822, 702 HRMS (CI) Calc'd for $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{NO}_{5} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]$: 575.2941 ; found 575.2932

(6E) (3S, 5S, 4R)-8-(2, 2-dimethyl-1, 1-diphenyl-1-silapropoxy)-4-methyloct-6-en-1-yne-3, 5-diol (10) To a suspension of MeNHOMe hydrochloride $(1.55 \mathrm{~g}, 15.9$ mmol) in 20 mL THF at $0^{\circ} \mathrm{C}$ under Ar was added neat $\mathrm{Me}_{3} \mathrm{Al}(1.50 \mathrm{~mL}, 15.6 \mathrm{mmol})$ dropwise. Gas evolution was noted. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of $9(3.01 \mathrm{~g}, 5.39 \mathrm{mmol})$ in 10 mL THF was added via cannula. The reaction was then warmed to $0^{\circ} \mathrm{C}$, stirred for 1 h , then poured onto sat. aq. 200 mL NH 4 Cl , acidified with 200 mL 1 N HCl and extracted $3 \times 100 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed $1 \times 100 \mathrm{~mL} 1 \mathrm{~N} \mathrm{HCl}, 1 \times 50 \mathrm{~mL}$ sat. aq. NaHCO_{3}, $1 \times 100 \mathrm{~mL}$ brine then dried over MgSO_{4}. Solvent removal in vacuo gave a colorless oil that was triturated by slow addition of $20 \mathrm{~mL} 10: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ and gentle agitation until the formation of copious white solid appeared to cease. The slurry was then filtered and the filter cake was washed $3 \times 100 \mathrm{~mL}$ hexanes. The combined filtrates were evaporated in vacuo to yield 2.28 g pure Weinreb amide (97%) as a colorless oil. Instead of trituration smaller runs were purified by silica gel chromatography (grad. 5:2 - 3:2 hexanes $/ E t O A c$). To a solution of Weinreb amide ($1.42 \mathrm{~g}, 3.21 \mathrm{mmol}$) in 5 mL THF at 0 ${ }^{\circ} \mathrm{C}$ under argon was added ethynylmagnesium bromide ($25 \mathrm{~mL}, 0.5 \mathrm{M}, 12.5 \mathrm{mmol}$). The reaction was stirred 3 h then poured onto 50 mL sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted $3 \times 50 \mathrm{~mL}$ $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed $1 \times 50 \mathrm{~mL}$ brine and dried over
$\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation in vacuo yielded a yellow oil that was purified by silica gel chromatography ($4: 1$ hexanes / EtOAc) to give $1.00 \mathrm{~g}(77 \%)$ of the desired ynone as a slightly yellow oil. To a solution of ynone ($0.893 \mathrm{~g}, 2.20 \mathrm{mmol}$) in 15 mL THF at $-78{ }^{\circ} \mathrm{C}$ under argon was added DIBAL ($4.40 \mathrm{~mL}, 1 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4.40 \mathrm{mmol}$) dropwise. After 30 min the reaction was quenched by the addition of 0.1 mL EtOAc and 15 mL sat. aq. Na / K tartrate and the slurry was warmed to RT with vigorous stirring for 12 h . The resulting clear biphase was extracted $3 \times 30 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed $1 \times 30 \mathrm{~mL}$ brine then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation in vacuo gave a pale yellow oil that was purified by silica gel chromatography ($2: 1$ hexanes / EtOAc) to give $0.880 \mathrm{~g}(98 \%)$ of diol $\mathbf{1 0} . \mathbf{R}_{\mathbf{f}}: 0.4(2: 1$ hexanes $/ \mathrm{EtOAc})[\alpha]_{0}^{\circ \circ}=-5.2^{\circ}\left(\mathrm{c}=1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ ${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.5-7.35(\mathrm{~m}, 3 \mathrm{H}), 5.89-5.79(\mathrm{~m}$, $2 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{bs}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 1 \mathrm{H}), 2.15(\mathrm{bs}, 1 \mathrm{H})$, $1.88(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 1.08(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $135.49,133.56,130.48,130.44,129.68,127.66,83.70,74.67,73.79,65.98,63.66,60.41$, 43.68, 26.78, 21.04, 19.20, 14.16, 7.46 FTIR (film) v 3288, 2933, 2856, 1466, 1427, 1379, 1256, 1112, 968, 823, 742, 702 HRMS (FAB) Calc'd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]:$ 431.2019; found 431.2010

(3S, 15S, 2R, 13R, 14R) (9Z, 6E, 11E, 16E)-18-(2,2-dimethyl-1, 1-diphenyl-1-silapropoxy)-10-bromo-N-methoxy-2, 6, 14-trimethyl-N-methyl-3, 13, 15-tris (1,1,2,2-tetramethyl-1-silapropoxy)octadeca-6,9,11,16tetraenamide (12) To a solution of diol $10(0.810 \mathrm{~g}, 1.98$ mmol) and imidazole ($0.572 \mathrm{~g}, 8.40 \mathrm{mmol}$) in 6 mL DMF at RT under argon was added TBSCl $(0.719 \mathrm{~g}, 4.77$ mmol). The reaction was stirred 36 h then poured onto 50 mL water and extracted 3 x 50 mL pentane. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ then concentrated in vacuo to reveal a colorless oil. Chromatography on silica gel (20:1 hexanes / EtOAc) gave $1.19 \mathrm{~g}(94 \%)$ of the desired bis-silylated product. To a solution of bis silylated alkyne ($0.914 \mathrm{~g}, 1.43 \mathrm{mmol}$) in 3 mL THF at RT under argon was added freshly distilled catechol borane $(0.20 \mathrm{~mL}, 1.9 \mathrm{mmol})$ followed by freshly prepared dicyclohexylborane ($0.70 \mathrm{~mL}, 0.20 \mathrm{M}$ in THF, 0.14 mmol). After 2 h the reaction was poured into $100 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and washed $10 \times 20 \mathrm{~mL} 1 \mathrm{~N} \mathrm{NaOH}$ (until aqueous layers were no longer colored), $1 \times 50 \mathrm{~mL}$ brine then dried over MgSO_{4}. The yellow solution gradually decolorized as the remaining colored contaminants in the organic phase were adsorbed onto the MgSO_{4} surface. The solution was filtered and solvent removal in vacuo gave 0.952 g (97% unpur.) of the desired boronic acid $\mathbf{1 1}$ as a colorless resin that was used immediately. To a degassed (4 x freeze/pump/thaw under N_{2}) solution of dibromide $7(1.00 \mathrm{~g}, 1.89 \mathrm{mmol})$ and boronic acid $11(1.67 \mathrm{~g}, 2.44 \mathrm{mmol})$ in 30 mL THF and 10 mL water was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.187 \mathrm{~g}, 0.162 \mathrm{mmol})$ followed by $\mathrm{Tl}_{2} \mathrm{CO}_{3}(1.73 \mathrm{~g}$, $3.70 \mathrm{mmol})$. A yellow precipitate rapidly formed. After 5 h the reaction was poured onto $100 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and washed $1 \times 100 \mathrm{~mL} 1 \mathrm{M} \mathrm{NaHSO} 4$ (gas evolution!). The resulting precipitate was removed by filtration through celite and the aqueous layer was discarded. The remaining organic layer was then washed $2 \times 50 \mathrm{~mL}$ water, $1 \times 50 \mathrm{~mL}$ brine then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation in vacuo gave an orange oil. Chromatography on silica
gel (grad. 10:1-6:1 hexanes / EtOAc) gave 1.73 g (84%) of the desired coupled product 12 as a slightly yellow oil. $\mathbf{R}_{\mathbf{f}}$: 0.34 ($9: 1$ hexanes / EtOAc) $[\alpha]_{0}^{2 s}=+0.66^{\circ}(\mathrm{c}=0.90$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.42-7.35(\mathrm{~m}, 3 \mathrm{H}), 6.15-$ $6.00(\mathrm{~m}, 2 \mathrm{H}), 5.80(\mathrm{t}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}), 5.75(\mathrm{dd}, 1 \mathrm{H}, J=15.7,7.4 \mathrm{~Hz}), 5.68(\mathrm{dt}, 1 \mathrm{H}, J=15.7$, $4.8 \mathrm{~Hz}), 5.15(\mathrm{t}, 1 \mathrm{H}, 6.8 \mathrm{~Hz}), 4.22(\mathrm{t}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 4.18(\mathrm{~d}, 2 \mathrm{H}, J=4.4 \mathrm{~Hz}), 4.12(\mathrm{t}, 1 \mathrm{H}$, $J=6.3$), 3.93 (dt, $1 \mathrm{H}, J=8.8,4.4 \mathrm{~Hz}$), 3.68 ($\mathrm{s}, 3 \mathrm{H}$), 3.17 (s, 3H), 2.97 (bm, $1 \mathrm{H}+\mathrm{t}, 2 \mathrm{H}$, $J=6.8 \mathrm{~Hz}), 2.05(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.60-1.45(\mathrm{~m}, 2 \mathrm{H}+\mathrm{s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz})$, $1.05(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 18 \mathrm{H}), 0.066(\mathrm{~s}, 6 \mathrm{H}), 0.034(\mathrm{~s}$, $3 \mathrm{H}), 0.010(\mathrm{~s}, 6 \mathrm{H}),-0.016(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.43,136.61$, 135.48, 133.69, 132.74, 132.19, 129.74, 129.60, 129.07, 127.64, 124.50, 119.88, 73.85, $73.37,73.34,63.87,61.44,47.51,40.40,34.21,34.10,31.57,30.77,26.77,25.93,25.63$, $22.64,19.21,18.21,18.19,18.13,16.33,14.78,14.13,9.72,-3.65,-3.73,-4.13,-4.45$, 4.75 FTIR (film) v 2930, 2857, 1712, 1633, 1471, 1254, 1112, 836, 776, 702

ethyl (5S,17S,4R,15R,16R) (11Z,8E,13E,18E)-12-bromo-20-hydroxy-4, 8, 16-trimethyl-3-oxo-5, 15, 17-tris (1, 1, 2, 2-tetramethyl-1-silapropoxy) icosa-8,11,13,18-tetraenoate (13) To a solution of amide $\mathbf{1 2}$ $(1.14 \mathrm{~g}, 1.05 \mathrm{mmol})$ in 10 mL THF at $-78^{\circ} \mathrm{C}$ under argon was added DIBAL ($0.22 \mathrm{~mL}, 1.23 \mathrm{mmol}$) dropwise. The reaction was stirred 3 h then quenched by the addition of 0.5 mL EtOAc followed by 10 mL sat. aq. Na / K tartrate. The resulting slurry was warmed to RT and stirred vigorously for 12 h then extracted $3 \times 50 \mathrm{mLEt}_{2} \mathrm{O}$. The combined organic layers were washed $1 \times 50 \mathrm{~mL}$ brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation in vacuo yielded a colorless oil that was immediately redissolved in $8 \mathrm{mLCH} \mathrm{Cl}_{2}$ at RT under argon. In a separate flask, SnCl_{2} $(0.230 \mathrm{~g}, 0.880 \mathrm{mmol})$ was suspended in $2 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ at RT and EDA $(1.25 \mathrm{~g}, 8.00$ mmol) was added (gas evolution!). To this opaque yellow mixture was then added the aldehyde solution and the reaction was stirred vigorously for 2 h . The reaction was then poured onto 50 mL brine and extracted $3 \times 50 \mathrm{mLEt}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent removal in vacuo gave a yellow oil. The oil was placed under HIVAC (<1 torr) for 24 h to remove the bulk of residual EDA then chromatography on silica gel (grad. 50:1-20:1 hexanes / EtOAc) gave 0.818g (70\%) of the β-keto ester as a colorless oil. To a stirring solution of TBAF trihydrate $(0.0569 \mathrm{~g}$, $0.181 \mathrm{mmol})$ and $\mathrm{AcOH}(0.0109 \mathrm{~g}, 0.182 \mathrm{mmol})$ in 1 mL DMF in a plastic vial was added the β-keto-ester $(0.145 \mathrm{~g}, 0.130 \mathrm{mmol})$ as a solution in 1 mL DMF. After 3 h the reaction was poured onto 20 mL water and extracted $3 \times 20 \mathrm{~mL} \mathrm{Et} 2 \mathrm{O}$. The combined organic layers were washed $1 \times 30 \mathrm{~mL}$ water, $1 \times 30 \mathrm{~mL}$ sat. aq. $\mathrm{NaHCO}_{3}, 1 \times 30 \mathrm{~mL}$ brine then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation in vacuo yielded a yellow oil that was purified by silica gel chromatography ($6: 1$ hexanes / EtOAc) to give $0.105 \mathrm{~g}(92 \%)$ of the desired alcohol 13 as a colorless oil. $\mathbf{R}_{\mathbf{f}}: 0.39$ ($4: 1$ hexanes / EtOAc) $[\alpha]_{0}^{\text {s8 }}=-15.8^{\circ}\left(\mathrm{c}=1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ ${ }^{1}$ H-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1 \mathrm{keto} / \mathrm{enol}$) $\delta 12.14$ (s, 0.5 H , enol-OH), 6.09 (d, 1 H , $J=14.6 \mathrm{~Hz}), 6.03(\mathrm{dd}, 1 \mathrm{H}, J=14.6,6.3 \mathrm{~Hz}), 5.83(\mathrm{t}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 5.72(\mathrm{~m}, 2 \mathrm{H}), 5.16$ (bm, 1H), 5.01 (s, 0.5 H , enol), $4.23(\mathrm{t}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 4.18(\mathrm{q}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 4.16-4.10$ (m, 3H), 3.92 (q, $0.5 \mathrm{H}, J=5.8 \mathrm{~Hz}$, keto), 3.84 (dt, $0.5 \mathrm{H}, J=6.8,4.9 \mathrm{~Hz}$, enol), 3.60 (d,
$0.5 \mathrm{H}, J=15.6 \mathrm{~Hz}$, keto), 3.53 (d, $0.5 \mathrm{H}, J=15.6 \mathrm{~Hz}$, keto), 3.00 (t, $2 \mathrm{H}, J=6.8 \mathrm{~Hz}$), 2.84 (m, 0.5 H , enol), 2.36 ($\mathrm{m}, 0.5 \mathrm{H}$, keto), 2.1-2.0 ($\mathrm{m}, 1.5 \mathrm{H}$, keto + enol), 1.91 ($\mathrm{m}, 0.5 \mathrm{H}$, enol), $1.64(\mathrm{~s}, 3 \mathrm{H}), 1.6-1.5(\mathrm{~m}, 2.5 \mathrm{H}$, keto +enol$), 1.41(\mathrm{~m}, 0.5 \mathrm{H}$, enol), $1.28(\mathrm{~m}, 3 \mathrm{H}), 1.09(\mathrm{~d}$, $1.5 \mathrm{H}, J=6.8 \mathrm{~Hz}$, keto), 1.06 (d, $1.5 \mathrm{H}, J=6.9 \mathrm{~Hz}$, enol), 0.94 (d, $3 \mathrm{H}, J=6.8 \mathrm{~Hz}$), 0.89 (s, $18 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.077(\mathrm{~s}, 3 \mathrm{H}), 0.073(\mathrm{~s}, 3 \mathrm{H}), 0.030(\mathrm{~s}, 3 \mathrm{H}), 0.021(\mathrm{~s}, 3 \mathrm{H}),-0.006(\mathrm{~s}$, $3 \mathrm{H}),-0.011(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 205.26, 180.66, 172.80, 167.48, $137.00,136.54,136.48,136.35,134.76,134.35,132.27,132.03,129.69,129.67,129.59$, $129.25,129.17$, 127.67, 124.57, 124.42, 120.42, 120.18, 89.64, 73.78, 73.57, 73.25, $73.21,72.74,63.21,61.16,59.92,51.68,49.45,47.36,43.88,35.69,34.74,33.58,32.32$, $30.76,30.73$, 26.53, 25.91, 25.89, 25.84, 18.98, 18.16, 18.08, 18.02, 16.33, 16.31, 14.27, $14.08,12.20,11.66,9.84,-3.61,-3.73,-4.28,-4.41,-4.77$ FTIR (film) v 3445, 2954, 2939, 2886, 1747, 1715, 1651, 1472, 1361, 1255, 1225, 1094, 1030, 957, 835, 774, 672 HRMS (FAB) Calc'd for $\mathrm{C}_{43} \mathrm{H}_{81} \mathrm{BrO}_{7} \mathrm{Si}_{3}$ [M+Na]: 895.4371 ; found 895.4379

ethyl (5S, 17S, 6R, 7R, 18R)-10-bromo-6, 14, 18-trimethyl-19-oxo-5, 7, 17-tris (1, 1, 2, 2-tetramethyl-1silapropoxy) cyclononadeca-3, 8, 10, 13-tetraene carboxylate (14) To a solution of alcohol $13(0.020 \mathrm{~g}$, 0.0230 mmol) in $1 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ under argon was added a premixed solution of $\mathrm{PPh}_{3}(0.0125 \mathrm{~g}, 0.0477$ $\mathrm{mmol})$, imidazole $(0.0110 \mathrm{~g}, 0.162 \mathrm{mmol})$, and iodine $(0.0159 \mathrm{~g}, 0.0626 \mathrm{mmol})$ in $1 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$. After 5 min the reaction was diluted to 10 mL with hexane (precipitate formed) and the orange heterogeneous mixture was passed through a short plug of silica. The silica plug was washed $3 \times 2 \mathrm{~mL}$ 10:1 hexanes / EtOAc and the combined filtrates were concentrated in vacuo to give a quantitative yield of the allylic iodide as a colorless resin. The iodide was immediately redissolved in 5 mL THF and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.0110 \mathrm{~g}, 0.034 \mathrm{mmol})$ was added. After 5 h of vigorous stirring the reaction was quenched with 1 mL 1 N HCl (gas evolution!), diluted with 20 mL EtOAc and washed $2 \times 20 \mathrm{~mL}$ water, $1 \times 20 \mathrm{~mL}$ sat. aq. $\mathrm{NaHCO}_{3}, 1 \times 20 \mathrm{~mL}$ brine then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent removal in vacuo revealed a colorless film that was purified by silica gel chromatography ($50: 1$ hexane / EtOAc) to give $0.0151 \mathrm{~g}(77 \%)$ of the desired macrocycle $\mathbf{1 4}$ as a $1: 1$ mixture of diastereomers. A portion of the more polar isomer eluted free of its epimer and was characterized. In practice, the mixture was used in the subsequent step without being separated. $\mathbf{R}_{\mathrm{f}}: 0.65$ (20:1 hexanes / EtOAc) $[\alpha]_{\circ}^{2 \infty}=-120.5^{\circ}\left(\mathrm{c}=0.66, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right){ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 5.92(\mathrm{~m}, 2 \mathrm{H}), 5.80(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 5.53(\mathrm{dd}, 1 \mathrm{H}, J=15.1,6.8 \mathrm{~Hz}), 5.24(\mathrm{t}, 1 \mathrm{H}, J=7.4$ $\mathrm{Hz}), 5.09(\mathrm{dt}, 1 \mathrm{H}, J=15.1,7.3 \mathrm{~Hz}), 4.17(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.91(\mathrm{dd}, 1 \mathrm{H}, J=8.3,6.3 \mathrm{~Hz})$, $3.85(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.94(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 2.92(\mathrm{~m}, 1 \mathrm{H})$, $2.50(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~m}$, $3 \mathrm{H}), 1.03(\mathrm{~d}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.01(\mathrm{~d}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}$, $9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.016(\mathrm{~s}, 3 \mathrm{H}), 0.014(\mathrm{~s}, 3 \mathrm{H}), 0.003(\mathrm{~s}, 6 \mathrm{H}),-0.007(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.62,169.14,136.45,135.36,132.85,130.87,130.12,127.86$, 123.80 , 120.94, 75.92, 75.20, 72.73, 70.01, 61.35, 58.36, 50.69, 47.31, 36.04, 33.58, $29.99,25.91,25.87,25.84,18.23,18.20,18.05,15.92,14.13,13.57,11.95,-3.83,-4.01$, 4.27, -4.72, -5.01 FTIR (film) v 2929, 2856, 1738, 1715, 1471, 1364, 1255, 1112, 1057, 835, 774 HRMS (FAB) Calc'd for $\mathrm{C}_{43} \mathrm{H}_{79} \mathrm{BrO}_{6} \mathrm{Si}_{3}$ [M+Na]: 877.4266; found 877.4273

ethyl (1S, 10S, 17S, 8R, 9R, 16R)-5-bromo-1, 9, 16-trimethyl-20-oxa-8, 10, 17-tris (1, 1, 2, 2-tetramethyl-1-silapropoxy) pentacyclo[13.4.1.0<2,13>.0<4,12>.0<7,11>]icosa-5,14-diene-14carboxylate (16) To a suspension of $\mathrm{Ph}_{2} \mathrm{Se}_{2} \mathrm{O}_{3}$ ($0.0492 \mathrm{~g}, 0.137$ $\mathrm{mmol})$ and SO_{3} pyridine complex ($0.0229 \mathrm{~g}, 0.144 \mathrm{mmol}$) in 1 mL THF at RT under argon was added TEA ($0.050 \mathrm{~mL}, 0.36 \mathrm{mmol}$) and the mixture was stirred vigorously for 15 min to form an "oxidant solution." To a solution of macrocycle $14(0.0580 \mathrm{~g}$, 0.0677 mmol) in 1 mL THF at RT under argon was added TEA $(0.050 \mathrm{~mL}, 0.36 \mathrm{mmol})$ followed by the oxidant solution and the reaction was stirred for 2 h . Hexane (10 mL) was then added (a precipitate formed). The resulting opaque mixture was filtered through a short plug of silica and the bright yellow filtrate was heated to $50^{\circ} \mathrm{C}$ for 6 h . Concentration in vacuo gave a yellow oil that was purified by silica gel chromatography ($4: 1$ hexane / benzene) to give 0.036 g (63%) of the desired Diels-Alder adduct 16 as a colorless film. $\mathbf{R}_{\mathrm{f}}: 0.69$ (20:1 hexanes/ EtOAc) $[\alpha]_{0}^{\circ \circ}=-$ $44.4^{\circ}\left(\mathrm{c}=0.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right){ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.89(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 4.02$ (m, 1H), $3.70(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{q}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.63(\mathrm{~d}, 1 \mathrm{H}, J=3.4 \mathrm{~Hz}), 3.59(\mathrm{bs}, 1 \mathrm{H}), 2.78$ $(\mathrm{q}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{td}, 1 \mathrm{H}, J=12.2,7.8 \mathrm{~Hz}), 2.1-2.0(\mathrm{~m}$, $3 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.24$ (s, 3H), 1.07 (d, 3H, J=7.3 Hz), 1.01 (d, 3H, $J=7.8 \mathrm{~Hz}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}$, $9 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}),-0.005(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.21,165.79,128.40,127.72,117.95,82.55,79.47,78.60,73.78,59.49,53.06,50.71$, $48.65,47.86,46.21,46.08,42.73,42.65,34.06,27.92,27.82,25.98,25.88,25.80,25.69$, $23.99,19.01,18.11,17.93,17.69,14.55,13.17,-3.44,-4.35,-4.43,-4.86,-4.95,-5.18$ FTIR (film) v 2928, 2854, 1698, 1627, 1465, 1359, 1258, 1055, 836, 767 HRMS (FAB) Calc'd for $\mathrm{C}_{43} \mathrm{H}_{77} \mathrm{BrO}_{6} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{H}]$: 853.4289; found 853.4296

ethyl (1S, 9S, 10S, 17S, 8R, 16R)-8, 10, 17-trihydroxy-1, 5, 9, 16-tetramethyl-20-oxapentacyclo [13.4.1.0 <2,13>. $0<4,12>.0$ $<7,11>$] icosa-5, 14-diene-14-carboxylate (20) Diels-Alder adduct 16 ($0.036 \mathrm{~g}, 0.042 \mathrm{mmol}$) was dissolved in $\mathrm{HF}-\mathrm{CH}_{3} \mathrm{CN}$ (95:5:1 $\mathrm{CH}_{3} \mathrm{CN} / 48 \%$ aq. $\mathrm{HF} /$ water, 10 mL) in a plastic vial at RT under argon. After 4 h the reaction was poured onto 50 mL sat. aq. NaHCO_{3} (gas evolution!) and extracted $3 \times 20 \mathrm{~mL}$ EtOAc. The combined organic layers were washed $1 \times 20 \mathrm{~mL}$ brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation in vacuo yielded a colorless oil that was purified by silica gel chromatography ($100 \% \mathrm{EtOAc}$) to give the desire product as an oil. Azeotropic removal of residual EtOAc with hexane (3 x 10 mL) gave 0.0186 g (89%) of a colorless amorphous solid. $\mathbf{R}_{\mathbf{f}}: 0.29(100 \% \mathrm{EtOAc})[\alpha]_{\mathrm{D}}^{\circ}=-0.66^{\circ}\left(\mathrm{c}=0.75, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ To a portion of the desilylated product $(0.010 \mathrm{~g}, 0.019 \mathrm{mmol})$ in 1.0 mL DMF was added $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.0021 \mathrm{~g}, 0.0026 \mathrm{mmol})$ followed by a premixed solution of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.573 \mathrm{~g}, 1.75 \mathrm{mmol})$ and trimethylboroxine $(0.048 \mathrm{~g}, 0.38 \mathrm{mmol})$ in 0.75 mL water. The reaction was heated to $80^{\circ} \mathrm{C}$ under argon, stirred vigorously for 2 h , then was then cooled to RT , poured onto 10 mL water, and extracted $3 \times 5 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$. The combined ethereal extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation in vacuo gave a yellow
film that was purified by silica gel chromatography ($100 \% \mathrm{EtOAc}$) to give 0.0064 g (71\%) of the desired methyl adduct 20. A small amount ($\sim 5 \%$) of the saponified Suzuki product (FR182877 seco-acid) could be recovered from the combined aqueous layers after acidification (1 N HCl) and extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2} . \mathbf{R}_{\mathbf{f}}: 0.34(100 \%$ EtOAc) $[\alpha]_{0}^{\text {ss }}=-18.3\left(\mathrm{c}=0.13, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right){ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 5.31(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{bd}, 1 \mathrm{H}$, $J=4.4 \mathrm{~Hz}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.83(\mathrm{~m}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 3.48(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 2.55$ $(\mathrm{m}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{dd}, 1 \mathrm{H}, J=13.2,6.9 \mathrm{~Hz}), 2.06(\mathrm{ddd}, 1 \mathrm{H}, J=12.2,12.2,9.3$ $\mathrm{Hz}), 1.91(\mathrm{~m}, 3 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{dd}, 1 \mathrm{H}, J=13.7,13.7), 1.42(\mathrm{~m}, 2 \mathrm{H})$, $1.12(\mathrm{~d}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.01(\mathrm{~m}, 6 \mathrm{H}), 0.95(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}){ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ $\delta 169.94,166.64,139.45,121.55,120.71,84.02,81.39,77.33,72.99,70.10,61.03,53.48$, $52.49,47.11,46.99,46.80,46.09,44.52$, 40.64, 34.55, 30.32, 27.22, 22.66, 18.75, 14.18, 13.69 FTIR (film) v 3394, 2924, 1669, 1558, 1457, 1375, 1328, 1284, 1162, 1085, 1046 HRMS(ES) Calc'd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]: 447.2746$; found 447.2742

FR182877 (1) To a solution of ethyl ester $20(0.0030 \mathrm{~g}, 0.0067$ $\mathrm{mmol})$ in 1 mL THF at RT was added TMSOK ($0.0048 \mathrm{~g}, 0.037$ mmol) and the resulting solution was stirred for 12 h . The reaction was then diluted to 5 mL with $0.1 \mathrm{M} \mathrm{NaHCO}_{3}$ and extracted 2×2 $\mathrm{mL} \mathrm{Et}_{2} \mathrm{O}$ and the organic layers were discarded. The aqueous layer was then acidified by the addition of 5 mL 1 N HCl and extracted 3 x $3 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation in vacuo yielded a quantitative return of the FR182877 seco-acid as a colorless amorphous solid. To a suspension of the FR182877 seco-acid ($0.0010 \mathrm{~g}, 0.0025 \mathrm{mmol}$) in $2 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was added powdered $\mathrm{NaHCO}_{3}(0.0491 \mathrm{~g})$ and the mixture was degassed by 3 cycles of "freeze-pump-thaw." To the reaction was added Mukaiyama's reagent ($0.010 \mathrm{~g}, 0.039$ mmol) and the yellow hetereogeneous mixture was vigorously stirred for 24 h then transferred directly to a silica gel column and purified by chromatography (100:1 $\mathrm{EtOAc} / \mathrm{MeOH})$ to give $0.00061 \mathrm{~g}(62 \%)$ of FR182877 as a white solid. $\mathbf{R}_{\mathbf{f}}: 0.26$ (100:1 $\mathrm{EtOAc} / \mathrm{MeOH}) \quad[\alpha]_{0}^{\circ}=-5^{\circ}(\mathrm{c}=0.15, \mathrm{MeOH}){ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{3} \mathrm{COD}\right) \delta 5.41(\mathrm{~s}$, $1 \mathrm{H}), 4.43(\mathrm{~s}, 1 \mathrm{H}), 3.61 \mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}), 3.46(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{t}, 1 \mathrm{H}, J=8.3$ $\mathrm{Hz}), 2.44(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{dd}, 1 \mathrm{H}, J=13.2,8.3 \mathrm{~Hz}), 2.04(\mathrm{dd}, 1 \mathrm{H}, J=11.7,6.9 \mathrm{~Hz}), 1.85(\mathrm{bd}$, $1 \mathrm{H}, J=9.8 \mathrm{~Hz}), 1.83-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}), 1.62-1.55(\mathrm{~m}$, $2 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}), 1.10(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}){ }^{13} \mathbf{C}-\mathbf{N M R}(100 \mathrm{MHz}$, $\left.\mathrm{D}_{3} \mathrm{COD}\right) \delta 172.9,168.7,140.5,121.2,115.9,88.6,84.5,79.3,78.4,54.6,53.1,52.4,47.4$, $46.9,46.1,43.4,42.5,36.2,33.7,25.2,24.1,22.9,18.6,9.4$ FTIR (film) v 3420, 2925, 1704, 1624, 1457, 1366, 1269, 1212, 1018 HRMS(FAB) Calc'd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]$: 401.2328; found 401.2329

Figure 1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ comparison of natural FR182877 (top, $400 \mathrm{MHz} ; \mathrm{D}_{3} \mathrm{COD}$) and synthetic FR182877 (bottom, $500 \mathrm{MHz} ; \mathrm{D}_{3} \mathrm{COD}$). Additional singlets at 3.3 and 2.0 ppm in the spectrum of natural 1 are not recorded as part of the natural product structure by the authors of the original report. ${ }^{2}$

Table 1. Tabular comparison of ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data for natural and synthetic FR182877.

Carbon Number	δ Natural (125 MHz; $\left.\mathrm{D}_{3} \mathrm{COD}\right)$	δ Synth. (100 MHz; $\left.\mathrm{D}_{3} \mathrm{COD}\right)$
1	172.9	172.9
2	115.9	115.9
3	43.4	43.4
4	53.2	53.1
5	46.2	46.1
6	84.6	84.5
7	54.6	54.6
$7-\mathrm{Me}$	18.6	18.6
8	78.4	79.3
9	46.9	47.4
10	121.2	121.2
11	140.5	140.5
$11-\mathrm{Me}$	22.7	22.9
12	46.5	46.9
13	33.3	33.7
14	52.5	52.4
15	87.7	88.6
$15-\mathrm{Me}$	23.9	24.1
17	167.7	168.7
18	41.5	42.5
$18-\mathrm{Me}$	9.3	9.4
19	77.8	78.4
20	24.4	25.2
21	36.0	36.2

References and Notes

[1] Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
[2] Yoshimura, S.; Sato, B.; Kinoshita, T.; Takase, S.; Terano, H. J. Antibiotics 2000, 53, 615.

