
Computational Intelligence, Volume 17, Number 2, 2001

A CASE-ADDITION POLICY FOR
CASE-BASE MAINTENANCE

Qiang Yang and Jun Zhu
School of Computing Science, Simon Fraser University

A major problem in many practical applications of case-based reasoning (CBR) and knowledge
reuse is how to keep the case bases concise and complete. To solve this problem requires repeated
maintenance operations to be applied to case bases. Different maintenance policies may result in
case bases with very different quality. In this article, we present a case-addition maintenance policy
that is guaranteed to return a concise case base with good coverage quality. We demonstrate that the
coverage of the case base computed by the case-addition algorithm is no worse than the optimal case-base
coverage by a fixed lower bound. We also show that the algorithm implementing the case-addition policy
is efficient. Our result also highlights benefit reduction as a key factor in influencing the convergence of
case-base coverage when cases are added to a case base. Through our theoretical analysis, we analytically
derive the well known coverage convergence curves commonly displayed in CBR experiments and show
that benefit reduction can be used as a predictor for convergence speed.

Key words: case-based reasoning; case-base maintenance; theoretical foundations of case-based
reasoning; case-base maintenance policies.

1. INTRODUCTION

Case-base maintenance (CBM) refers to the task of adding, deleting, and updating
cases, indexes and other knowledge in a case base in order to guarantee the ongoing
performance of a case-based reasoning (CBR) system. CBM is particularly important
when a CBR system becomes a critical problem-solving system for an organization. In
many practical applications, new cases arrive at a very fast rate, resulting in a case base
that contains many redundant cases. As a result, the sizes of case bases often increase
with time, creating significant barriers to the efficiency of reasoning and to the users’
ability to understand the results.

In response to these problems, there has been a significant increase in CBM
research. One branch of research has focused on the ongoing maintenance of case-
base indexes through training and case-base usage (Cunningham, Bonzano, and Smyth
1997; Fox and Leake 1995; Aha and Breslow 1997; Zhang and Yang 1999). Another
branch of research has considered preserving the overall competence of a case base
while performing CBM (Smyth and Keane 1995; Markovich and Scott 1998; Domingos
1995; Aha, Kibler, and Albert 1991; Racine and Yang 1997;). The aim of the research
is similar to the utility-based control-rule deletion policies (Minton 1990). Excellent
surveys of this field can be found in Leake and Wilson (1998) and Watson (1997).

This recent surge of interest in CBM is highlighted by Smyth and Keane’s (1995)
seminal work on competence-preserving case-deletion policies. In this work, the cases
in a case base are classified into a type hierarchy based on their coverage potential and
adaptation power. The deletion policy then selectively deletes cases from a case base
guided by the classification of the cases until a limit on the case-base size is reached.
The algorithm was shown empirically to preserve the competency of a CBR system and
to outperform a number of previous deletion-based strategies.

In this article, we present a different CBM policy that is based on case addition
rather than deletion. By this policy, cases in an original case base are repeatedly selected

Address correspondence to Qiang Yang, School of Computing Science, Simon Fraser University, Burnby,
British Columbia, Canada V5A 1S6.

c© 2001 Blackwell Publishers, 350 Main Street, Malden, MA 02148, USA, and 108 Cowley Road, Oxford, OX4 1JF, UK.



A Case-Addition Policy for Case-Base Maintenance 251

and added to an empty case base until a certain size limit is reached, producing an
updated case base with high coverage. The addition-based policy will allow a more
global view of the case base as a result of comparisons of the benefits of cases when
they are added to a case base. We show that both Smyth and Keane’s deletion-based
policies and our addition-based policies have the same time complexity. On top of this,
the advantage of the addition-based policy is that we can place a lower bound on the
coverage of the resulting case base; we demonstrate that the coverage of the computed
case base cannot be worse than the optimal case base in coverage by a fixed lower
bound and often is much closer to the optimal coverage. In the process of derivation,
we also highlight an important factor in CBM: the concept of benefit reduction. The
benefit of an added case to a case base is the additional coverage it brings to the case
base. We show that the faster the reduction in benefits as cases are added in, the higher
is the coverage.

This article is organized as follows. In Section 2 we define the terminology in
CBM work and present some key observations that motivate our case-addition pol-
icy. In Section 3 we give a case-addition policy to build the case base and prove that
it is at least 63 percent as good as the optimal coverage. In Section 4 we describe the
relationship between coverage and case-base size. In Section 5 we describe experimental
results. We conclude the article in Section 6.

2. CBM AND CASE-DELETION POLICIES

2.1. Related Work

Recently, there has been an intense interest from the CBR research community
in the problem of CBM. Leake and Wilson (1998) gave an in-depth summary and
analysis of this field. For our purpose, the problem of CBM is divided into two broad
categories: maintaining the case-base indexes and maintaining the case-base contents.
In case-base index maintenance, Cunningham, Bonzano, and Smyth (1997) present an
introspective learning approach to learn adjusted case-base indexes by monitoring the
run-time processes of a case-based reasoner. An extended approach is developed in
Zhang and Yang (1999), where a layered architecture is adopted for representing case
base indexes and a neural-network algorithm is adapted for maintaining the feature
weights. Fox and Leake (1995) and Aha and Breslow (1997) consider case-base index-
revision policies that improve the performance of a case base in response to events such
as plan failures.

Researchers in case-base content maintenance are mainly concerned with the issue
of optimization. Due to the large size of some case bases, it is necessary to delete cases
as time goes by and when retrieval becomes increasingly expensive (Smyth and Keane
1995). This issue is called the swamping problem. The main strategy is to decide which
cases to delete based on an adaptation structure. These strategies include a random
deletion strategy as advocated by Markovich and Scott (1998) and more sophisticated
deletion based on the frequency with which each case is retrieved as well as the matching
cost (Minton 1990). The problem with both these approaches is that “important” cases
can be deleted by mistake. Various approaches have been designed to address this
problem. Domingos (1995) and Aha, Kibler, and Albert (1991) consider instance-based
learning approaches for reducing the size of a case base without decreasing its problem-
solving power. Smyth and Keane (1995) consider a competence-preserving approach to
case deletion. Watson (1997) presents methodologies for a human designer of a case



252 Computational Intelligence

Figure 1. Illustrating Case-Based Reasoning (after Leake 1996).

base to consider for CBM. Racine and Yang (1996) consider the problem of removing
redundancy and inconsistency from a large semistructured case base in order to improve
the case-base performance.

2.2. Coverage and Neighborhood Functions

We define a case as a problem-solution pair. That is, each element x of a case baseX
is a pair x = �p� s�, where s is a solution to a problem p. As shown in Figure 1, in order
to solve a new problem, a CBR system first finds a similar problem (represented by the
circles on the top part of the figure) in the problem space. Then it finds a corresponding
solution in a solution space (bottom of the picture). The solution is adapted to solve the
new problem. It is therefore important for problem-solution pairs to be representative
enough that most of the input problems can be solved by adapting a stored solution.

Let N�x1� be the set of cases x2 whose solution ��x2� for x2 is “close” to the
solution ��x1� of x1. More formally,

N�x1� =
{
x2 | D���x1�� ��x2�� ≤ L

}
where D���x1�� ��x2�� represents the cost of adapting the solution of case x1 in order to
obtain the solution for case x2, and L is a constant lower bound on distance. Essentially,
N�x1� defines the cases that x1 can “cover” through a small amount of adaptation on
��x1�. We call N�x1� the neighborhood of x1. Based on the function D���x1�� ��x2��,
we will consider how to compute a new near-optimal case base X1 from an input case
base Z.

The neighborhood of a case base X1, denoted by N�X1�, is the union of the
neighborhoods of all cases in X1. In addition, given a case base X and a subset X1
of X such that N�X1� ⊆ X, the coverage of X1 is defined as

Coverage �X1� =
|N�X1�|

|X|
Finally, given a case base X, an optimal case base of size k is any subset of X of size
k or less with the largest coverage. The purpose of this article is to find a near-optimal
case base of size k efficiently.

3. CASE-ADDITION-BASED POLICY

Suppose that the neighborhoods of all cases in a case base are obtained. We say a
case is good if its neighborhood is large. To select good cases, the distribution of the



A Case-Addition Policy for Case-Base Maintenance 253

cases or the frequency of cases occurring also should be considered. For instance, in a
travel domain, suppose that more people prefer a travel plan between City 1 and City 2.
We should put this plan in a case base in order to minimize the cost of searching for
such plans. Taking this into account, we redefine case coverage as follows:

Suppose that we are given a problem domain with a case base X. X is the “universe”
of our consideration, where the neighborhood of X is X itself. Let x ∈ X be a case.
As before, we denote N�x� to be the neighborhood of x and N�X1� = ∪x∈X1

N�x�.
N�X1� contains cases that are close to some other cases in X1. Suppose that F is a fre-
quency function of the cases, giving a total count of the cases’ occurrence. Equivalently,
there is a distribution of cases. The coverage of X1 is defined as

Coverage �X1� =
∑

x∈N�X1� F�x�∑
x∈X F�x�

Since X1 is a subset of X, the case coverage is a real number between 0 and 1.
For simplicity of discussion, we will subsequently assume that F = 1/|X|, a constant
function.

Let X be a case base and W be a subset of X. The benefit of a case x ∈ X with
respect to W is defined as Benefit�x�W � = N�x� −N�W �, where N�W � = ∪x∈W N�x�.
The benefit of a set of cases �x1� x2� � � � � xk
 is defined as the union of their benefits.

Suppose we want to build the case base X1 with at most k cases based on a set X
of cases. We formulate this optimization problem as follows:

Choose cases X1 = �x1� x2� � � � � xk
 from case base X to maximize the benefit of X1 with
respect to W = ∅.

A case base of size k that satisfies this criterion is called an optimal case base. A case
base X1 of size k is called a near-optimal case base if Coverage�X1� ≥ C× Coverage�Y �,
where Y is an optimal case base of size k and C ≤ 1 is a positive constant.

Given a case base X, the problem of finding an optimal case base of a smaller
size k is NP-complete. One can prove this by a reduction from set-covering (Garey and
Johnson 1979). Thus we look for heuristics to find approximate solutions that can find
a near-optimal case base.

To motivate our case-addition algorithm, consider the example case-base structure
in Figure 2. In this figure, a directed arc from a case x to a case y denotes that y
can be adapted from x within the adaptation-cost limit L. This implies that y is within
the neighborhood of x. Likewise, cases a, b, and c are within the neighborhood of y.
We observe that a maintenance policy should select cases based on the size of the
neighborhood that each case has in a case base. Therefore, case y should be selected
first into a new case base.

The decision to select the next case and insert it into a new case base is critical in
determining the quality of a case base. For example, consider the case-base structure in
Figure 3. Suppose that we have a case-base size limit of one. We observe that the case y
provides the maximal “benefit” with respect to an empty case base. If we choose y in the
new case base, four cases are covered. If, on the other hand, one of the xi’s is selected,
then only two cases can be covered (xi and y). If the case-base size limit is greater than
one, then the selection for the next case should be based on what additional cases are
covered by the new case. These additional cases are the “benefits” of the new case with
respect to the case base that we have constructed so far.

We formalize the preceding discussions in the following case-addition algorithm. In
the algorithm, we will select cases from an original case base X and add them to a new
case base. The new case base X1 is initially empty.



254 Computational Intelligence

Figure 2. Case-Base Structure Graph.

Figure 3. A Second Case-Base Structure Graph.

Case-Addition Algorithm

1. Determine the neighborhood N�x� for every case x ∈ X.
2. Set X1 = ∅.
3. Select a case from X−X1 with the maximal benefit with respect to N�X1� and add

it to X1.
4. Repeat step 3 until N�X� −N�X1� is empty or X1 has k elements.

Remark. Here we consider the case coverage as the benefit. In fact, the benefit
can be defined on other notions as long as it captures the concept of usefulness.

The case-addition algorithm is a greedy algorithm. Therefore, it may not give the
best choice of X1 with respect to the case coverage. However, we can prove that its case
coverage is at least 63 percent of the optimal case base for any fixed case-base size k.
This makes the algorithm a near-optimal one.
Theorem 1. The case-addition algorithm produces a case base X1 such that the
coverage of X1 is no less than 63 percent of the coverage of an optimal case base.

The proof for this theorem is similar to a proof given in Harinarayan, Rajaraman,
and Ullman (1996) for constructing a data cube. In fact, we are inspired by that proof.
In Harinarayan, Rajaraman, and Ullman (1996), the number of rows in a database
view is used as the cost measure, and the benefit of a view is defined by how it can
improve the cost of evaluating other views including itself. A greedy algorithm is given
for selecting a set of k views to maximize the total benefit. Both proofs and algorithms
have their roots in approximation algorithms for set covering.



A Case-Addition Policy for Case-Base Maintenance 255

We now give a sketch of the proof.

Sketch of the Proof. Let X1 be a case base with k cases chosen from a case base X.
First, if N�X� −N�X1� = ∅, then X1 has the maximal case coverage, so it is optimal.
Hence we do not need to prove in this case.

Now suppose that N�X�−N�X1� �= ∅; then X1 = �x1� x2� · · · � xk
 has k elements
labeled by the order of selection. Let ai be the benefit of xi� 1 ≤ i ≤ k. Note that
a1 ≥ a2 · · · ≥ ak. Suppose that �y1� y2� � � � � yk
 is an optimal choice for X1. Let bi� 1 ≤
i ≤ k, be the benefit of yi under the index order. It is possible to show that

bi ≤ a1 for all i (1)

This is so because if this not the case, then yi would be chosen first by the case-addition
algorithm instead of x1.

Let cij =
∑

x∈�N�xj�−∪j−1
s=1N�xs��∩�N�yi�−∪i−1

s=1N�ys�� P�x�; cij is the common benefit offered
by both yi and xj . Then

k∑
i=1

cij ≤ aj for all j (2)

This is so because the summands come from different pieces of N�xj�.

bi −
j−1∑
s=1

cis ≤ aj for all i (3)

This is so because otherwise yi would be able to offer a bigger benefit for the remainder
of the case base and thus would have been chosen to replace xj in the jth iteration of
the greedy algorithm.

Hence we have

k∑
i=1

bi ≤
k∑
i=1

(
aj +

j−1∑
s=1

cis

)
≤ �k− 1�aj +

j∑
s=1

as

or

k∑
i=1

bi ≤ ka1 (4)

k∑
i=1

bi ≤ �k− 1�a2 +
2∑

s=1
as (5)

k∑
i=1

bi ≤ �k− 1�a3 +
3∑

s=1
as (6)

· · ·
k∑
i=1

bi ≤ �k− 1�ak +
k∑
s=1

as (7)

From the preceding inequalities, we see that
∑k

i=1 bi is less than or equal to the
minimum of the right sides of the inequalities. If these right sides are not equal, we can



256 Computational Intelligence

take away some amount from ai and add it to ai+1 or ai−1 so that all the right sides are
equal in the end. This can be done because the inequalities imply many sequences of
xi� i = 1� � � � � k, which have the same

∑k
j=1 aj and satisfy the inequalities. Out of these

sequences, we can select the sequence that make the right sides equal and can provide
the same

∑k
j=1 aj as a representative in subsequent derivations. Then we see that the

difference between the ith right side and i + 1st right side is kai+1 − �k − 1�ai. Since
the difference is set to 0, we conclude that ai+1 = �k− 1/k�ai, or ai = ��k− 1�/k�i−1a1.

Using inequality (4), the ratio between the case coverage of �x1� x2� � � � � xk
 and
the case coverage of �y1� y2� � � � � yk
 is

∑k
i=1 ai
ka1

≥ 1
k

k∑
i=1

ai
a1

= 1
k

k∑
i=1

(
k− 1
k

)i−1

= 1−
(
k− 1
k

)k

≥ 1− e−1 ≈ 0�63

The last inequality holds because ��k − 1�/k�k −→ e−1, as k −→ ∞. This completes
the sketch of our proof.

Considering the computational complexity of the algorithm, the case-addition
algorithm updates the benefits of all remaining cases after each iteration. Thus the
computational complexity is O�n2�, where n is the size of the case base. This is so
because the algorithm is dominated by computing the coverage of cases, which takes
quadratic time, as is the case with Smyth and Keane’s case-deletion algorithm. Linear
time approximation can be considered using clustering algorithms such as the k-means
algorithm (Hartigan 1975).

4. RELATING CASE-BASE SIZE TO COVERAGE

We have so far assumed that the case-base size k is given. Having a different k will
result in a case base with a different coverage value. This fact is well known to CBR
and machine-learning communities. In this section we show that it is in fact possible to
analytically derive this relationship precisely by assuming different benefit functions for
ai, where ai is the benefit of adding a case xi to the new case base. With this analytical
relationship, a case-base designer can predict the effectiveness of future algorithms. In
essence, we ask: How should a case-base maintainer choose an appropriate size for a
case base?

Let X1 be a set of cases. We would like to estimate the ratio between |X1| and
|N�X1�|. Suppose that x1� x2� � � � � xn are cases selected by our case-addition algorithm
with the benefits of a1� a2� � � � � an. Then

a1 ≥ a2 ≥ · · · ≥ an

Hence the ratio |X1|/|N�X1�| is between 1/a1 and 1/an. However, this estimation is
rather rough.



A Case-Addition Policy for Case-Base Maintenance 257

Our theorem below points out a more precise relationship between case-base sizes
and case-base coverage:

Theorem 2. Let M be the size of the original case base before maintenance. Let k be
the size of the case base after maintenance. Suppose that when constructing the result
case base, the benefits of new cases decrease linearly. Then we have

Coverage ≥ R�2 − R�

where R = k/M .

Proof. We define n to be the case number such that when X1 has n cases, the case-base
coverage reaches 100 percent. Thus we may assume that an+1 = 0. n can be trivially set
to M . However, in general, n can be smaller than M .

Let ā be the average of differences �ak − ak+1�, that is, ā = a1/n. Then |N�X1�| =∑n
i=0�a1 − āi�. Let k = rn be an integer, where 0 ≤ r ≤ 1. Then

∑k
i=1 ai

|N�X1�|
=

∑k
i=0�a1 − āi�∑n
i=0�a1 − āi�

Notice that
∑k

i=0�a1 − āi� can be approximated by
∫ k

0
�a1 − āx�dx = a1k− 1

2 āk
2

and n = a1/ā. Hence

∑k
i=1 ai

|N�X1�|
= a1k− 1

2 āk
2

a1n− 1
2 ān

2
= a1rn− 1

2 ā�rn�2
a1n− 1

2 ān
2

= r
a1 − 1

2 ār�a1/ā�
a1 − 1

2 ā�a1/ā�
= r�2 − r�

Recall that X1 is assumed to have 100 percent coverage. Then N�X1� = M , and the
left hand side of the equation equals coverage. Let R = k/M . Then R ≤ k/n = r.
Therefore, Coverage ≥ R�2 − R�. This completes the proof. �

With linear reduction in benefits, roughly 15 percent of the cases can attain about
50 percent coverage, while 50 percent of cases can attain about 85 percent coverage.
In general, we can do much better; the difference �ak − ak+1� can decrease faster than
linear as k increases. The resulting graph of coverage is similar, but the desired coverage
can be reached much sooner. This is shown in the following theorem about exponential
decline in the benefits.

Theorem 3. Let M be the size of the original case base before maintenance. Let k be
the size of the case base after maintenance. Suppose that when constructing the result
case base, the benefits of new cases decrease exponentially. Then the coverage of the
case base also increases exponentially.



258 Computational Intelligence

Figure 4. Coverage Graph with Linear and Exponential Benefit Reduction.

Proof. Assume that the benefit of the ith case added by the case-addition algorithm
decreases exponentially as

ai = a1
1− ei−n

1− e−n
i = 1� 2� � � � � k

where the factor 1− e−n is inserted for normalization. Then the total benefit of a case
base of size k is

k∑
i=1

ai = Cn

(
r − en∗�r−1�

n

)

where C is a constant and r is the ratio k/n. Dividing this formula by M , we get

Coverage ≥ C

(
R− eR−1

M

)

where R = k/M and C is a constant. This completes the proof. �

A graph comparing both the exponential benefit reduction and linear reduction is
shown in Figure 4. As can be seen from the figure, the exponential graph can quickly
cover a much larger portion of a case base than its linear-benefit counterpart.

5. EXPERIMENTS IN CASE-BASED PLANNING DOMAINS

We have so far discussed case-addition policy in the context of general CBR. In
this section we instantiate the case-addition algorithm in case-based planning using a
state-space representation. We verify the effectiveness of the case-addition policy in two
experimental domains, a Towers of Hanoi domain and a path-finding domain.

In both domains, a planning problem is a pair of states �si� sg�, where si is an initial
state and sg is a goal state. A case is a pair �p� soln�, where p is a planning problem and
soln a sequence of actions transforming the initial state si to sg. Also for both domains,
given two cases c1 = �p1� soln1� and c2 = �p2� soln2�, the adaptation cost from case c1
to case c2 is defined as the number of steps that need be added to the common parts



A Case-Addition Policy for Case-Base Maintenance 259

of soln1 and soln2 in order to obtain soln2. Adding steps to their common parts will
“connect” the parts with the initial and goal states. In other words,

Adaptation Cost�c1� c2� = |soln2 − soln1 ∩ soln2|
Note that this cost can be easily computed in a state space representation. Based on
this cost, we can define the neighborhood of a case x as those cases in the case base
that are within an adaptation cost of L or less from x. In the experiments, we set #
to be 2.

In the first domain, our problem is four-disk Tower of Hanoi problem. In this
problem, there are three pegs and four different sized disks initially placed on one of
the pegs. The problem is to move them to another peg such that in the process no disk
of a smaller size is placed on top of a larger one. A problem in this domain is a pair
〈si� sg〉, where si and sg can be any states.

In the problem definition, the number of states is 34 = 81. Therefore, the largest
case base would contain 812 = 6561 cases. This is the original case base X that we
will consider. We first randomly selected 200 planning problems from the state space
and solved these problems from scratch using a best-first forward-chaining planner (see
Yang 1997). This gave us 200 randomly chosen cases from the original case base of
6561. By computing the neighbors of these problems, we obtained a coverage of 5649
cases. This represents coverage of 86 percent of the entire case base.

With the case-addition policy, we can do better. Applying the case-addition
algorithm, we select cases to cover the original case base, and our result is shown in
Table 1. From this table, we can see that the case-addition algorithm selected 58 cases
to attain full competence of the case base X that contains all 6561 planning problems.
These 58 problems performed much better than the randomly chosen 200 cases earlier.
From the table, we also can see that the last few problems are much less important. For
example, the last 38 problems only contribute to 10 percent of the coverage.

We also have performed a comparative study of case-addition policy against
case-deletion policy in the Towers of Hanoi problem. In this experiment, we imple-
mented the case-deletion algorithm (Smyth and Keane 1995) by deleting the auxiliary
cases and spanning and support cases before the pivotal cases down to a specified
number of cases that is the case-base size. For each case-base size, we then com-
pared the case-base coverage under the two algorithms. The result, shown in Figure 5,
demonstrates that the case-addition policy indeed performed better than case-deletion
policy in this domain.

We also designed a path-finding domain whose state graph is shown in Figure 6.
The problem is to find a path between any two states that represent two cities. In this
problem, an agent can move horizontally or along the main diagonal lines. The number

Table 1. Towers of Hanoi Domain Coverage Test

Case-base size 1 2 3 4 5 6 7 8 9

Benefits 676 616 593 508 459 354 243 236 232
Coverage 0�12 0�23 0�33 0�42 0�50 0�57 0�61 0�65 0�69

Case-Base Size 10 15 20 25 30 35 — 58 59

Benefits 228 106 48 28 24 12 — 2 0
Coverage 0�73 0�84 0�90 0�94 0�96 0�97 — 1 1



260 Computational Intelligence

Figure 5. Coverage Comparison between Case-Addition (Upper Curve) and Case-Deletion
Algorithms in the Towers of Hanoi Domain.

Figure 6. State Graph of a Travel Domain.

of states is 100. Thus the problem space has 1002 = 10� 000 problems. We randomly
select 80 problems from the problem space and solve these problems from scratch by
a forward-chaining best-first planner. By computing the neighbors of these cases, we
see that the union of all these neighbors covers 3138 cases. This represents 30 percent
coverage, as shown in Figure 7.

6. CONCLUSIONS

CBM is critical in ensuring the continuing success of a CBR system. Different
maintenance policies will result in case bases with different quality. In this article, we
have presented a case-addition based policy for computing a case base with near-optimal
coverage. We attribute this property to the fact that we use a case-addition-based policy
in deciding the composition of the case base. Furthermore, through Theorems 2 and 3,
we show that the reduction speed in case benefits as cases are added to a case base
has significant impact on coverage speed. We also have demonstrated two experimental
domains where the case-addition algorithm performs well.

We would like to further qualify our performance claim by stating that while the
case-addition policy has a worst-case guarantee, we do not claim that on average it is
better than other CBM policies. Such average case analysis, which is beyond the scope



A Case-Addition Policy for Case-Base Maintenance 261

Figure 7. Coverage Graph of a Travel Domain.

of this article, would require a careful analysis of problem distribution in the real world.
In the future, we plan to build algorithms that keep track of the adaptation costs and
neighborhood estimates in order to incrementally decide how to update a case base.

ACKNOWLEDGMENTS

We were supported by grants from the Natural Sciences and Engineering Research
Council of Canada (NSERC), the IRIS-III Project, an Ebco/Epic NSERC Industrial
Chair Fund, BC Advanced Systems Institute, and Canadian Cable Labs Fund.

REFERENCES

Aha, D. W., and L. Breslow. 1997. Refining conversational case libraries. In Proceedings of the Sec-
ond International Conference on Case-Based Reasoning (ICCBR-97). Providence, RI. Springer-
Verlag, Berlin, pp. 267–276.

Aha, D., D. Kibler, and M. Albert. 1991. Instance-based learning algorithms. Machine Learning,
6:37–66.

Cunningham, P., A. Bonzano, and B. Smyth. 1997. Using introspective learning to improve retieval
in car: A case study in air traffic control. In Proceedings of the Second International Conference
on Case-Based Reasoning (ICCBR-97). Providence, RI. Springer-Verlag, Berlin, pp. 291–302.

Domingos, P. 1995. Rule induction and instance-based learning. In Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence. Morgan Kaufmann, San Francisco,
pp. 1226–1232.

Fox, S., and D. B. Leake. 1995. Learning to refine indexing by introspective reasoning. In Proceedings
of the 14th International Joint Conference on Artificial Intelligence, Montreal, Canada, August
1995, Morgan Kaufmann, San Mateo, CA.

Garey, Michael R., and David S. Johnson. 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, New York.

Hartigan, J. A. 1975. Cluster Algorithms. John Wiley, New York.
Harinarayan, V., A. Rajaraman, and J. D. Ullman. 1996. Implementing data cubes efficiently. In

ACMSIGMOD. ACM Press, New York, pp. 311–320.
Leake, David. 1996. Case-Based Reasoning: Experiences, Lessons and Future Directions. AAAI

Press/MIT Press, Cambridge, MA.
Leake, D. B., and D. C. Wilson. 1998. Categorizing case-base maintenance: Dimenions and directions.

In Proceedings of the 1998 European Workshop on CBR (EWCBR-98), Springer-Verlag, Berlin.



262 Computational Intelligence

Minton, S. 1990. Qualitative results concerning the utility of explanation-based learning. Artificial
Intelligence, 42:363–391.

Markovich, S., and P. Scott. 1988. The role of forgetting in learning. In Proceedings of the Fifth
International Conference on Machine Learning. Morgan Kaufmann, San Mateo, CA, pp. 459–465.

Racine, Kirsti, and Qiang Yang. 1996. On the consistency management of large case base: The case
for validation. AAAI Technical Report-Verification and Validation Workshop, Menlo Park, CA.

Racine, Kirsti, and Qiang Yang. 1997. Maintaining unstructured case bases. In Proceedings of
the Second International Conference on Case-Based Reasoning (ICCBR-97). Providence, RI.
Springer-Verlag, Berlin, pp. 553–564.

Smyth, B., and M. Keane. 1995. Remembering to forget: A competence-preserving case deletion pol-
icy for case-based reasoning systems. In International Joint Conference on Artificial Intelligence,
Vol. 1, Morgan Kaufmann, San Mateo, CA, pp. 377–382.

Watson, Ian. 1997. Applying Case-Based Reasoning: Techniques for Enterprise Systems. Morgan
Kaufmann, San Francisco.

Zhang, Zhong, and Qiang Yang. 1999. Dynamite refinement of feature-weights in CBR using
quantitative introspective learning. In Proceedings of the International Joint Conference In
Artificial Intelligence 1999 (IJCAI-99). Morgan Kaufmann, San Mateo, CA.

Yang, Qiang. 1997. Intelligent Planning: A Decomposition and Abstraction Based Approach.
Springer-Verlag, Berlin.


