
A Case-Based Reasoning Framework for Developing Agents Using Learning by

Observation

Michael W. Floyd and Babak Esfandiari

Department of Systems and Computer Engineering

Carleton University

1125 Colonel By Drive

Ottawa, Ontario, Canada

Abstract—Most realistic environments are complex, partially
observable and impose real-time constraints on agents operat-
ing within them. This paper describes a framework that allows
agents to learn by observation in such environments. When
learning by observation, agents observe an expert performing
a task and learn to perform the same task based on those
observations. Our framework aims to allow agents to learn
in a variety of domains (physical or virtual) regardless of
the behaviour or goals of the observed expert. To achieve
this we ensure that there is a clear separation between the
central reasoning system and any domain-specific information.
We present case studies in the domains of obstacle avoidance,
robotic arm control, simulated soccer and Tetris.

Keywords-learning by observation; case-based reasoning;
games;

I. INTRODUCTION

Software agents and robots are often situated in complex

environments that are partially observable, and they need to

make their decisions in real-time. The tasks these agents

are required to perform can change over time, requiring

them to regularly learn new behaviours. In order to allow

the development of such agents, we propose a general

purpose framework, jLOAF (Java Learning by ObservAtion

Framework), that allows agents to learn by observation

in real-world environments. Learning by observation is an

alternative approach to traditional agent programming that

transfers the burden of training from the programmer to the

agent. Instead of being explicitly trained by the programmer,

the agent learns by watching an expert perform a desired

behaviour. The agent observes how the expert reacts, in the

form of actions, to sensory inputs and then trains itself using

the observed data by associating the actions to the inputs.

Our framework aims to allow the development of agents

in a variety of environments with a wide range of behaviours

and goals. These agents should be able to learn their

behaviours without being explicitly told the task they are

learning or their goals. In order to achieve this, our frame-

work was designed in such a way as to avoid hard-coding

any domain knowledge that may specialize the agents to

any specific task. Additionally, design decisions were made

to make the framework usable by agents that have minimal

domain knowledge, limited computational resources, real-

time constraints and environments that are only partially

observable. However, a limitation of this design is that more

time must be spent on preprocessing in order to extract any

necessary knowledge from observations or to ensure that

agent can process the observations in real-time.

In the remainder of this paper we will describe our

learning by observation framework and describe how it

has been deployed in several different domains. Section II

describes the observation process and how sensory inputs

and actions are modelled. The internal case-based reasoning

cycle of the framework is presented in Section III. Section

IV examines how the case base can be preprocessed in order

to help meet real-time constraints and perform learning.

Case studies in an obstacle avoidance robot, a robotic arm,

simulated soccer and Tetris are detailed in Section V. Areas

of related work are discussed in Section VI followed by

concluding remarks in Section VII.

II. OBSERVATION

An expert will interact with its environment by performing

an action A after receiving a sensory stimulus S (Figure 1).

Over a period of time a number of such interactions will

occur, resulting in a run R of sensory stimuli and actions

[1].

R : S
A0
−→

0
S

A1
−→

1
S

A2
−→

2
. . . S

At−1

−−−→

t−1
St

Figure 1. Observation of an expert interacting with the environment

For experts that are not situated, if their behaviour is

independent of the environment, their actions are constant

and are not influenced by any sensory stimuli:

2011 23rd IEEE International Conference on Tools with Artificial Intelligence

1082-3409/11 $26.00 © 2011 IEEE

DOI 10.1109/ICTAI.2011.86

531

At = constant

However, most agents are situated and reason using sensory

stimuli from the environment. If the expert is reactive, it will

select an action to perform based only on the most recent

stimulus received from the environment:

At = f(St)

However, if the expert’s behaviour also depends on an

internal state, then the task-relevant part of the state can

be equivalently expressed and retrieved via the set of all

distinct runs [1]. For state-based experts, the entire run may

be used when selecting an action to perform:

At = f(St, At−1, St−1, At−2, St−2, . . .)

An agent that learns by observation acts as an observer

and watches the interactions between the expert and the

environment (Figure 1). The observer records the stimuli that

the expert receives from the environment and the resulting

actions that the expert performs. These observations can

potentially be used to update a training model or, since our

framework makes use of case-based reasoning [2], recorded

as a case C and stored in the case base.

A learning agent will likely observe the expert over a

period of time in which many interactions occur. This allows

for a case Ct, observed at time t, to be created not only with

the current stimulus St and current action At, but instead

with the current action along with the entire run Rt that led

up to it:

Ct =< Rt, At >

Such a case representation ensures that there is sufficient

information to represent the reasoning process of both re-

active and state-based experts. It should be noted that each

case need not contain the entire run of the expert. Instead, the

temporal relation between cases can be exploited to reduce

the amount of information that needs to be stored in each

case. We redefine a case recursively as a triple containing

the currently observed environmental stimulus, the observed

action and the previously observed case Ct−1:

Ct =< St, Ct−1, At >

This case definition makes it possible to backtrack through

past cases and reconstruct a fragment of the expert’s run or

even the entire run. Using the link to case Ct−1, St−1 and

At−1 can be accessed along with the link to case Ct−2.

The sensory stimuli received by the expert, and recorded

in cases, can come in many forms. If the expert is a robot

with simple sensors, the inputs would likely be in the form

of numeric readings from the sensors. An expert who plays a

board game would likely receive inputs regarding the current

configuration of the board whereas an expert with object

recognition capabilities might get inputs in the form of a

set of visible objects. In order to account for the variability

in what constitutes an expert’s environmental inputs, the

inputs come in two forms: atomic inputs and complex inputs.

The modelling of inputs makes use of the composite design

pattern [3] (Figure 2). An atomic input is used to model

simple feature values. Each complex input is composed of

a collection of other inputs, either atomic inputs or other

complex inputs.

�������
�������	
�����

�����
�
����	����
�

���������	
���
���	���������

��	
��
����
���������	�������

���������������
�����	
�����

�	
����
����
�����
��
�	���������

���������������
�����	
�����
��

����
����
�����������
����

11 1

0..*

Figure 2. Model of sensory inputs

We take a similar approach when modelling actions

(Figure 3). Actions can be atomic if they represent a single

action or complex if they represent a sequence of actions.

Each atomic action contains a collection of action features

that represent the parameters of the action. This allows the

modelling of very specific actions that have no parameters,

like moving forward, or more general parameterized actions,

like moving with a given direction and velocity.

�������
�������	
�����

���	
�
�
����	����
�

���������	
�����	������������

��	
������	�
������������	���������

�������������������
��	
�����

�	
��������	�
�����
��
�	���������

�������������������
��	
�����
��

��������
�
���������������
�

10..* 1

0..*

Figure 3. Model of actions

It should be noted that nowhere in our models is there

any information about what the meaning of each input

or action is. For example, no background information is

provided to tell the observer that the touch sensor of a robot

indicates the robot has come in contact with an obstacle or

that a forward action is suppose to move the robot. More

importantly, nowhere in these models, or anywhere in our

framework, is there a need to explicitly represent the goals

of the expert or add non-observable features related to those

goals. This allows the same input and action models to

have task-dependent meaning and to be reused for different

experts even if those experts have different behaviours or

work toward different goals.

532

III. CASE-BASED REASONING CYCLE

Agents that are developed using this framework use

case-based reasoning (CBR) as their approach to learn by

observation. CBR has been a popular approach for learning

by observation systems [4], [5], [6], [7], [8], [9]. The

primary benefit of using CBR is that the observations are

not generalized in any way but are instead stored as concrete

problem-solution pairs (cases). This is useful when dealing

with state-based experts since it allows the entire run of

the expert to be stored in the case base. Additionally, the

solutions stored in cases can be complex in nature.

The case-based reasoning cycle [2] has four primary

stages: retrieval, reuse, revision and retention. During the

retrieval stage of the case-based reasoning cycle, input

problems will need to be compared to cases in the case base

in order to retrieve similar cases. Case similarity is calculated

by combining the similarity of individual inputs. However,

as we discussed in the previous section, different domains

can potentially have very different sensory inputs and will

therefore require different approaches to calculate similarity.

Instead of encoding the specific similarity metrics in the

retrieval algorithms, we make use of the strategy design

pattern [3] (Figure 4). Each type of input can have its own

method of similarity calculation, but the similarity calcula-

tion strategy is decoupled from the input to allow different

strategies to be used, or for different features to (re)use the

same strategy. This allows the various retrieval algorithms to

be developed independently of the input model. The retrieval

algorithm can call the similarity method of the input which

will then delegate the calculation to the associated similarity

metric.

�����
�
����	����
�

���������	
���
���	���������

�	�	
��	������	���������

���������	
����
���	����
���	���������

�	��������
��������������

������������� ��
���!�"��
�����	
�����

�	��������
��������������

������������� ��
���!�"��
�����	
�����

Figure 4. Each input has an associated similarity metric that will be used
when its similarity method is called

Actions, like inputs, have associated similarity metrics.

This may seem unintuitive since actions constitute the solu-

tion portion of the cases (what the reasoning system attempts

to predict). However, it may be necessary to compare actions

if they can be part of the case problem, like when the expert’s

entire run is compared during retrieval, or when comparing

actions during solution adaptation (during the reuse part of

the CBR cycle).

Since each complex input has a collection of sub-inputs,

rather than a fixed number, our framework allows the rep-

resentation of cases that have multi-valued features. This is

important because most real-world agents operate in partially

observable environments with noisy sensors. For example,

consider a soccer player. Depending on where they look

they will see a different number of opponents. At different

points in time the number of visible opponents and their

locations will change. If the player can not tell the individual

opponents apart, it many not be possible to tell which

opponent has moved to which location. Inputs that contain

multi-valued sub-inputs will therefore require a similarity

metric that is suited for multi-valued features and that is

able to compare sets of values as opposed to single values

[10].

Like retrieval, the reuse phase of the case-based reasoning

cycle in our framework was designed to contain no domain

information. This limits the reuse algorithms to those that

directly copy solutions from retrieved cases or perform

knowledge-poor adaptation. Any adaptation rules would

need to be learnt from the observed cases.

The remaining two parts of the case-based reasoning

cycle, revision and retention, have mostly been excluded

from our framework. Both of these processes require some

knowledge about the task being performed. During revision,

a case-based reasoning system might evaluate the proposed

solution or repair the solution. Without any knowledge of

the task that the expert has demonstrated or direct feedback

from the expert it would not be possible to know the quality

of the proposed solution. Similarly, since the quality of the

solution can not be measured, the system would not know

which problem-solving episodes should be retained as new

cases. However, during these stages the agent can make

use of active [11] or mixed-initiative [12] learning. In these

situations, the expert interacts with the agent to assist solving

difficult problems or to correct the behaviour of the agent.

This allows for the agent to learn over a period of time rather

than only during a single observation session.

IV. PREPROCESSING

An agent will create a raw case base that will contain

all the observed cases. This raw case base may include

redundant cases, unnecessary features, or be lacking cases

from certain regions of the problem space. Also, the case

base might contain valuable information that could be mined

and used to optimize performance. To account for this,

the case base can be preprocessing before it is used in a

deployed system.

Another motivation for preprocessing is that most agents,

when deployed, will have limited computational resources

and data storage. These computational limitations put a

bound on the number of cases and features that can be

used by the system. The case base can be preprocessed to

guarantee the CBR cycle can be performed within any real-

time limits and that the case base is small enough to fit in

the agent’s available storage.

Our framework allows for optional preprocessing steps,

which are connected using a pipe and filter approach (Figure

533

5). Each preprocessing step takes in an initial case base and

outputs a processed case base along with, optionally, some

extracted information. The processed case base can then be

used as input to another preprocessing step or used during

execution by the system. Similarly, the extracted information

can be used as settings for other preprocessing steps, settings

for the deployed CBR system or simply recorded.

Figure 5. Preprocessing steps are connected using a pipe and filter
approach

Several examples of preprocessing steps (and are provided

in our framework) include:

• Feature selection: Identifying which features are im-

portant in order to optimize retrieval. Information could

be extracted that relates to an optimal feature weighting

or features could be removed from cases if they were

found to have no importance [6].

• Redundancy removal: The size of the case base may

be limited, due to computational or storage constraints,

so it might be advantageous to replace clusters of identi-

cal, or highly similar, cases with a single representative

case [6].

• Case base analysis: The analysis could find areas of

the problem space that are underrepresented in the case

base [11], [12]. This information can be used during

future observation sessions to limit what new cases

are recorded. This is an example of a preprocessing

step that leaves the case base unchanged but records

extracted information.

• Case base restructuring: This could involve convert-

ing a flat case base into a hierarchically structured case

base [13] in order to reduce the time it takes to perform

retrieval.

One final task that may be performed before the agent

is deployed is evaluation. In our framework, evaluation is

performed by giving the agent a series of testing problems

to solve. The resulting actions of the agent can be compared

to the known actions of the test problems to calculate

performance metrics (like accuracy, precision, recall or f-

measure) or the response time of the agent can be measured

to see if it meets its real-time constraints (see [6] for an

evaluation of several preprocessing algorithms for learning

by observation agents).

V. CASE STUDIES

Case studies in four domains will be used to demonstrate

how our framework can be utilized. We will demonstrate

how agents can be created in each of these domains and

examine their performance when learning by observation.

A. Sensor-Based Agents

The first two domains we will examine involve controlling

physical robots. The first is an obstacle avoidance robot that

has a touch and sonar sensor. The robot moves forward until

it detects an obstacle in front of it, using the sonar sensor, or

determines it has come into contact with something, using

the touch sensor. In situations where an obstacle is detected,

it turns either left or right (it toggles its turn direction after

every turn). If it comes into contact with something it moves

backward. We will model the sensory input SAV OID as

follows:

SAV OID = < Stouch, Ssonar >

Stouch = < ftouch >

Ssonar = < fsonar >

The robot has a set AAV OID of four possible atomic actions

it can perform: move forward (AF), move backward (AB),

move left (AL), and move right (AR).

AAV OID = {AF , AB , AL, AR}

The following sample code shows how this sensory model

for this robot can be implemented with our framework:

1 Input avoid = new ComplexInput("avoid");

2 Input touch = new AtomicInput("touch");

3 Input sonar = new AtomicInput("sonar");

4 SimilarityMetricStrategy s1;

5 s1 = new Mean();

6 SimilarityMetricStrategy s2;

7 s2 = new NormalizedDifference();

8 avoid.setStrategy(s1);

9 touch.setStrategy(s2);

10 sonar.setStrategy(s2);

11 avoid.add(touch);

12 avoid.add(sonar);

Initially, each of the sensory inputs are created (lines

1-3). Two similarity metrics are then created: Mean and

NormalizedDifference (lines 4-7). As the names imply, the

Mean similarity metric calculates the mean similarity of all

child inputs and the NormalizedDifference similarity metric

calculates the normalized difference between inputs. The

Mean strategy is used by the complex input (line 8) and

the NormalizedDifference strategy is used by both atomic

inputs (lines 9 and 10). The complex input then adds both

atomic elements as children (lines 11 and 12). It should

be noted that in this example, for illustrative purposes, the

similarity metrics and relationships between inputs need to

be set each time the inputs are created. Instead, subclasses

of ComplexInput and AtomicInput could be created for each

input type in order to encapsulate these settings.

The second robot we examine is a robotic arm. This robot

has three sensors: a colour sensor, touch sensor and sound

534

sensor. It can perform five atomic actions: move the arm

forward (AarmF), move the arm backward (AarmB), stop

the arm (AarmS), close the claw (AclawC), and stop the

claw (AclawS). Upon detecting a significantly loud sound

on the sound sensor, the arm begins moving forward until

the touch sensor signals it has come in contact with an

object. If the colour sensor ever determines a red object is

within the claw’s grasp, the claw will be closed around the

object and the arm will move in reverse. However, if it ever

determines a blue object is within the claws grasp, it will

not close but instead move the arm in reverse. We model the

sensory inputs SARM and action set AARM of the robotic

arm similarly to those of the obstacle avoidance robot:

SARM = < Scolour, Stouch, Ssound >

Scolour = < fcolour >

Ssound = < fsound >

AARM = {AarmF , AarmB , AarmS , AclawC , AclawS}

There are two things that should be noted from our mod-

elling of the sensory inputs and actions of these two robots.

First, we see that although the robots were quite different

there was still an opportunity to reuse a small portion of

the model related to the touch sensor both robots had.

Robots that make use of the same, or highly similar, sensors

can therefore be modelled in similar ways. Both models

could use the same similarity strategy, for their complex

inputs, that calculates the mean similarity of the atomic

inputs. Secondly, although we described the behaviour of

the obstacle avoidance robot and robotic arm, the models

we created are applicable to any robots that have the same

sensors and actuators. If the obstacle avoidance robot was

reprogrammed to follow objects it could still be observed

and learnt from using the same model.

A software agent, using our framework, observed each of

these robots and generated 500 cases for use as a case base.

Additionally, each robot had 1000 extra cases generated for

testing purposes. During the deployment, the learning agent

used the case base to try and replicate the behaviour of the

robots. Each of the testing cases, which had a known action,

were given as input to the learning agent. By comparing the

action selected by the learning agent to the known action of

the test cases the accuracy was measured.

For the robotic arm, the learning agent achieved 100%
accuracy. For the obstacle avoidance robot, the learning

agent achieved 100% accuracy for forward and backward

actions, but a lower accuracy (approximately 50%) for the

left and right actions (an overall accuracy of approximately

75%). This occurred because the obstacle avoidance robot

would toggle its turn direction, so the turn direction was

related to its internal state and not any external information

that could be observed. However, if the case retrieval takes

into account the run of the agent instead of just the most

recent sensory stimulus the accuracy of the left and right

actions can be increased to approximately 73% (overall

accuracy of approximately 87%).

B. Object Inputs

In this section we turn our attention to agents that

have more complex sensory capabilities that allow them to

observe the environment at a higher level of abstraction.

Instead of receiving inputs in the form of sensor values,

these agents are able to sense objects and their locations.

In simulated soccer, like the RoboCup Simulation League

[14], an agent’s sensory input SSOCCER contains the visible

balls (Sball), teammates (Steam), opponents (Sopp), goal

nets (Snet), boundary lines (Sline), and flags (Sflag).

SSOCCER = < Sball, Steam, Sopp, Snet, Sline, Sflag >

Sball = {S1

object, . . . , S
a
object}

Steam = {S1

object, . . . , S
b
object}

Sopp = {S1

object, . . . , S
c
object}

Snet = {S1

object, . . . , S
d
object}

Sline = {S1

object, . . . , S
e
object}

Sflag = {S1

object, . . . , S
f
object}

Sobject = < Sdistance, Sdirection >

Since objects can move in or out of the player’s field of

vision, the number of objects of each type can change over

time. Therefore each object type is viewed not as a single-

valued feature but instead as a multi-valued feature. This

requires the use of a similarity strategy that can handle multi-

valued features, using bipartite set-matching algorithms such

as the one described in [10]. Depending on the expert that is

observed, different types of objects may have different levels

of importance. The following sample code shows how a case

base can be mined to determine which types of objects are

important and which can be removed from the cases:

1 CaseBase cb1 = CaseBase.load("soccer");

2 Preprocess p1 = new BinaryFS();

3 CaseBase cb2 = p1.preprocess(cb1);

4 Weights w = p1.getOptimumWeights();

5 Preprocess p2 = new FeatureFilter(w, 0);

6 CaseBase cb3 = p2.preprocess(cb2);

7 Agent a = new Agent();

8 a.setCaseBase(cb3);

Initially a previously created case base is loaded (line 1)

and a feature selection algorithm is chosen (line 2). This

feature selection algorithm then analyzes the case base (line

3). The resulting case base from this preprocessing step

(cb2) will be identical to the input case base (cb1) but the

algorithm will have calculated the optimum binary weight

for each type of sensory input and those weights can be

retrieved (line 4). Those weights can be used to create a sec-

ond preprocessing step (line 5) and that preprocessing step

can be applied to the case base (line 6). This preprocessing

step will modify the input case base (cb2) by removing any

535

features that were found to have a weight of 0 (or less).

The output case base (cb3) will therefore be less than (or

equal to) the size of the input case base. A new agent can

be created (line 7) and set to use the preprocessed case base

(line 8).

A soccer playing agent has a set ASOCCER of three

possible atomic actions: kick (Akick), dash (Adash) and turn

(Aturn).

ASOCCER = {Akick, Adash, Aturn}

Akick = < fpower, fdirection >

Adash = < fvelocity >

Aturn = < fangle >

Unlike in the physical robotic domains, where the actions did

not have parameters, the soccer actions all have associated

parameter features. The kick action shows an example of an

action that can have multiple parameters since it has both a

kick power (fpower) and direction (fdirection).

The observing agent learnt from an expert that turns until

it can see the soccer ball, runs toward the ball and kicks

the ball toward the opponent’s goal net. A case base of

3500 cases was used along with 5000 test cases. However,

unlike the previously described experiments the case base

was preprocessed using an approach similar to the one

described above (calculating optimum feature weights and

filtering irrelevant features). The agent was able to achieve

a kick accuracy of approximately 72%, a dash accuracy of

approximately 93% and a turn accuracy of approximately

96% (overall accuracy of 87%). Without performing prepro-

cessing, the overall accuracy of the agent is approximately

71% (the kick accuracy is particularly bad at 22%).

C. Tetris

Our final case study will involve the game of Tetris. In

Tetris, there is a rectangular game region where the player

stacks incoming game pieces of varying shapes. When the

pieces form a horizonal line from one side of the game

region to the other, the entire line is removed from the game

region thereby freeing space. The player must strategically

place pieces in order to ensure the stacked pieces do not

reach the top of the game region.

The sensory input in Tetris STETRIS contains two sub-

inputs: the current state of the game region (Sregion) and

the current piece that needs to be placed (Spiece).

STETRIS =< Sregion, Spiece >

Each of these sub-inputs is represented by a matrix contain-

ing information about which squares are currently occupied.

The game region is a 20 × 10 rectangle that contains 200
squares and the piece is a 4×4 rectangle that is composed of

16 squares. Each square Scell contains a feature (foccupied)

representing if the square is occupied or not.

Sregion = < S1

cell, . . . , S
200

cell >

Spiece = < S1

cell, . . . , S
16

cell >

Scell = < foccupied >

Unlike the soccer domain, where there was partial ob-

servability, the Tetris agent is always able to see the entire

game region and game piece. Due to the full observability of

these inputs it was possible to model them as being ordered

and of a fixed-length (length 200 and 16 respectively) rather

than as multi-valued inputs with a time-varying number of

elements. This is important because similarity calculations

become more computationally expensive with multi-valued

inputs [10] and should therefore be avoided, if possible,

when the agent has real-time constraints. Here, the similarity

strategy of the complex inputs just calculates the mean of

the similarities of the atomic inputs (like was done in the

robot case study). The designer could also create a custom

similarity strategy that takes inspiration from human players

[7].

In Tetris, there is only one action to perform. However,

unlike the previous domains, this action Amovepiece is a

complex action that contains two atomic actions. The first

sub-action Aslide is related to how many squares the game

piece should be moved horizontally (with positive values

representing sliding right and negative left) and the other

Arotate is related to how many times the game piece should

be rotated by 90 degrees clockwise.

ATETRIS = {Amovepiece}

Amovepiece = < Aslide, Arotate >

Aslide = < fslide >

Arotate = < frotate >

Since Amovepiece is a complex action, both of the sub-

actions will be performed. If the player did not want to

perform one, or both, of the sub-actions they could set their

parameters, fslide or frotate, to be zero.

In our experiments, the observing agent learnt by watch-

ing a Tetris player and generated 100, 000 cases for the

case base. When playing Tetris by itself, the agent was

able to complete an average of approximately 2 lines per

game (over 350 test games). While this performance is far

worse than the expert, it does show that the agent is able

to reproduce the behaviour of the expert (completing lines

in Tetris) to some extent. Comparatively, when the agent

just placed the pieces at random, it completely an average

of approximately 0.1 lines per game (over 350 games).

One reason for the poor performance of the agent is the

large state-space of Tetris (approximately 2216 using our

representation). This is compounded by the fact that the

expert plays near-optimally and therefore rarely puts itself

in disadvantageous positions. However, the learning agent

536

will make mistakes which can cause the environment state

to be significantly different from any it has encountered

during observation. Active case acquisition approaches [11],

[12] can be used to combat this and ensure no areas of the

problem-space are underrepresented in the case base.

VI. RELATED WORK

The majority of learning by observation systems, in-

cluding those using case-based reasoning as well as other

reasoning approaches, are developed to learn a specific

behaviour or operate in a single domain. Some of these

approaches use heuristics that contain information about the

expert’s behaviour [15], [7], contain hard-coded models of

the expert [16] or access information about the expert’s

internal reasoning that would not be available through ob-

servation [17]. Others use inputs that ignore external stimuli

[18], contain meta-information related to the observed task

[5], [4], [19], [8] or ignore multi-valued features [20]. While

these systems work well in their designed domains, they can

not be directly used in new domains or to learn different

tasks.

The Darmok learning engine [9] uses case-based planning

to perform learning by observation. Through the use of

the MakeME PlayME middleware [21], Darkmok is able to

learn in a variety of real-time strategy and interactive drama

domains [22]. However, when generating cases, Darmok

requires the goals of the expert to be defined in order to

create plans. This requires explicit knowledge about the

behaviour of the expert being observed and would need

to be modified if the behaviour of the expert changed.

Also, Darmok has difficulty learning reactive behaviours

[23]. To our knowledge, Darmok is the only other domain-

independent learning by observation system.

Several other frameworks for case-based reasoning ap-

plications exist, with jCOLIBRI [24] and myCBR [25]

currently being the most actively developed. jCOLIBRI is

a general-purpose, feature-rich CBR framework that allows

the development of a wide variety of CBR applications. Like

our framework, jCOLIBRI attempts to separate algorithms

from the domain model. Another tool, myCBR, allows for

rapidly prototyping CBR applications. Unlike jCOLIBRI,

myCBR focuses on similarity based retrieval and does not

place as much emphasis on other parts of the case-based

reasoning cycle. The primary difference between these two

frameworks and our framework is the scope. Both myCBR

and jCOLIBRI look to provide general frameworks that can

be applied in a variety of CBR areas such as textual CBR,

recommender systems or conversational CBR systems. Our

framework has been developed exclusively for learning by

observation systems and has been optimized accordingly.

We place a strong emphasis on the properties that agents

will encounter in their environment like partial observability,

non-determinism, complex environments and real-time con-

strains. Similarly, their frameworks are designed to be used

on desktop computers or as web-based applications whereas

ours is designed to be used on embedded systems.

VII. CONCLUSIONS

In this paper we have described a framework, jLOAF1,

for developing case-based reasoning agents that learn by

observation. We looked to design a framework that did

not require any knowledge about the behaviour or goals of

the expert being observed. Instead, a learning agent only

needs a definition of its input and action models along

with interfaces to allow it to properly observe and interact

with the environment. By separating the core reasoning

algorithms (described in more detail in [10]) from any

domain specific knowledge, the same reasoning system can

be utilized in a variety of environments. Our framework

design has also focused on addressing many of the properties

of realistic environments like complexity, non-determinism,

partial observability and real-time constraints.

While we have focused on a domain independent frame-

work that is not biased toward any specific task, there is

nothing limiting an agent designer from introducing such

bias in order to optimize performance. For example, the

sensory input models could be designed to only contain

inputs that the expert uses during reasoning or use similarity

metrics that are tailored to a specific behaviour. Ideally,

our framework looks to learn such optimization information

during the preprocessing steps but it could also be hard-

coded in order to save time.

We presented four case studies, in both simulated and

physical environments, that show how inputs and actions can

be modelled using our framework. Our examples included

domains with simple sensor systems, high-level object de-

tection, partial observability and full observability. Addi-

tionally, we described domains with parameter-free actions,

multi-parameter actions and complex sequences of actions.

Our experimental evaluation shows that the same agent,

without changing the reasoning module, can successfully

learn a variety of behaviours in several different domains.

Not only do these agents perform well in experimental

evaluations but they are also able to perform the learnt

behaviour when placed in the environment2.

There are several limitations of this framework. If an

agent is only going to be used for a single task and

domain knowledge can be obtained inexpensively, using

our framework may not be appropriate. The preprocessing

approaches would likely not learn the domain knowledge

as precisely as if a domain expert provided it. Additionally,

since no information about the goals or behaviours of the

1A reference implementation, that has been used in all described do-
mains, is available: http://www.nmai.ca

2The video “Case-Based Imitation: A Sequel” from the 2010 AAAI Ar-
tificial Intelligence Video Competition shows demonstrations of agents cre-
ated using this framework: http://www.videolectures.net/aaai2010 floyd
cbi/

537

expert are provided the agent can not make use of techniques

like reinforcement learning since it does not know when

it has done something correctly or incorrectly. Like all

learning by observation systems, the agent’s performance

is heavily influenced by the quality of observations (both

the problem-space coverage and amount of noise). Our

framework attempts to deal with these issues thought case

acquisition techniques but they still remain difficulties. Our

future work will look to further examine techniques for case

acquisition, especially those that are able to minimize noisy

or erroneous observations. We will also examine how the

sensor and action models can be built dynamically so that

sensors can be easily added or removed from a robot at

runtime.

REFERENCES

[1] M. Wooldridge, An introduction to multiagent systems. John
Wiley and Sons, 2002.

[2] A. Aamodt and E. Plaza, “Case-based reasoning: Foun-
dational issues, methodological variations, and system ap-
proaches,” AI Communications, vol. 7, no. 1, pp. 39–59, 1994.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addision-Wesley, 1995.

[4] S. Flinter and M. T. Keane, “On the automatic generation of
cases libraries by chunking chess games,” in 1st International
Conference on Case-Based Reasoning, 1995, pp. 421–430.

[5] M. Fagan and P. Cunningham, “Case-based plan recognition
in computer games,” in 5th International Conference on Case-
Based Reasoning, 2003, pp. 161–170.

[6] M. W. Floyd, A. Davoust, and B. Esfandiari, “Considerations
for real-time spatially-aware case-based reasoning: A case
study in robotic soccer imitation,” in 9th European Confer-
ence on Case-Based Reasoning, 2008, pp. 195–209.

[7] H. Romdhane and L. Lamontagne, “Forgetting reinforced
cases,” in 9th European Conference on Case-Based Reason-
ing, 2008, pp. 474–486.

[8] J. Rubin and I. Watson, “Similarity-based retrieval and solu-
tion re-use policies in the game of Texas Hold’em,” in 18th
International Conference on Case-Based Reasoning, 2010,
pp. 465–479.

[9] S. Ontañón, K. Mishra, N. Sugandh, and A. Ram, “Case-
based planning and execution for real-time strategy games,”
in 7th International Conference on Case-Based Reasoning,
2007, pp. 164–178.

[10] M. W. Floyd, B. Esfandiari, and K. Lam, “A case-based
reasoning approach to imitating RoboCup players,” in 21st
International Florida Artificial Intelligence Research Society
Conference, 2008, pp. 251–256.

[11] M. W. Floyd and B. Esfandiari, “An active approach to
automatic case generation,” in 8th International Conference
on Case-Based Reasoning, 2009, pp. 150–164.

[12] ——, “Supplemental case acquisition using mixed-initiative
control,” in Twenty-Fourth International Florida Artificial
Intelligence Research Society Conference, 2011, pp. 395–400.

[13] E. L. Rissland, D. B. Skalak, and M. T. Friedman, “Case
retrieval through multiple indexing and heuristic search,” in
13th International Joint Conference on Artificial Intelligence,
1993, pp. 902–908.

[14] RoboCup, “Robocup official site,” http://www.robocup.org,
2011. [Online]. Available: http://www.robocup.org

[15] J. Dinerstein, P. K. Egbert, D. Ventura, and M. Goodrich,
“Demonstration-based behavior programming for embodied
virtual agents,” Computational Intelligence, vol. 24, no. 4,
pp. 235–256, 2008.

[16] C. G. Atkeson and S. Schaal, “Robot learning from demon-
stration,” in Fourteenth International Conference on Machine
Learning, 1997, pp. 12–20.

[17] D. H. Grollman and O. C. Jenkins, “Learning robot soccer
skills from demonstration,” in IEEE International Conference
on Development and Learning, 2007, pp. 276–281.

[18] A. Coates, P. Abbeel, and A. Y. Ng, “Learning for control
from multiple demonstrations,” in 25th International Confer-
ence on Machine Learning, 2008, pp. 144–151.

[19] K. Gillespie, J. Karneeb, S. Lee-Urban, and H. Muñoz-Avila,
“Imitating inscrutable enemies: Learning from stochastic pol-
icy observation, retrieval and reuse,” in 18th International
Conference on Case-Based Reasoning, 2010, pp. 126–140.

[20] C. Thurau and C. Bauckhage, “Combining self organizing
maps and multilayer perceptrons to learn bot-behavior for a
commercial game,” in GAME-ON Conference, 2003.

[21] P. P. Gómez-Martı́n, D. Llansó, M. A. Gómez-Martı́n,
S. Ontañón, and A. Ram, “MMPM: A generic platform for
case-based planning research,” in Workshop on Case-Based
Reasoning for Computer Games at the 18th International
Conference on Case-Based Reasoning, 2010, pp. 45–54.

[22] M. Mehta, S. Ontañón, T. Amundsen, and A. Ram, “Author-
ing behaviors for games using learning from demonstration,”
in Workshop on Case-Based Reasoning for Computer Games
at the 8th International Conference on Case-Based Reason-
ing, 2009.

[23] S. Ontañón and A. Ram, “Case-based reasoning and user-
generated AI for real-time strategy games,” in Artificial In-
telligence for Computer Games, P. A. Gonzáles-Calero and
M. A. Gomez-Martı́n, Eds., 2011, pp. 103–124.

[24] B. Dı́az-Agudo, P. A. González-Calero, J. A. Recio-Garcı́a,
and A. A. Sánchez-Ruiz-Granados, “Building CBR systems
with jCOLIBRI,” Science of Computer Programming, vol. 69,
no. 1-3, pp. 68–75, 2007.

[25] A. Stahl and T. Roth-Berghofer, “Rapid prototyping of CBR
applications with the open source tool myCBR,” in 9th
European Conference on Case-Based Reasoning, 2008, pp.
615–629.

538

