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Abstract
Recent advances in multi- and many-core architectures

include increased hardware-level parallelism (i.e., core

counts) and the emergence of platform-level heterogene-

ity. System software managing these platforms is typi-

cally comprised of multiple independent resource man-

agers (e.g., drivers and specialized runtimes) customized

for heterogeneous vs. general purpose platform ele-

ments. This independence, however, can cause per-

formance degradation for an application that spans di-

verse cores and resource managers, unless managers co-

ordinate with each other to better service application

needs. This paper first presents examples that demon-

strate the need for coordination among multiple resource

managers on heterogeneous multicore platforms. It then

presents useful coordination schemes for a platform cou-

pling an IXP network processor with x86 cores and run-

ning web and multimedia applications. Experimental ev-

idence of performance gains achieved through coordi-

nated management motivates a case for standard coor-

dination mechanisms and interfaces for future heteroge-

neous many-core systems.

1 Introduction

Islands of cores. Recent advances in multi- and

many-core architectures include increased hardware-

level parallelism (i.e., core counts) and the emergence

of platform-level heterogeneity. Examples include the

AMD Opteron [25] and Intel Nehalem [22] processors

with NUMA-based memory hierarchies, high-core count

processors like Intel’s recently announced ‘single-chip

cloud computer’ [14], purposefully heterogeneous sys-

tems like Intel’s Larrabee [19] or IBM’s Prism [15] pro-

cessors, or general-purpose (i.e., x86) cores tightly in-

tegrated with specialized accelerators, enabled by ad-

vances in on-chip interconnection technology [9, 26].

These hardware developments force re-consideration

of the design and implementation of the underlying sys-

tems software supporting future many-core applications,

since management by a single monolithic system and ap-

plication stack would likely result in limited scalability

and unnecessary software complexity. Instead, and in or-

der to address the heterogeneous nature of future many-

core systems, this paper presents an outlook in which

(1) platforms are partitioned into multiple ‘islands’ of re-

sources [14, 23], and (2) each island can run its own sys-

tem and application stacks, customized to better exploit

island resouces (e.g., stacks focused on storage vs. com-

munication [1] resources). Island boundaries may be

established based on types of cores on multi-ISA plat-

forms (e.g., an island with x86 vs. GPU cores), on

their cores’ distances from memory modules (e.g., on

NUMA architectures) or on coherence domains, or based

on the functional semantics of how its cores are used.

For instance, an island of cores focused on communica-

tion tasks may export a real-time scheduling policy [20],

whereas another may export a scheduling policy opti-

mized for server tasks, etc.

‘Islands’ of cores is not a new notion, in that previous

research has already established the utility of partition-

ing platforms and higher level systems stacks into sets

of tiles, clusters, or cells [5, 23, 10, 16, 14], demonstrat-

ing that this approach can help improve scalability and

isolation. This paper’s new contribution, however, is to

identify and address two key problems with islands and

their independent resource managers:

1. Maintaining global properties. With multiple re-

source managers, it becomes difficult to attain desired

platform-level or end-to-end properties. For example,

when an application spans multiple islands whose inter-

nal resource managers make their own scheduling deci-

sions, how do we provide it with appropriate levels of

end-to-end service performance?

2. Dealing with heterogeneous abstractions. The

managers present in multiple islands will each use and

support different sets of resource abstractions, an exam-

ple being virtual machines or processes supported for
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sets of x86 cores and communication queues and mes-

sages managed in the ixp network processor. In the pres-

ence of such diversity, are there standard communication

and coordination interfaces that abstract heterogeneity

while still allowing managers to share and act on rele-

vant resource management state?

Next, we first motivate and demonstrate the need for

coordinated management, followed by second, a state-

ment of requirements for coordination mechanisms and

methods.

Need for management coordination in heterogeneous

systems. With reference to problems 1. and 2. above,

we next describe compelling use-cases for heterogeneous

multicore platforms for which coordination between in-

dependent resource managers is an essential feature of

future systems software.

1. Meeting application requirements. Consider a pro-

totype heterogeneous platform comprised of a general

purpose set of x86 processors connected over PCIe to

an IXP Network processor [1]. The platform is used to

run the RUBiS web application, which is an eBay-like

auction website benchmark (see Figure 1). The x86 pro-

cessors are managed by the Xen hypervisor [4], where

RUBiS is run by placing its three major components,

namely the Web, Application and database servers, into

separate virtual machines. Requests issued by exter-

nal clients are handled by the IXP platform component,

which acts as a programmable network interface that

sends and receives RUBiS traffic between our prototype

host and clients. Previous work [3, 27, 2] has shown

that the resource usage of multi-tier applications is gov-

erned by incoming client requests and their types. Ex-

ploiting this fact, a request classification engine perform-

ing deep packet inspection and running on the IXP pro-

cessor can be used to better manage the CPU resource

allocations given to individual RUBiS components run-

ning on the x86 processors. Needless to say, the per-

formance improvements sought in this fashion cannot be

realized unless there are well-defined and efficient inter-

faces between the message-centric resource management

methods existing on the IXP (e.g., the priorities used for

servicing different message queues) and the process- or

VM-centric management methods used on the x86 plat-

forms. This is demonstrated in Figure 2, which shows

the minimum and maximum end-to-end response time

latencies for various RUBiS request types, as observed

by the client in this setup. These measurements show

substantial variation in the minimum and maximum re-

sponse time latencies of requests, which as shown in Sec-

tion 3, are due to the fact that there is no coordination be-

tween the IXP’s queue-centric and the x86’s VM-centric

resource management actions. We also note that there

are additional examples that demonstate the need for co-

ordinated resource management, including recent work

  

IXP x86

RUBiS 
Request 
Classifier

Web 
Server

App
 Server

DB
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requests

PCIe

Figure 1: RUBiS Components on IXP and x86 systems

and their Interactions on Receive Path.

Figure 2: RUBiS: Variation in minimum-maximum re-

sponse latencies.

in which performance improvements are gained by bet-

ter co-scheduling tasks on graphics vs. x86 cores to attain

desired levels of parallelism [12, 13].

2. Platform-level power management. While power

budgeting can be performed on a per tile-basis (e.g., in

the upcoming Intel chip [14])), it is well-known that

properties like caps on total power usage must be ob-

tained at platform level. This is because turning off or

slowing down processors in certain tiles may negatively

impact the performance of application components ex-

ecuting on others. Maintaining desired global platform

properties, therefore, implies the need for coordination

mechanisms [17, 28], which at the same time, act to pre-

serve application-level quality of service or performance

constraints.

Remainder of paper. The remainder of the paper is or-

ganized as follows. Section 2 explains our current im-

plementation of coordination for the prototype heteroge-

neous platform used in this research. This is followed

by experimental evaluations in Section 3 demonstrating

the value of coordinated resource management. Section

4 takes a look at related work relevant to our research.

Conclusions and future work appear at the end.
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Figure 3: Execution model: x86-IXP prototype.

2 Implementation

Section 1 explained the need for coordination mecha-

nisms in heterogeneous systems. As an example two-

island heterogeneous setup, we have developed an exper-

imental prototype using a general purpose x86 platform

connected over PCIe to an IXP network processor [1]

(see Figure 3). There are two scheduling islands in our

setup:

(1) an island consisting of x86 cores, managed by the

Xen hypervisor (not shown in the figure for clarity) and

the privileged controller domain Dom0, and (2) an is-

land consisting of specialized communication cores on

the IXP, managed by the IXP-resident runtime and via a

device-driver interface embedded in the Dom0 kernel.

All communication to and from the x86 (i.e., the VMs)

is performed via a virtual interface (ViF), implemented

on top of a vendor-provided messaging driver. The IXP

ViF interfaces with the Linux TCP/IP network stack.

It receives packets from the messaging driver interface,

converts them to valid socket buffers, and sends them to

the kernel network stack. Packet transmission from the

host is handled in a similar way. The IXP ViF first con-

verts the socket buffers into valid packet buffers for the

messaging driver. These are later dispatched to the IXP

via DMA. Using the Xen bridge tools, we make this IXP

ViF the primary network interface for network commu-

nication between Xen DomUs and the outside world.

2.1 The IXP island of cores.

IXP Architecture. The IXP 2850 used in our research

is a programmable network processor with 16 8-way

hyper-threaded RISC microengines running at 1.4 GHz

clock frequency. The instruction set supported by the

microengines is optimized for packet processing-related

tasks, thereby making these cores suitable for commu-

nications. The platform has a deep memory hierarchy,

with increasing access latencies at each level. Closest to

each processing core, each microengine has 640 words of

local memory and 256 general purpose registers. Next,

there are 16KB of shared scratchpad memory, 256 MB

of external SRAM (used primarily for packet descriptor

queues), and 256MB of external slower DRAM memory

(used for packet payload), all of which can be used for

inter-microengine communication. The external mem-

ories are also mapped into host memory and accessible

from the host. In addition, the hardware supports signals,

which can be used for inter-thread signaling within a mi-

croengine, as well as externally between micro-engines.

An ARM XScale core, used for control and manage-

ment purposes, runs Montavista Linux. Communica-

tion with the host is performed via one or more mes-

sage queues between Dom0 and the IXP. The message

queues contain descriptors to locations in a buffer pool

region where packet payloads reside. Both, the mes-

sage queues and the buffer pool region are part of re-

served memory in the host physical address space. The

buffer pool management and message descriptor transfer

on the host side is managed by a messaging driver in the

Dom0 kernel. On the IXP end, two micro-engines, la-

beled PCI-Rx and PCI-Tx in Figure 3, manage the same

functions for the IXP processor and IXP DRAM packet

rings. The messaging driver handles packet-receive by

periodic polling. The IXP can be programmed to inter-

rupt the host at a user-defined frequency. Every time this

interrupt is serviced by the messaging driver, the host-

IXP message queues are checked for any outstanding de-

scriptors which are then dequeued and passed to upper

layers in the network stack.

IXP as a scheduling island. The IXP microengine

threads, except for those designated for PCIe-related op-

erations, are programmed to execute one of the follow-

ing tasks: packet receipt (Rx), packet transmission (Tx),

or classification (on the Rx or Tx flows). By default,

the scheduling of these threads is round-robin, purely

managed by hardware, with context switches occurring

on each memory reference. We implement scheduler-

like functionality on top of this round-robin switching

for the Rx- and Tx-related tasks. These schedulers use

in-memory data structures and signals to notify threads

to explicitly yield or to start executing, and to schedule

the receipt/transmit operations and packet enqueue/de-

queue on the IXP-host messaging interface. This helps in

achieving ‘weighted’ scheduling/resource management

for packet Rx and Tx operations, where quality of service

for classified flows can be managed by tuning the num-

ber of threads assigned to each flow. For instance, if the
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classification engine classifies incoming packets into per

VM flow queues, then by tuning the number of dequeu-

ing threads per queue and their polling intervals, we can

control the ingress and egress network bandwidth seen

by the VM. Our goal is, then, to coordinate these thread

scheduling and queue management actions with the x86

scheduler.

2.2 The x86 island of cores.

The second scheduling island in our x86-IXP prototype

consists of an x86 multicore platform, virtualized with

the Xen hypervisor. The island’s resource management

is performed by the Xen credit scheduler and the privi-

leged controller domain, Dom0. Virtual machines upon

creation are assigned weights that are translated inter-

nally by Xen into credits and are allocated CPU re-

sources in proportion to their weights according to the

credit scheduling algorithm [8]. The controller domain

hosts a user-space utility ‘XenCtrl interface’ to tune the

credit scheduler behavior and adjust processor allocation

to individual guest VMs.

2.3 x86-IXP coordination.

In order to coordinate resource management across the

x86 and IXP scheduling islands, we need to identify first,

the islands in our system and then, the processes that

will execute in one or part of both islands (e.g., the IXP

needs to know of guest VMs on the x86 island that will

send and receive network traffic through it). At system

initialization time, all scheduling islands register with a

global controller (i.e., the first privileged domain to boot

up and have complete knowledge of the system platform,

in our prototype, this function is a part of Xen Dom0).

When guest VMs containing application components are

deployed across the platform’s scheduling islands, they

register with Dom0. In this way, identifier information

about VMs using the IXP as a network interface will be

coordinated with the IXP island through its device driver

interface in Dom0. Part of the PCI configuration space

of the IXP device is used to setup a coordination channel

between the IXP and the x86 host, used for exchanging

messages between the two islands which drive various

coordination schemes, further discussed in Section 3.

3 Evaluation

We next experimentally demonstrate the feasibility and

the importance of coordinating resource management ac-

tions across scheduling islands. Experiments are con-

ducted on our x86-IXP prototype described in Section 2.

It consists of a Netronome i8000 communications ac-

celerator based on the Intel IXP2850 network processor

Figure 4: RUBiS Min-Max Response Times. Coordina-

tion helps in peak response latency alleviation.

connected via PCIe to a dual-core 2.66GHz Intel Xeon

processor. The host processor runs Xen with a Linux

2.6.30 Dom0 kernel. Experimental analyses are con-

ducted using two widely-used benchmarks: (a) RUBiS

– a multi-tier auction website modeling eBay, and (b)

MPlayer – a media player benchmark.

3.1 RUBiS

The RUBiS setup consists of an Apache web-server fron-

tend, a Tomcat Servlets application server, and a MySQL

Database server backend, all deployed in separate Xen

hardware virtual machines running Kubuntu 8.04 Hardy

2.6.24 kernel (see Section 1 Figure 1). Each virtual ma-

chine is single VCPU and has 256 MB of RAM. Dom0,

however, has unpinned VCPUs and can execute on all

CPUs. All VMs’ network communication is relayed via

the Xen bridge interface to the IXP accelerator. The IXP

runtime acts as a front-end to all network-related activ-

ity of Xen VMs and is responsible for relaying packets

to and from the wire and external RUBiS clients to the

host. A RUBiS client is deployed on a separate x86 dual-

core host, running Kubuntu Hardy 2.6.24 kernel with 384

MB physical RAM. The RUBiS server-side network in-

terfaces and the client interface are on the same network

subnet.

Analyses of requests’ resource requirements.

We use offline profiles of behavior of the RUBiS com-

ponents for various workloads to actuate coordination.

Profiles are based on two client workloads available with

the standard RUBiS benchmark: browsing (read) mix
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Request Type Base(ms) coord-ixp-

dom0(ms)

Register 1447 1015

Browse 922 461

BrowseCategories 1896 1242

SearchItems-

InCategory

1085 788

BrowseRegions 1491 1490

BrowseCategories-

InRegion

1068 927

SearchItems-

InRegion

590 530

ViewItem 2147 1944

BuyNow 551 292

PutBidAuth 1089 867

PutBid 1528 538

StoreBid 3366 1421

PutComment 4186 721

Sell 720 490

SellItemForm 351 188

AboutMe(authForm) 1154 546

Table 1: RUBiS - Average Request Response Times.

and bid/browse/sell (read-write) mix. Request traffic

from the client follows probabilistic transitions emulat-

ing multiple user browsing sessions, and consists of ap-

proximately twenty basic request types (see Table 1). Of-

fline profiling establishes relationships between the prop-

erties of the incoming request types and the resulting

inter-VM communications: (1) for the browsing (read

only) mix, static content like HTML pages and images

need to be served for the client, resulting in a large

amount of webserver-application server interactions, and

practically no database server processing; (2) for the

bid/browse/sell (read-write) mix, dynamic content us-

ing servlets, reads, and writes to and from the back-

end database generate a large number of application –

database server interactions. In addition, the application

server utilizes the CPU more heavily, as it is also serv-

ing dynamic content by running Java servlets. These

observations are consistent with results from previous

work [3, 27].

Coordination scheme. Based on insights into the rela-

tionships between request types and the resulting com-

ponent interactions and resource requirements, coordina-

tion needs to use the application-level knowledge (about

client request types) on the IXP island to possibly change

scheduling of the RUBiS VMs in the x86 island. The

goal is to maintain the following performance properties:

• low response-time variability – end-user experience

depends on how ‘responsive’ the website appears to

be, which requires not simply low average response

time, but rather a tolerable standard deviation limit

across multiple requests of the same type;

• high request throughput rate – resulting in higher

scalability of the RUBiS server;

• low average session time – affecting both end-user

experience and server scalability; and

• high platform efficiency – a measure of the average

request throughput (i.e., application performance)

over the mean CPU utilization (i.e., resource uti-

lization), since the use of only a system-level metric

like CPU utilization does not provide sufficient in-

sight into how that utilization is translated into bet-

ter application performance.

To obtain these properties, the IXP scheduling domain

requests weight adjustments to be applied to RUBiS

VMs in the remote x86 scheduling domain. Browsing

related requests result in sending ‘weight increase’ mes-

sages for the web VM and ‘weight decrease’ message

for the database server, whereas servlet versions will cor-

respond to ‘weight increase’ messages for the database

server domains. Given that the application server sees

increased activity for processing both request types, its

weight is increased in accordance with web server weight

for read requests, and with database server weight for

write requests.

We compare this coordinated case against the baseline

case when there is no coordination across the IXP and

x86 scheduling domains.

Benefits of coordination. Experimental results presented

in the remainder of this section demonstrate the bene-

fits of coordination for achieving improvements in each

of the aforementioned metrics for the RUBiS overlay.

Figure 4 shows the min-max response times for serving

different RUBiS requests in a read-write browsing mix

workload. We observe that the coordinated case results

in reduced standard deviation for every request type ser-

viced, sometimes by up to 50%. The use of our coordi-

nation results only in slight overheads by increasing the

minimum response time latency by up to tolerable 3%.

We do not currently incorporate any mechanisms for

predicting frequent transitions amongst read and write

requests or to recognize oscillations in client request

streams and all our coordination actions are applied on

a per-request basis. Another issue is the relatively large

latency of the PCIe-based messaging channel in our

current prototype. Both combined sometimes lead to

the incorrect application of our coordination algorithm

when managing resources (e.g., the maximum response

time for ‘BrowseCategoriesInRegion’, a browsing re-

quest type is higher for the coordinated case). The cor-

rectness of this interpretation of results is demonstrated

by another run of a purely “Browsing” related mix that

does not have the read-write transitions. Here, our ap-
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Base

(req/s)

coord-ixp-dom0

(req/s)

Throughput 68

req/s

95 req/s

Sessions completed 6 11

Avg session Time 103s 73s

Platform Efficiency 51.28 58.20

Table 2: RUBiS – Throughput Results.
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Figure 5: RUBiS CPU Utilization.

proach always performs better than the baseline case for

all request types.

The results in Table 1 show a similar trend with re-

spect to the average response times for the same read-

write workload. Our coordination algorithm significantly

reduces response times for all categories of requests (in-

cluding by over 60% for ‘PutBid’ requests), Table 2

shows additional performance metrics for the RUBiS

benchmark, where the use of coordination clearly results

in improved performance and more efficient utilization

of platform resources. Concerning ‘raw’ resource uti-

lization, Figure 5 shows small increases in CPU utiliza-

tion in the event of using coordination. These results are

gathered for the same read-write request mix as above,

for which there is higher application and database server

activity, justifying the higher weights (i.e., resource al-

locations) for these components. We also observe that

with coordination, the user space CPU utilization within

the guest domain is increased, while iowait and the sys-

tem CPU utilization values decrease. This is advanta-

geous, as it means the application receives more CPU

time to run. The platform efficiency metric in Table 2

justifies the resulting higher CPU utilization with a larger

improvement in application performance (e.g., through-

put), thus demonstrating the importance of coordinated

resource management.

3.2 MPlayer Benchmark

Mplayer is an open-source movie player benchmark.

It plays most video formats and supports a variety of

codecs including the h.264 high definition codec. Re-

trieving video streams and playing them requires de-

coding the codec used by the stream. This is a fairly

high CPU-intensive task. The amount of CPU usage

necessary to provide a desired viewing experience de-

pends on certain stream characteristics, such as the type

of codec, resolution, frame- and bit-rate. Higher bit-

rate and higher frame-rate video guarantees better video

quality and smoother viewing. However, decoding these

streams is more CPU-intensive.

We use the IXP-based testbed with two Mplayer

clients inside two virtual machines, both 256 MB, single

VCPU, running Kubuntu 8.04 2.6.24 kernel. A Darwin

Quicktime streaming server is deployed on an external

machine, serving video streams over RTSP and UDP. All

network communication between the client and server is

directed through the IXP interface. The IXP processor

classifies incoming streams based on virtual machine IP

address that hosts the MPlayer client. Mplayer supports a

benchmark option that plays out the streams at the fastest

frame rate possible and we also disable video output for

all our tests, just focusing on the decoded frames/sec out-

put as our application-level quality of service metric.

Coordination schemes.

1. Using application knowledge. In order to drive coor-

dination, we devise a coordination scheme that leverages

the incoming stream properties and hence application

knowledge to drive coordination between the IXP and

the x86 scheduling domain. To do this, when an RTSP

session is established, the IXP maintains bit- and frame-

rate state on a per guest virtual machine basis that hosts

the MPlayer client. The actual incoming stream is classi-

fied based on the destination (i.e., guest) IP address. The

IXP sends an ‘Increase weight’ message for a high bit-

rate, high frame-rate stream, whereas ‘Decrease weight’

message is sent when servicing low bit-rate, low frame-

rate streams. The results in Figure 6 show that this coor-

dination results in an improved overall frame rate. In this

experiment, we first start the guests with default weights

of 256 each. Domain-1 plays a lower frame-rate (20

frames/sec) 300 kbps stream, while Domain-2 plays a

higher frame-rate (25 frames/sec) 1Mbit stream. With

default weights, neither guest domain is able to meet the

required frame-rate guarantees. When we increase their

weights due to their high bit-rate detection, Domains 1

and 2 report output frame rates of 22 and 25.7 frames/sec,
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Figure 6: Mplayer: Video-stream Quality of Service.
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Buffer Monitoring.

Guest Domain Baseline

Frames/s

With

Co-ord

Frames/s

%

change

Domain-1 24.0 26.6 +9.77

Domain-2 80.0 75.0 -6.25

Table 3: MPlayer – Trigger Interference.

respectively, which means that both meet their required

frame-rate values. If we now further increase Domain-

2’s weight because it has a higher frame-rate require-

ment and also increase the number of IXP threads ser-

vicing Domain-2 receive queue in tandem, we see that

Domain-2 achieves still better frame-rates, but Domain-

1’s frame rate is reduced in proportion to Domain-2’s in-

creased weight. It still remains above the 20 frames/sec

limit, however. Hence coordination helps us to translate

stream-level properties into appropriate CPU resource al-

location for MPlayer.

2. Using system buffer monitoring. In the previous ex-

ample, we apply higher-level application properties to

drive coordination. We next actuate coordination, which

does not rely on application-level knowledge but solely

system-level monitoring insights. To demonstrate such

a use-case and its benefits, we monitor network-buffer

lengths in the IXP DRAM which correspond to packet

queues for the host VMs. If the packet-rate increases

like it may for streaming applications (e.g., in UDP bulk

transfers with no flow-control), such a change will be no-

ticed at the first stage of the pipeline – the IXP schedul-

ing domain. This information can be used to inform

later stages that they will need additional processing

power, thereby anticipating or avoiding potential bottle-

necks. Such actions are time-critical because if not de-

queued in time, the frontend buffer could overflow, lead-

ing to lost packets. In our streaming case, whenever the

buffer-length goes above a defined threshold, an imme-

diate trigger notification is sent to the x86 host, which

should boost the dequeuing guest VM’s position in the

runqueue. As can be seen from Figure 7, we see spikes

in CPU utilization for the boosted domain whenever a

buffer-threshold of 128Kbytes is reached on the IXP. The

outcome is an increased frame-rate of 26.6 frames/sec as

compared to the baseline case of 24.0 frames/sec – a near

10% improvement.

Trigger overheads. Finally, we also evaluate the impact

of such trigger coordinations on other VMs running in

the target scheduling island. Towards this end, we de-

ploy a second MPlayer VM – Dom-2, which rather than

playing video from the network, plays it from its own lo-

cal disk. Therefore, this VM does not use any resources

of the IXP island. Our measurements, shown in Table 3,

show that Dom-2’s performance degrades by only 6%.

While there is still an overall net gain in platform ef-

ficiency, we believe that on more tightly coupled next

generation manycores, the overheads generated by such

triggers will be substantially reduced.

3.3 Discussion of results – a case for coor-

dination.

From the experimental evaluations described above, we

observe that coordination helps improve the performance

of applications spanning heterogeneous islands, and it

also leads to more efficient use of platform resources

(i.e., through increased CPU usage efficiency). Given

these encouraging results, we believe that there exists a

set of low-level coordination mechanisms that should be

an essential feature in the design of future system soft-

ware for heterogeneous manycore platforms. For the co-
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ordination schemes in our evaluation use-cases, we iden-

tify two such mechanisms that can effectively be used to

implement more versatile and complex higher-level co-

ordination algorithms.

1. Tune – is a mechanism used by an island to re-

quest fine-grained resource adjustment of a particular

entity (e.g., process or VM) in a remote island. This

mechanism corresponds to the ‘Weight increase’ and

‘Weight decrease’ messages used in our evaluated coor-

dination algorithms. Messages containing a process or

VM identifier and a +/- numerical value can be used to

request resource adjustment that, at the remote island,

will get translated into corresponding weight or priority

adjustments, depending on the remote island’s schedul-

ing algorithm (e.g., credit adjustments in Xen scheduler

or poll time adjustments in an I/O scheduler).

2. Trigger – is an immediate notification, like an interrupt

between two islands. It is a mechanism that lets an island

request resource allocation for a particular process in a

remote island as soon as possible, and therefore has more

preemptive semantics.

Hardware considerations. Future platforms [14] may

have non-cache coherent memory between islands of

cores, and therefore supporting these mechanisms via

message-based communication [5] contributes to the

generality of the approach.

In addition, although we discuss the integration of

such coordination mechanisms into system software

for heterogeneous many-cores, their realizations can be

made more efficient through use of adequate hardware

support. First, by leveraging advanced interconnection

technologies (e.g., QPI, HTX), more tighly coupled het-

erogeneous multicores can be realized, which will elimi-

nate the latency concerns, as observed in our experiments

due to the use of a PCIe interconnect.

Next, inter-processor interrupts and, for some archi-

tectures, the monitor and mwait instructions, are the

only relatively primitive inter-core communication meth-

ods present in current platforms. The presence of fact

core-core hardware-level signalling support, which can

also carry the small additional amounts of information

as required by the coordination mechanisms described

above, can further eliminate some of the observed soft-

ware overheads.

Finally, use of hardware-supported queues, or use of

fast on-chip shared memory with explicit message pass-

ing semantics [14] for the inter-island coordination chan-

nels can result in improved performance and scalability

of such mechanisms.

4 Related Work

Scheduling islands. The concept of scheduling islands

introduced in Helios [23] has its roots in earlier work that

includes Cellular-Disco [10], Hive [7], K42 [16], and [6].

While Helios uses satellite kernels to build distributed

systems in the small and has a notion of heterogeneous

runtimes, the Hive system uses resource-partitions for

fault-containment, and K42 uses them to exploit local-

ity. The implementation of scheduling islands via virtual

machines used in this paper is similar to the approach fol-

lowed in Cellular-Disco, which uses virtual machines to

run as domains in ‘cell’ partitions. We wish to extend the

notion of islands by encouraging coordination mecha-

nisms to be exported directly at the system software layer

for better platform resource management, something we

believe has not been looked at in previous work.

Concerning scheduler coordination, there is recent

work on scheduler optimizations that enhance I/O per-

formance in virtualized environments [11, 24]. Opti-

mizations are obtained by coordinating VCPU schedul-

ing with virtual machine I/O, but the solutions provided

rely on a centralized controller domain (Dom0) to pro-

vide the scheduler with necessary hints. With our pro-

posed coordination mechanisms we wish to distribute

such control across scheduling domains. Further, we ex-

plore more complex and richer relationships across mul-

tiple domains, based on application-level data flow and

control dependences.

Application monitoring. Some of our coordination

policy models in Section 3 use application-level depen-

dencies to drive coordination. However application pro-

filing to discover these component dependencies during

runtime is not a part of our current work, and so we

rely on previous research and our own offline profiling to

learn them. For instance, for one of our multi-tier bench-

marks, RUBiS, we use insight from previous work [3, 27]

to understand the work-flow in such applications based

on incoming requests and then use this understanding to

drive coordination. Other research conducted in our own

group and elsewhere [2, 18], has developed methods for

automated discovery of inter-component dependencies in

large scale distributed applications, which can be used in

conjunction with our coordination schemes.

5 Conclusions and Future Work

This paper presents a case for coordination in hetero-

geneous multicore platforms. In order to deal with the

increased parallelism and heterogeneity on next gener-

ation multicores, we rely on platform partitioning into

multiple scheduling islands – sets of resources under the

control of a single resource manager. The challenge

then is how to maintain global, platform-wide proper-

ties and how to deal with the end-to-end SLA require-

ments of applications deployed across multiple, inde-

pendently managed domains. Experimental evaluations

for web and for multimedia applications using a proto-
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type x86-IXP two-island heterogeneous multicore plat-

form demonstrate that coordination methods can help ap-

plications achieve their end-to-end SLAs (with increased

throughput, more predictable and lower response times).

Based on these encouraging results, we argue that coor-

dination between distributed islands on future platforms

needs to be exported as a set of standard mechanisms and

new interfaces at the system software layer itself. We

identify two such mechanisms in this paper.

Our ongoing work concerns exploring additional use-

cases (e.g., memory, power [21] and I/O coordination

policies along with CPU scheduling) to better delineate

required mechanisms and their functionality. Also on-

going are evaluations of the scalability of such mecha-

nisms to large-scale multicore platforms, part of which

involve the use of distributed coordination algorithms

across multiple island resource managers.
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