
A Case for 
Direct-Mapped Caches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

cache is a small, fast buffer in 
which a system keeps those parts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

, of the contents of a larger, slower 
memory that are likely to be used soon. 
The purpose of a cache is to improve sys- 
tetn cost performance by providing the 
capacity of the large, slow memory with an 
average access time close to that of the 
small, fast cache. This is possible only i f  
most memory references can be serviced 
rapidly by the cache without the interven- 
tion of the slower memory. 

Usually caches are successful due to 
temporal and spatial locality, two proper- 
ties of most real reference streams. Tem- 
poral locality means future references are 
likely to be made to the same locations as 
recent references, while spatial locality 
suggests that future references are also 
likely to be made to locations near recent 
references. Caches take advantage of tem- 
poral locality by retaining recently refer- 
enced information, while they exploit 
spatial locality by loading and retaining 
blocks of information surrounding recent 
references. 

A CPU cache is a cache of main mem- 
ory.' Like caches in general, CPU caches 
are faster and smaller than the memory 
they buffer. They are usually five to 20 
times faster and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 to 1,000 times smaller 
than main memory. Because CPU caches 
must be extremely fast, they are managed 
entirely by hardware, and for this reason, 

Mark D. Hill 

University of Wisconsin 

Despite having worse 

miss ratios, large 

direct-mapped caches 

often handle processor 

references faster 

than more-expensive 

set-associative caches. 

CPU-cache access and management poli- 
cies must be relatively simple. 

CPU caches have been studied 
extensively' because they have proven 
effective at increasing system perfor- 
mance, lowering system cost, or both. 
CPU caches continue to be worth study- 
ing because their importance to system 
cost-performance is increasing and tech- 
nological improvements are altering their 
characteristics. (Since this article examines 
only CPU caches, the term cache is often 
used instead of CPU cache.) 

The important cache design parameter 
examined here is associativity, which is 
also called degree of associativity or set 

size. The associativity of a cache is the 
number of block frames in which a given 
block may reside. Reducing associativity 
allows fewer block frames to be searched 
on a reference, a potential implementation 
advantage. However, this further con- 
strains which blocks can be simultaneously 
resident, a potential performance disad- 
vantage. 

The terms fully-associative, set- 
associative, and direct-mapped express the 
relationship between a cache's 
associativity and capacity. A cache of c 
block frames is called ful ly associative if 
a block can reside in any block frame 
(associativity c), n-way set-associative i f  a 
block can reside only in one of n block 
frames where 1 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc (associativity n),  
and direct-mapped if a block can reside in 
only one block frame (associativity 1). Fig- 
ure 1 illustrates set-associative mapping. 

I t  is worthwhile studying associativity 
because technological trends toward large, 
fast static RAMS are facilitating larger 
cache sizes and architectural trends toward 
reduced instruction set computers (RISCs) 
are requiring faster hit times. The trend to 
larger caches is illustrated by the VAX 11 
family. The recently introduced VAX 8800 
uses a 64-Kbyte direct-mapped cache, 
while older VAX 11 implementations like 
the VAX 11/780 and VAX 11/785 use set- 
associative caches of 8 and 16 Kbytes. 

RISCs accentuate the need for caches 

December 1988 O O l R  9162/XX/I200 0025$01 00 1988 l E t t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25 



with fast hit times by having simple pipe- 
lines that facilitate shorter cycle times, and 
by referencing memory so frequently (once 
per cycle) that CPU cycle times are often 
determined by cache hit times. Commer- 
cial RISC processors have been introduced 
by AMD, Hewlett-Packard, IBM, Intel, 
MIPS, Motorola, Sun, and others. 

This article will show that trends toward 
larger cache sizes and faster hit times favor 
direct-mapped caches. The arguments in 
the main body of this article are restricted 
to single-level caches in uniprocessors. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

single-level cache services processor refer- 
ences and obtains data for misses directly 
from main memory. Most past and pres- 
ent computers use single-level caches, as 
will many future computers. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI expect some 
future computers, however, to use two- 
level (or more) cache hierarchies, where a 
level-one cache services processor refer- 
ences and obtains data for misses from a 
level-two cache, which in turn services 
level-one-cache misses and obtains data 
for its misses from memory. Later in the 
article, I discuss how my arguments 

regarding single-level caches extend to 
two-level cache hierarchies. 

I restrict my arguments to uniprocessors 
for two reasons. First, uniprocessors are 
and will continue to be important, espe- 
cially for computers less costly than main- 
frames, such as engineering workstations. 
Second, a thorough analysis of caches in 
multiprocessors requires coverage of many 
degrees of freedom, which would dilute 
the thrust of this article. These include 
interconnection topology, whether control 
is single-instruction-multiple-data or 
multiple-instruction-multiple-data, syn- 
chronization and cache coherency 
mechanisms, and number of processors 
(hence granularity of sharing). I will, how- 
ever, discuss how and when these argu- 
ments for caches in uniprocessors apply to 
caches in multiprocessors. 

Performance metrics 

To examine cache performance, I use 
miss ratio and an extended model of effec- 
tive access time. 

Miss ratio. Miss ratio is the most 
commonly-used cache performance met- 
ric.' The miss ratio for a cache C is  

No. of misses with cache C 
No. of processor references zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm ( C )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

I use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm(C),  rather than m, to emphasize 
that the miss ratio is a function of a cache 
organization. "C" represents all attri- 
butes of cache C. 

Miss ratio is used because it is easy 
to define, interpret, and compute, and 
perhaps most important, because it is 
implementation independent. This inde- 
pendence facilitates cache performance 
comparisons between caches not yet 
implemented and those implemented with 
different technologies and in different 
kinds of systems. Unfortunately, some 
comparisons of dissimilar caches can lead 
to misleading results. A miss ratio cornpar- 
ison, for example, between the Cray-1 
instruction buffers and the Motorola 
68020 on-chip instruction cache is 
meaningless because the technologies and 
workloads have little in common. 

Since miss-ratio comparisons contrast 
the number of misses, they can also be mis- 
leading if the penalty for a miss varies. For 
instance, increasing cache block size often 
reduces the number of misses and hence 
the miss ratio, but it often also increases 
the number of cycles needed to load a 

26 COMPUTER 



Block number Block offset zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-1 Address L A  

Set-mappi ng 
function 

I 

Set Associativity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( A = n )  
decoder 4 

t Compare block number with tags 
and select data word 

Number 
of sets 
(S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= c / n )  

~ 

Figure 1. Set-associative mapping. A set-associative cache uses a set-mapping functionf to partition all main-memory blocks 
into equivalence classes. Some cache block frames are assigned to hold recently referenced blocks from each class. Each group 
of block frames is called a set. The number of groups, called the number of sets (s), equals the number of classes. The number 
of block frames in each set is called the associativity (degree of associativity, set size, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn). The number of block frames in the 
cache ( c )  always equals the associativity times the number of sets (c = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn*s). A cache is fully-associative if it contains only one 
set (n = c ,  s = l), is direct-mapped if each set contains one block frame (n = 1, s = E ) ,  and is n-way set-associative otherwise 
(where n is the associativity, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs = c / n ) .  

On a reference to block x, set-mapping functionffeeds the set decoder withf(x) to select one set (one row); each block 
frame is searched until x is found (a cache hit) or the set is exhausted (a cache miss). On a cache miss, one block in setf(x) is 
replaced with the block x obtained from memory. Finally, the word requested from block x is returned to the processor. For 
conceptual simplicity, the figure shows the word selected last (in box labeled “Compare block number with tags and select data 
word”). To reduce the number of bits that must be read, many implementations select the word while selecting the set. 

The most commonly used set-mapping function is the block number modulo the number of sets, where the number of sets is 
a power of two. This function is called bit selection since it equals several low-order bits of the block number. For 256 sets, for 
example,f(x) = x mod 256 orf(x) = x AND Oxff, where mod is remainder and AND is bitwise-and. 

block. The actual change in cache perfor- 
mance will depend on how much the num- 
ber of misses decreases and how much the 
time to service a miss  increase^.^ The pen- 
alty for a miss can also vary because of 
delays indirectly affected by changes in 
miss ratio, such as memory contention in 
a multiprocessor. 

Effective access time. Another com- 
monly used cache performance metric is 
effective access time, teff(C) (average 
access time). Effective access time is the 
average latency, as seen by the processor, 
required by the memory system to service 
a memory reference. In this article, I 
model it as 

where m ( C ) ,  f cache(C) ,  and fmemory(C) are 
the miss ratio, cache hit time, and average 
miss penalty (delay beyond a cache access 
to access memory) for cache C. Strictly 
speaking, cache hit time should be called 
cache access time, since this delay occurs 
on all accesses, not just hits. I choose not 
to use cache access time, because it is too 
easily confused with effective access time. 

Using effective access time rather than 
miss ratio allows caches with different hit 
and miss times to be more accurately com- 
pared. One can, for example, determine 
whether increasing cache block size 
improves performance as well as miss 

ratio. The disadvantage, however, is that 
implementation details must be examined 
and assumptions must be made for the 
values of tcache(C) and tmemory(C). Perfor- 
mance estimates with any implementation 
assumptions are less general, and those 
with incorrect assumptions are misleading. 

Unlike many other cache memory ana- 
lyses, my analysis does not assume that 
t cache(C)  is the same for all caches studied. 
The disadvantage of including changes in 
t c a c h e ( C )  is that more implementation- 
dependent parameters must be estimated, 
further limiting the generality of results. 
However, variability in cache hit time must 
be considered, since ignoring it can lead to 
incorrect conclusions when comparing 

December 1988 27 



Address zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlatch 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

State Ta zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I 

Valid and match? 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i Data - Addr memory 

Data 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I b log,(number of words 
per block frame) bits 

DataOut I = log,(number of block 
frames) bits 

MatchOut 

t = 3 2 - i - b - 2  bits 

Figure 2. A direct-mapped cache. The access logic (hit, not miss logic) for a direct-mapped cache using bit selection to select 

the set (block frame) of the reference has three components. The first component, the data memory, holds all cached data and 

instructions. The second component, tag memory, holds the state bits and address tag associated with a cached block. The last 

component, the match logic, produces a single bit indicating whether the referenced block is present. 

large caches of varying associativities. On 
the other hand, like many other cache 
memory analyses, mine assumes that 
cache changes do not affect the average 
miss penalty, fmemory (C). This assumption 
simplifies analysis, but it can bias results 
for multiprocessors where delays due to 
contention or updating memory are large 
and variable. 

This article does not evaluate caches 
with system performance metrics like 
benchmark execution time or effective 
number of processors, since these metrics 
require many system-dependent assump- 
tions that limit their usefulness to compar- 
ing similar alternative caches within the 
context of an existing system. Further- 
more, system metrics rarely produce con- 
clusions that generalize to cache designs in 
other systems, because of the difficulty of 
isolating cache effects from other system 
effects. 

Implementing caches 

This section examines the implementa- 
tion of direct-mapped and set-associative 
caches. I concentrate on direct-mapped 
cache hit (access) logic and set- 
associativity logic, because the delay 
through this logic determines cache hit 
time and directly affects effective access 
time. Set-associativity logic is the addi- 
tional logic required by a set-associative 
cache over a direct-mapped cache. For this 
discussion, I assume a generic memory sys- 
tem with a single four-gigabyte address 
space of aligned four-byte words 
addressed with 32-bit byte addresses. I also 
assume address translation is done in a way 
that does not affect the cache hit time. 

Direct-mapped cache. A direct-mapped 
cache is simpler to build than a set- 
associative cache because the cache loca- 

tion of a referenced word is a function of 
the address of a reference only and the 
replacement algorithm is trivial. The 
address of a reference to a direct-mapped 
cache using bit selection is divided into 
several fields. From least-significant to 
most-significant, they are (1) two bits that 
are ignored, assuming a byte address and 
aligned word references; (2) b = log, 
(number of wordsper block frame)bits of 
the block (offset); (3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi=  log, (number of 
block frames) bits of the index; and (4) t 
= 32 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi - b - 2 bits of the address tag. 

Direct-mapped access logic, illustrated 
in Figure 2, has three components: data 
memory, tag memory, and match logic. 
Data memory holds all the cached data 
and instructions. Its size is, by definition, 
the cache size. Conceptually, it can be 
organized as if it were one word wide and 
accessed with an address formed by con- 
catenating the index (i bits) and block ( b  

28 COMPUTER 



I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAddress 

Address Address 

Ban k[O] Bank[ll 

Match[O] Data[O] Match[l] Data[ 11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t + i + b  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 -  1 

e e. Address 

Bank[n -11 

mom Match[n -11 Data[n -11 

- - 
\ 

I 
I 

MatchOut I DataOut zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

‘1 -- -- -- - -- - - - - - - 
’\ 32 ‘.. 1 ‘\ 1 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 3. A set-associative cache. Cache access (hit) logic for an n-way set-associative cache of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc blocks consists of n banks and 

the logic to combine bank results. Each bank can be thought of as a direct-mapped cache of c / n  blocks and can be imple- 

mented using the logic in the dashed box of Figure 2. 

bits) fields of the address. If it is imple- 
mented as a wider memory, some or all of 
the bits in the block field will be used to 
select a word after the data memory access. 
A block-wide data memory is often pre- 
ferred when unaligned memory references 
are permitted. 

The second component, the tag mem- 
ory, which holds the state bits (s bits) and 
address tag ( t  bits) associated with a cached 
block, has one entry per block frame and 
is addressed by the index field. The state 
bits for a block, usually one or two bits, 
indicate the block’s status regarding mem- 
ory update or in a cache coherency pro- 
tocol. Cache hit logic is only concerned 
with whether a block is valid. 

The last component, the match-logic, 
produces a single bit indicating whether 
the referenced block is present. This bit is 
asserted only if the tag read from the tag 
memory is equal to the tag field of the 

address and the state read from the tag 
memory is valid. 

A direct-mapped cache lookup requires 
two parallel actions. One action, called 
read-data, consists of accessing the data 
memory and passing the word read to 
DataOut. The second action, called 
match-found, requires two steps: first, 
accessing the tag memory to read the state 
and address tag for a block frame; second, 
asserting MatchOut if the state is valid and 
the tag matches the reference’s tag. 

Thus, a direct-mapped cache lookup is 
simpler than a set-associative lookup 
(described below) because actions read- 
data and match-found can proceed 
independently. In set-associative caches, 
the results of match-found influence the 
data selected. 

Set-associative cache. An n-way set- 
associative cache zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n = 2 , 4 , 8 ,  or 16), is a 

commonly used cache organization. An n- 
way set-associative cache allows any one 
of the n blocks in a reference’s set to be 
replaced on a miss. While this flexibility 
usually yields lower miss ratios, it requires 
checking n blocks on each reference. To 
keep a set-associative cache hit time simi- 
lar to that of a direct-mapped cache, each 
of then tags in a set must be read and com- 
pared to the tag of the reference in paral- 
lel. This associative lookup and 
comparison adds significant cost, as mea- 
sured in chip count and board area. 

Figure 3 shows the basic structure of an 
n-way set-associative cache. Each bank 
has the same structure as an n-times- 
smaller direct-mapped cache (see Figure 
2). Thus, the index field for each bank 
requires i = log, (number of block 
frumesln) bits, making the tag field, t ,  
log,n bits larger than for a direct-mapped 
cache of the same size. In addition, some 

December 1988 29 



Address zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t+ i+b  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 1 -  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
32 

_t_ 

MatchOut zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1  DataOut zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 4. An alternative set-associative cache. This figure shows cache hit logic for an n-way set-associative cache with a differ- 

ent set-associativity logic implemention from that of Figure 3. First, it uses wired-OR logic instead of an OR gate to compute 

MatchOut. Second, the 32-bit-wide n-to-1 multiplexer and select logic have been replaced with n 32-bit-wide tri-state buffers. 

logic, called the set-associativity logic, is 
needed to select the result from one of the 
n banks. 

On a reference, the address is passed to 
all the direct-mapped banks. In parallel, 
each bank selects a block, sends 32 bits of 
data to Data[i], and computes Match(i1, 
which is asserted on valid tag matches. The 
set of a reference consists of the n blocks 
selected by the n banks. 

After the n direct-mapped banks com- 
pute Match[i]'s and Data[i]'s, the set- 
associativity logic, shown in the dashed 
box in Figure 2, produces a single Match- 
Out signal and DataOut word. MatchOut, 
asserted on a cache hit, is the logical OR 
of the n Match[i] signals. DataOut, the 
data to be returned, must be driven to the 

Data[;] for the bank that matched and can 
be any value if none matched. 

One way to implement set-associativity 
logic is illustrated in Figure 3. Here, 
MatchOut is computed with a single n- 
input OR gate and DataOut with a 32-bit- 
wide n-to-1 multiplexer. The multiplexer 
Select input is driven with the number of 
the bank that matched and can be any 
value if none matched. Select can be com- 
puted with an n-bit encoder or with a sin- 
gle level of log&) n/2-input OR gates. 

Alternate ways of computing MatchOut 
and DataOut are illustrated in Figure 4. 
MatchOut is computed by wire-ORing all 
Match[i]'s together, as is possible using 
open collector (oc) gates in TTL or any 
ECL gates. This approach requires com- 

puting two copies of each Match [i] so that 
the wire-ORing does not affect which data 
is selected. This duplication does not cause 
additional delay if the final AND-gate in 
the bank match logic (not shown) is 
duplicated. 

The alternative implementation for 
DataOut uses tri-state buffers. Here, each 
Data[i] is connected to the input of a tri- 
state buffer, whose enable is controled by 
Match[i]. All zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn tri-state buffer outputs are 
connected together and to DataOut. At 
most, one tri-state buffer is enabled since, 
at most, one bank can match. If no banks 
match, DataOut is undefined. 

The distinction between the logic within 
the n banks and the set-associativity logic 
is not as clear in many implementations as 

30 COMPUTER 



match-found select-data read-data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 5.  Timing paths in a set-associative cache. The three timing paths in the cache hit logic for an n-way set-associative 

cache are (1) match-found, which signals a cache hit or miss (Address to Match[iJ to Matchout); (2) select-data, which selects 

the data word that corresponds to the tag that matched (Address to Match111 to Select to DataOut); and (3) read-data, which 

provides the data on a cache hit (Address to Data[i] to DataOut). Path select-data is not needed in a direct-mapped cache. 

it is in Figures 3 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. For example, the 
n comparators and the encoding logic can 
be combined into a single n-way compara- 
tor that directly controls the multiplexer. 
Nevertheless, a set-associative cache 
always requires more circuitry than a 
direct-mapped cache. 

The delay through a set-associative 
cache is determined by one of three timing 
paths, illustrated in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 :  

(1) match-found, which signals a cache 
hit or miss; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( 2 )  select-data, which selects the data 
word that corresponds to the tag that 
matched; and 

(3) read-data, which provides data on a 
cache hit. 

A direct-mapped cache has timing paths 
read-data and match-found, but it does 
not have path select-data since the location 
of cached data in a direct-mapped cache 
does not depend on which comparator 
matched. 

Arguments against 
direct-mapped caches 

The arguments against direct-mapped 
caches are that they ( 1 )  have worse miss 
ratios than set-associative caches of the 
same size, (2) have terrible worst-case 
behavior, and (3) preclude doing address 
translation in parallel with the first part of 
the cache lookup. In the following section, 

I show that as single-level caches in 
uniprocessors get larger, the effects of the 
first two arguments are diminished and the 
third argument becomes moot. 

Larger miss ratios. It is well-known that 
direct-mapped caches have larger miss 
ratios than set-associative 
Consider the likelihood of prematurely 
replacing an active block (one that is being 
referenced) when multiple active blocks 
map to the same set. A direct-mapped 
cache allows only one of the multiple 
active blocks to reside in the cache at any 
time, while an n-way set-associative cache 
allows zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn blocks to be cached. 

Data from simulation and measurement 
show, however, that the size of the miss 

December 1988 31 



0.04 

0.03 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E 
-4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 
- 
.- 
c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 0.02 
In .- 
E 

a 

m 
a 
c - 

0.01 

0.00 

1K 10K 100K 1M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Cache size (bytes) 

0.04 

0.03 

0.02 

0.01 

0.00 
1K 10K IOOK 1M 

Cache size (bytes) 

(a) Two-way to direct-mapped, 16-byte blocks (b) Two-way to direct-mapped, 32-byte blocks 

Figure 6. Miss ratio differences for unified caches. This figure shows the changes in miss ratio, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAm, that result when 

associativity is reduced from two-way to direct-mapped for unified (data and instructions cached together) caches with 16-byte 

(a) or 32-byte (b) blocks. The data show that miss ratio differences diminish as caches get larger. In comparing 16-byte and 

32-byte miss ratios, ignore the dashed lines since this data comes from different traces. The set-associative caches use LRU 
replacement. (Sources: The miss ratio data in both figures (solid lines) is derived from Tables 2 and 3 in Alexander6 and Table 
3-4 in Hill9. Additional data (dashed lines) for 16-byte blocks (a) comes from Figures 5.10a and 5.10b in Agarwal.’ Additional 
data (dashed lines) for 32-byte blocks (b) comes from Figures 10-13 in Smith.’) 

ratio difference that results from changing 
associativity is less than one might expect 
(Figure 6). The intuition that associativity 
makes a tremendous difference is wrong, 
because it fails to consider that references 
are not made to random locations. Rather, 
references are usually made to locations in 
recently referenced blocks. The tendency 
to re-reference blocks makes the miss 
ratios of all caches much less than one, 
thereby diminishing all potential miss- 
ratio differences. 

A trend in the data shown in Figure 6, 
not heretofore emphasized, is that the miss 
ratio differences diminish as the caches get 
larger. For 8-Kbyte unified (data and 
instructions cached together) caches with 
32-byte blocks, for example, the data show 
that reducing associativity from two-way 
to direct-mapped causes an absolute miss 
ratio change of about 0.013, while at 32 

Kbytes the change is 0.005. Miss ratio 
differences for further associativity 
increases (from two-way to four-way, 
from four-way to eight-way), not shown, 
are much smaller and diminish further as 
the caches get larger.’ 

Miss ratio differences diminish as caches 
get larger for two reasons. First, the active 
blocks are less likely to map to the same set 
in larger caches, since larger caches have 
more sets. For fixed associativity and 
block size, the number of sets is propor- 
tional to cache size. Second, the miss ratios 
of all cache organizations get smaller with 
increasing cache size, diminishing poten- 
tial miss-ratio differences. 

The data from many sources conclu- 
ively show that the miss ratio difference 
between a direct-mapped cache and a set- 
associative cache of the same size dimin- 
ishes as cache size increases. Conse- 

quently, the disadvantage to direct- 
mapped caches becomes less important for 
larger caches. 

Terrible worst-case behavior. Another 
argument against direct-mapped caches is 
that their worst-case behavior, when mul- 
tiple blocks collide in a set, is terrible. 
While this is true, one must ask whether an 
analysis of worst-case behavior should 
include how likely this behavior is. If not, 
then I submit that the worst-case behavior 
of direct-mapped caches is no worse than 
that of set-associative caches. If too many 
blocks map to a given set, both organiza- 
tions will “thrash.” That fewer active 
blocks can cause direct-mapped caches to 
thrash does not change the severity of the 
worst-case behavior, only its likelihood, 
which we just chose to ignore. 

On the other hand, if one wishes to 

32 COMPUTER 



include the probability that worst-case 
behavior occurs in one’s analysis, then one 
must observe that (1) worst-case behavior 
does not occur very often, as is indicated 
by the small differences in average miss 
ratios, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 )  it occurs less often in larger 
caches, as is indicated by the diminishing 
average-miss-ratio differences. 

In summary, the worst-case behavior of 
all caches, including large caches, is bad, 
but while worst-case behavior is more 
likely in large direct-mapped caches than 
in large set-associative caches, it is still 
unlikely zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Parallel address translation difficult. 

Almost all high-end computers in the last 
two decades used paged virtual memory 
and organized their caches with physical 
addresses. In these systems, address trans- 
lation (the translation of virtual addresses 
to physical addresses) occurs logically 
before the cache is accessed. For some of 
these cache configurations, however, it is 
possible to do the address translation in 
parallel with part of the cache access. An 
important disadvantage of reasonably 
sized direct-mapped caches is that this 
technique, called parallel address transla- 
tion, is impractical, since straightforward 
implementations require that a cache’s size 
not exceed its associativity times the page 
size. The IBM 3033, for example, uses par- 
allel address translation and has a 16-way 
set-associative, 64-Kbyte, physically- 
tagged cache and 4-Kbyte pages. A 
4-Kbyte direct-mapped cache, on the other 
hand, would not be adequate. 

As caches get larger, parallel address 
translation will become impractical in 
architectures with fixed page sizes. Even- 
tually the increased hit time and implemen- 
tation costs of wider associativity will 
overwhelm the benefits of parallel address 
translation. Designers will be forced to 
choose between doing address translation 
before or after the cache lookup. Address 
translation is done before the cache lookup 
on all DEC VAX-11 implementations, for 
example, since reasonable cache sizes are 
much larger than the VAX-11’s 512-byte 
page size. Doing address translation after 
the cache lookup implies that caches are 
organized with virtual addresses and 
address translation is necessary only on 
cache misses. Some researchers argue that 
the advantage of this approach, namely, 
a faster hit time, will justify the additional 
complexity required to implement a cache 
organized with virtual addresses.Io7l’ 

In either case, if address translation is 
not done in parallel with the cache lookup, 

it will no longer affect whether a cache 
should be direct-mapped or set- 
associative. 

Arguments for direct- 
mapped caches 

The arguments for direct-mapped 
caches are (1) they can be implemented at 
less cost than set-associative caches, ( 2 )  
their cache hit (access) times are smaller 
than those of comparable set-associative 
caches, and (3) they have smaller effective 
(average) access times than set-associative 
caches for sufficiently large cache sizes. 
Below, I support the above arguments for 
single-level caches in uniprocessors and 
show why I expect the direct-mapped 
organization to become commonly used. 

Lower cost. A direct-mapped cache 
never costs more than a set-associative 
cache, because there is a way to convert 
from a set-associative to a direct-mapped 
design at no cost. (The cost of a cache can 
be measured in many dimensions, such as 
number of chips, chip area, power- 
consumption, dollars, and design time.) 
An n-way set-associative cache, like the 
one shown in Figure 3, can be converted to 
one that is direct-mapped simply by chang- 
ing the replacement algorithm. On a cache 
miss, an n-way set-associative cache selects 
a victim, or block to be replaced, using 
some algorithm, perhaps LRU or random. 
A direct-mapped cache is created if the vic- 
tim is selected with the lower log2n bits of 
the address tag of the new reference. Since 
this replacement algorithm requires less 
hardware than the original replacement 
algorithm, a direct-mapped cache will cost 
less than one that is set-associative. 

In practice, direct-mapped caches cost 
significantly less, since less parallelism is 
required if parallel address translation is 
not done. An n-way set-associative cache 
must read n tags in parallel and compare 
each of them with the high-order bits of the 
reference’s address. A direct-mapped 
cache need only read and compare one tag. 
Thus, direct-mapped caches need fewer 
comparators, require fewer connections, 
and can use fewer, larger (deeper) memory 
chips. Similarly, the data memory (and 
connections to it) in an n-way set- 
associative cache must be n times as wide 
as that for a direct-mapped cache, ena- 
bling the direct-mapped cache to use 
fewer, larger memory chips. 

Faster hit time. The hit (access) time of 
a direct-mapped cache is less than or equal 

to that of a comparable set-associative 
cache. It is at most equal, because the 
transformation described above creates a 
direct-mapped cache with exactly the same 
hit time as a set-associative cache. 

In practice, the hit time of a direct- 
mapped cache is less than that of a com- 
parable set-associative cache because the 
critical timing path can be made shorter 
(unless the set-associative cache was small 
enough to allow parallel address transla- 
tion). The delay paths, displayed in Figure 
5, are match-found, select-data, and 
read-data. 

The hit time of a direct-mapped cache 
can be less than that of a set-associative 
cache, because the select-data path can be 
eliminated in a direct-mapped cache. 
Instead of letting the results of tag compar- 
isons determine the data returned to the 
CPU, the data can be selected with several 
bits from a reference’s address. These bits 
can directly control a multiplexer or be 
decoded to control tri-state buffers. In 
either case, this timing path is so much 
faster than the others that it is effectively 
eliminated. Figure 7 illustrates this 
improvement. 

An important effect of eliminating the 
select-data timing path is that the match- 
found and read-data paths are now 
independent. This makes it possible for a 
direct-mapped cache to return the correct 
data and for the CPU to resume execution 
even before the system knows whether a 
hit will occur, so long as the CPU can back 
out of execution begun with incorrect 
data. This optimistic use of cache data is 
being used in a research machine at DEC 
WRL, where it enables the cache hit time 
and the machine cycle time to be reduced 
by approximately one-third. Optimistic 
use of cache data is possible in a set- 
associative cache if one always returns the 
most-recently-used (MRU) block in the 
selected set.’* I found, however, that the 
performance of a simple direct-mapped 
cache is similar to that of a more complex 
MRU cache.’ 

It is also possible to improve the read- 
data path, since it is no longer necessary to 
read from n data blocks in parallel. Instead 
only one block need be read. This flexibil- 
ity allows designers to organize data mem- 
ory chips differently and to use larger, 
deeper chips. It is possible, for example, 
to completely eliminate the multiplexer or 
tri-state buffers previously used to select 
data from different blocks. 

Finally, improvement in the match- 
found path is also possible, since it is no 
longer necessary to read and compare n 

December 1988 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA33 



Address zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,Lower log,(n) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbits of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 

MatchOut DataOut 

Figure 7. Converting to a direct-mapped cache. An n-way set-associative cache can be converted to a direct-mapped cache by 

changing the replacement algorithm to replace the block in bank zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr,  where r is the reference’s tag modulo n. Since this function 

can be done with bit selection (at trivial cost) and off the critical path for a cache hit, the resulting direct-mapped cache has the 

same cost and hit time as the original set-associative cache. Thus, moving to a direct-mapped cache never increases and, as 

explained in the text, can decrease cost and hit time. 

tags in parallel and then “OR” the results 
for the cache hit/miss signal. Rather, one 
need only read and compare one tag. This 
flexibility allows the tag memory to be 
implemented with fewer, deeper chips and 
eliminates the final OR stage. 

The exact magnitude of the improve- 
ment possible depends on many imple- 
mentation factors. 1 examined caches 
implemented in three technologies: (1) 
TTL logic and MOS SRAM memory 
chips, (2) ECL logic and memory chips, 
and (3) custom CMOS. I found that mov- 
ing from a direct-mapped to a two-way set- 
associative cache increases cache hit time 
in (1) from 100 to 109 ns (nine percent), in 
(2) from 30.0 to 33.5 ns (12 percent), and 
in (3) from 50.0 to 51 .O ns (two percent). 

The difference is about 10 percent for 
board-level TTL and ECL caches and 
much smaller for custom CMOS caches. 
1 do not regard the difference between the 
TTL and ECL times as significant, since 
both numbers are sensitive to the propa- 
gation delays through a few parts. Since 
custom CMOS assumptions are radically 
different from those for MSI, comparing 
CMOS results with TTL or ECL results is 
subject to more error. However, one may 
expect the penalty for adding a multiplexer 
to be larger in MSI, where it adds logic 
delay and two chip crossings, than on a 
custom chip, where it adds just the logic 
delay. 

In summary, the hit time of a direct- 
mapped cache will be less than that of a 

comparable set-associative cache, since 
block selection can be done before the tag 
comparison completes, and the tag and 
data memories do not need to read infor- 
mation from n blocks in parallel. 

Superior effective access times. A direct- 
mapped cache has a smaller effective 
(average) access time than that of a set- 
associative cache of the same size if (1) the 
direct-mapped cache has a smaller hit time 
and (2) both caches are sufficiently large 
that the miss ratio difference between them 
is small. 

Recall that effective access time, 
t,rf(C), is the average latency, as seen by 
the processor, required by the memory sys- 

34 COMPUTER 



0.50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c 0.25 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

I 

4 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

U3 

a, 

U 

$ -0.25 ._ 
c 
U 

W 
L - 

-0.50 
0% 10% 20% 30% 40% 50% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Cache hit time change (Atcache) 

(a) 10-cycle cache miss time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(tmemory) 

3.00 

-0.01 

-0.02 

-0.03 

-0.04 

-0.05 

- - 
4 

a, 0, 
C 
c 
L 
U 

- 
c 

v 

._ E 
c 

U) 

a, 

U 
m 
P ._ 
c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

W 
L - 

Cache hit time change (Atcache) 

(b) 20-cycle cache miss time (fmemor,) 

~~ 

Figure 8. Change in effective access time. This figure shows the change in effective access time (Ateff = Atcache + Am*t,,,,,,) 
that results when moving from a cache with a relatively fast hit time and a relatively large miss ratio (e.g., a direct-mapped 
cache) to another cache with a slower hit time but smaller miss ratio (a set-associative cache). The graphs assume 10-cycle (a) 
and 20-cycle (b) miss penalties, where a cycle is defined to be equal to the hit time of the faster cache. The x-axis displays 
values of Atcache, the hit time difference. An x value of 20 percent implies that the slower cache’s hit time is 1.2 cycles, 1.2 times 
the hit time of the faster cache. The y-axis gives values of Ate f f ,  the change in effective access time. A y value of - 0.10 implies 
that the effective access time improves by 0.10 cycles. Since most effective access times are slightly larger than 1 cycle, an abso- 
lute improvement of 0.10 cycles translates into slightly less than a 10 percent relative improvement. The various lines show 
miss ratio changes, A m ,  from -0.05 up to 0.0. All zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA m ’ s  are nonpositive, since we assume the second cache has a smaller miss 
ratio. 

below the x-axis, since the latter cache, with the smaller miss ratio, always has a better effective access time (A te f r  < 0). 

hit time exceeds the benefit of the lower missxatio, making the former cache preferred (Aterr > 0). 

Points on the y-axis represent the effective access time change that results when Atcache is zero or ignored. Here, all points are 

If Atcache > 0, the benefit of the lower miss ratio is diminished. For all points above the x-axis, the drawback of the slower 

tem to service a memory reference. 1 model 
it as 

where m(C), tcache(C),  and f m e m o r y ( C )  are 
the miss ratio, hit time (cache access time), 
and average miss penalty (delay beyond a 
cache access to access memory) for cache 
L. 

I f  two caches have the same miss pen- 
alty, the change in effective access time 
moving from a cache Cl to a cache C2 is 

where 

If cache CI is direct-mapped and cache 
c2 set-associative, then Atcache 2 0 and 
A m  *tmemOry 5 0, since set-associative 
caches typically have a slower hit time and 
smaller miss ratio than direct-mapped 
caches of the same size. Figure 8 illustrates 
Ate f f  = Atcache + Am*tmemor, for hypothet- 
ical direct-mapped and set-associative 

caches. It shows that Ate f f  can be either 
positive or negative. If, on theother hand, 
implementation considerations are 
ignored, then 

which implies increasing associativity 
always improves effective access time 
(Ateff is negative). Thus, the effect of 
including implementation considerations 
is to diminish or reverse the miss ratio ben- 
efit of increasing associativity. 

To see whether implementation con- 
siderations matter in practice, typical 
values must be determined for fmemory, 

December 1988 35 



E 

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E 

n 

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 
- 
.- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c 

In In 
.- 

m 
P) 
c - 

0.04 _.__...._.._________........ ........_......._.___...... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 

0.03 

0.02 

0.01 

0.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

.. . . . . ... . . . . . . . . . . . . .___. 

Qnified 

‘,Data 
-., -Instruct 

1K 10K lOOK 1M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Cache size (bytes) 

n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 9. Miss ratio differences. This figure displays the miss ratios from direct- 

mapped caches less the miss ratio of two-way set-associative caches of the same size 
for unified, instruction, and data caches with 32-byte blocks using operating system 

and multiprogramming traces from IBM/370 and VAX 11 architectures.’ Results 

show miss ratio differences zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Am) generally diminish with increasing cache size, and 

are smaller for instruction caches than for unified or data caches. 

Am, and Atcache. Reasonable values for 
tmemory are 10 or 20 cycles, where a cycle is 
equal to the hit time of the faster cache. 
Smaller values are possible, especially in 
systems where cache misses are serviced by 
larger level-two caches instead of main 
memory. Larger values are possible in a 
system where the mismatch between the 
technologies used to implement the cache 
and memory is larger than normal. 

Typical values for Am, the absolute 
difference in miss ratio, can be derived 
from trace-driven simulation. Figure 9 

shows miss ratio differences between some 
direct-mapped and two-way set- 
associative caches with 32-byte blocks. 
The data show that Am’s generally get 
smaller as cache size is increased, and that 
the absolute values of the Am’s are small 
for larger caches. All Am’s for caches 
larger than 16 Kbytes, for example, are less 
than 0.01. 

Figure 10 shows effective access time 
changes with actual miss-ratio differences 

for unified caches from Figure 9. Lines are 
labeled with cache sizes and positioned 
according to the miss ratio difference for 
that cache size. Figures 11 and 12 show 
similar results for instruction and data 
caches. These figures illustrate three 
points: 

(1) Moving from a direct-mapped to a 
two-way set-associative cache has little 
potential for improving effective access 
time as caches get larger. At 64 Kbytes (see 
lines labeled 64K) and with 10-cycle 
misses, the maximum improvement possi- 
ble is 5.2,3.6, and 4.5 percent for unified, 
instruction, and data caches. With 
20-cycle misses, the maximum possible 
improvement is twice as large. 

(2) Moving from a direct-mapped to a 
two-way set-associative cache can cause a 
worse effective access time if cache hit time 
increases by even a small amount. The 
improvement is offset if the cache hit time 
increase is equal to the maximum improve- 

ment possible from the smaller miss ratio 
(for example, 5.2,3.6, and 4.5 percent for 
unified, instruction, and data caches of 64 
Kbytes, having 10-cycle miss penalties). 

(3) Moving from a direct-mapped to a 
two-way set-associative cache offers less to 
instruction caches than it does to unified 
or data caches. The potential benefit from 
increasing associativity in instruction 
caches with a 10-cycle miss time is less than 
6.4 percent for sizes as small as 2 Kbytes. 
The actual benefit will be less if the miss 
penalty is less than 10 cycles or increasing 
associativity impacts cache hit time. 

Furthermore, increasing block size or 
increasing associativity beyond two-way 
does not hurt the case for large direct- 
mapped caches.’ Increasing block size in 
large caches to 64 bytes improves the per- 
formance of direct-mapped caches relative 
to set-associative ones by decreasing all 
miss ratios and miss ratio differences. Fur- 
ther increases will exhibit similar behavior 
until the number of blocks in the cache 
becomes limited. Miss ratio improvements 
resulting from increasing associativity 
beyond two-way are much smaller than the 
improvements between direct-mapped and 
two-way set-associativity, implying that 
further increases in associativity will not 
improve effective access time unless they 
have a negligible impact on cache hit time. 

The final parameter value that must be 
determined to know whether direct- 
mapped or set-associative caches are faster 
is Afcache. This parameter is difficult to 
determine, because it is implementation 
dependent and very sensitive to the delay 
through a few parts. 

As discussed previously, I examined 
board-level caches (TTL and ECL) where 
Atcache was around 10 percent. The effect 
of a 10 percent slowdown can be studied 
in Figures 10-12 by only considering design 
points on a vertical line at Atcache = 10 
percent. For the 10-cycle miss penalty, 
Atcache = 10 percent implies that direct- 
mapped caches have better effective access 
times than two-way set-associative caches 
for caches equal to and larger than 16,8, 
and 16Kbytes for unified, instruction, and 
data caches. For the 20-cycle miss penalty, 
the corresponding sizes are 64, 16, and 64 
Kbytes. 

The exact cache size at which the effec- 
tive access time of a direct-mapped cache 
becomes better than that of a two-way set- 
associative cache is sensitive to many 
assumptions. Nevertheless, that it does 
cross over is inevitable, given that miss 
ratio differences diminish as caches get 
larger and that set-associative caches have 

36 COMPUTER 



0.50 

0.25 

0.00 

-0.25 

-0.50 

0% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10% 20% 30% 40% 50% 

Cache hit time change zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Atcache) 

(a) 10-cycle cache miss time (tmemor,) 

~ 64K 
- 32K 
- 16K 
- 8K 
- 4K 

~ 2K 

- 1K 

0.5K 

- 64K 
~ 32K 
- 16K 
- 8K 
~ 4K 

- 2K 

- 0.5K 

0% 10% 20% 30% 40% 50% 

Cache h i t  time change zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Af,,,,,) 

(b) 20-cycle cache miss time (fmemor,) 

~ 

Figure 10. Effective access time changes in unified caches. This figure shows the change in effective access time (Ateff)  that 
results from moving from a direct-mapped cache to a two-way set-associative cache when both caches are unified, have 32-byte 
blocks, and have 10-cycle (a) or 20-cycle (b) miss penalties zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(t,,,,,,). This figure is constructed by substituting miss ratio differ- 
ences (Am’s) for unified caches from Figure 9 into Figure 8. The lines are labeled with cache sizes in bytes and positioned by 
the miss ratio difference at that cache size. 

The data for 16-Kbyte caches with 10-cycle miss penalties, for example, can be interpreted as follows: increasing 
associativity from direct-mapped to two-way improves effective access time by 0.10 if there is no speed cost to adding 
associativity (Atcoche = 0); increasing associativity has no effect on effective access time if the set-associative cache’s hit time is 
10 percent longer; and increasing associativity causes a worse effective access time, despite lowering the miss ratio, if the set- 
associative cache is more than 10 percent slower. 

slower hit times. 
At cache sizes less than the cross-over 

size, a direct-mapped cache may still be 
preferred to one that is set-associative, 
since a direct-mapped cache may cost less 
and its effective access time may not be 
much worse. Even for 28cycle miss penal- 
ties, as Figures 10-12 show, the effective 
access time of a two-way set-associative 
cache is never more than five percent bet- 
ter than that of the corresponding direct- 
mapped cache at cache sizes of 32 Kbytes 
and larger. 

Other trends 

Up to this point, I have concentrated on 
single-level caches in uniprocessors. Here 

I discuss future trends toward caches in 
hierarchies and multiprocessors. 1 exam- 
ine why these trends may occur and discuss 
how and whether my arguments for single- 
level caches in uniprocessors apply to these 
new situations. 

Toward caches in hierarchies. In two- 
level cache hierarchies, a level-one cache 
services processor references, but it 
obtains data for misses from a level-two 
cache instead of memory. A level-two 
cache services only level-one cache misses 
and obtains data for its misses from 
memory. 

Two-level cache hierarchies, heretofore 
rarely used, may become more common in 
future systems for three reasons. First, 
implementation considerations can force 

a partition. Some recently introduced 
microprocessors, for example, devote 
some of their limited on-chip area to 
caches, but they require larger caches to 
avoid frequent accesses to relatively slow 
main memory. Since the on-chip caches 
cannot be made larger, a second on-board 
cache is required. Second, a detailed com- 
putation of effective access time shows 
that two-level cache hierarchies can offer 
superior performance to a single-level 
cache as processors speed up relative to 
main memories.’ Third, there may be 
functional and performance benefits to 
specializing caches at different levels in a 
multiprocessor. In a multiprocessor, a 
level-one cache can be optimized to mini- 
mize effective access time, while the level- 
two cache is designed to reduce cost or 

December 1988 37 



0.50 

0.25 

0.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-0.25 

-0.50 

................................................................................. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

0% 10% 20% 30% 40% 50% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Cache hit time change (Afcache) 

(a) 10-cycle cache miss time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(t,,,,,) 

................ ~ ................ , ..................................................., 

2K-64K 
1K 

0.5K 

-1.00 J I 

0% 10% 20% 30% 40% 50% 

Cache hit time change (Atcache) 

(b) 20-cycle cache miss time (fmemory) 

Figure 11. Effective access-time differences in instruction caches. This figure shows the effective access-time change (teff) of 

moving from a direct-mapped instruction cache to a two-way set-associative instruction cache with miss penalties of either 10 

cycles (a) or 20 cycles (b). Other assumptions match those of Figure 10. Because miss-ratio differences zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( A m ’ s )  are smaller, the 

benefit of associativity is smaller for instruction caches than it is for unified or data caches. 

interconnection traffic. Similar reasons 
are expressed by Short and Levy.13 

The utility of direct-mapped caches in 
two-level cache hierarchies is, as yet, 
undetermined. Level-one caches will be 
direct mapped if technological constraints 
permit large enough cache sizes that the hit 
time advantage of direct-mapped caches 
(due in part to allowing data to be returned 
before the tag comparison is complete) is 
more important than the miss ratio disad- 
vantage. Direct-mapped caches can be pre- 
ferred for cache sizes as small as 16 Kbytes 
if misses are serviced by a level-two cache 
in 10 cycles or less. Level-two caches, on 
the other hand, are more likely to be set- 
associative, since level-two cache hit times 
are less critical and a lower miss ratio can 
improve multiprocessor performance. The 
only argument for direct-mapped level- 
two caches is that straightforward 
implementations of large set-associative 
caches will be expensive, requiring 
multiple-word-wide banks of memory 
chips. 

Toward caches in multiprocessors. To 
provide a rate of growth of computing 
power that exceeds the rate of technolog- 
ical improvement, many manufacturers, 
particularly of high-end computers, are 
turning toward multiprocessors. To facili- 
tate ease of programming, some mul- 
tiprocessors provide shared-memory and 
use caches. 

Caches in multiprocessors may be 
designed differently than those in 
uniprocessors, since multiprocessor caches 
may be more concerned with minimizing 
memory and interconnect contention than 
with minimizing effective access time.I4 
Here, the relative miss ratio difference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(Amlm) is more important than the abso- 
lute miss ratio difference (Am). I found’ 
relative miss ratio differences are constant 
across wide changes in miss ratio and cache 
size. For example, decreasing associativity 
from two-way to direct-mapped in unified 
caches causes a relative miss ratio increase 
of about 30 percent even for large caches. 

Relative miss ratio differences are most 

important in single-bus shared-memory 
cache-coherent multiprocessors, where 
bus bandwidth can easily limit system 
throughput. In multiprocessors based on 
long-latency high-bandwidth interconnec- 
tion networks, however, cache design 
should proceed as in a uniprocessor with 
slow main memory. Nevertheless, both 
cases make set-associativity caches more 
attractive, but not necessarily better. 

If multiprocessors use two-level cache 
hierarchies, the above arguments apply to 
level-two caches. I would expect most 
level-one caches, on the other hand, to be 
designed like level-one caches in a 
uniprocessor, making direct-mapped 
caches likely. This expectation may be 
incorrect if the misses for many level-one 
caches are serviced by a single level-two 
cache and contention between level-one 
caches is significant. 

irect-mapped caches will be com- 
mon in uniprocessors as single- D level or level-one caches and in 

38 COMPUTER 



0 50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v) 

a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

P ._ 
+ 
0 

U1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc c 

- 0  50 
0% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10% 20% 30% 40% 50% 

Cache h i t  t ime change (Afcache) 

(a) 10-cycle cache miss time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(tmemor,) 

64K 
32K 
16K 

8K 

4K 

2K 
1K 
0.5K 

v) v) 

a, 

U 

P ._ 
c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

W 
L c 

0.50 ,................I ._.. ..... .....,............. ................... ,......... .... .~ 

-I nn J -- , 

0% 10% 20% 30% 40% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50% 

Cache h i t  t ime change (Afcache)  

(b) 20-cycle cache miss time (fmemor,) 

Figure 12. Effective access-time differences in data caches. This figure displays effective access-time changes that result from 

moving from a direct-mapped data cache to a two-way set-associative data cache with miss penalties of either 10 cycles (a) or 

20 cycles (b). Other assumptions match those of Figure 10. The benefit of associativity in data caches is similar to that for uni- 

fied caches. 

multiprocessors as level-one caches. 
Direct-mapped caches are preferred when 
they are sufficiently large that hit time 
benefits are more significant than miss 
ratio drawbacks. This can occur in single- 
level caches of 64 Kbytes and larger (16 
Kbytes for instruction caches) and can 
occur at 16 Kbytes and larger for level-one 
caches whose misses are serviced more 
rapidly by level-two caches. 

The arguments against direct-mapped 
caches, with respect to set-associative 
caches, are that they (1) have worse miss 
ratios, (2) have more common worst-case 
behavior, and (3) preclude parallel address 
translation. I have shown that the sig- 
nificance of the first two points becomes 
questionable for large caches where abso- 
lute miss ratio differences are small, and 
that the third is not a disadvantage for 
large direct-mapped caches, since large set- 
associative caches also preclude parallel 
address translation. 

The arguments for direct-mapped 
caches are that they (1) cost less, (2) have 

faster hit (access) times, and (3) can have 
superior effective (average) access times. 
I have shown that the strength of these 
arguments is not diminished by increasing 
cache size, and the third point is more 
likely to be true for large cache sizes. 

An alternate way of stating this result is 
set-associative caches reduce the time 
spent on cache misses; 
direct-mapped caches reduce the time 
spent on cache hits, especially if a 
CPU can use data before a hit or miss 
is determined; 
set-associative caches are preferred in 
small caches where misses are 
common; 
direct-mapped caches are preferred in 
large caches where misses are rare; 
and 
many future caches will be suffi- 
ciently large and therefore direct- 
mapped. 

These arguments may not apply to 
single-level or level-two caches in mul- 

tiprocessors, where minimizing contention 
or very long miss penalties may favor set- 
associative caches over direct-mapped 
caches. 0 

Acknowledgments 
I would like to thank my thesis advisors, Alan 

Smith and David Patterson, for their many sug- 
gestions that improved the quality of my 
research. Thanks also to those who read and 
improved drafts of this article: Sue Dentinger, 
James Goodman, David Patterson, Gurindar 
Sohi, and the anonymous referees. 

The material presented here is based on 
research supported in part by the Defense 
Advanced Research Projects Agency monitored 
by Naval Electronics Systems Command under 
Contract No. N00039-85-C-0269, the National 
Science Foundation under grants CCR-8202591 
and MIP-8713274, the State of California under 
the MICRO program, the graduate school at the 
University of Wisconsin-Madison, and by IBM, 
Digital Equipment Corporation, Hewlett- 
Packard, and Signetics. 

December 1988 39 



References zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA.J.  Smith, “Cache Memories,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACotput -  

ing Surveys, Vol. 14, No. 3, Sept. 1982, pp. 
473-530. 

2. A.J. Smith, “Bibliography and Readings 
on CPU Cache Memories and Related 
Topics,” Computer Architecture News, 
Jan. 1986, pp. 22-42. 

3 .  A.J. Smith, “Line (Block) Sizechoice for 
CPU Caches,” IEEE Trans. Computers 
Vol. C-36, No. 9 ,  Sept. 1987, pp. 
1063- 1075. 

4. J. Bell, D. Casasent, and C.G. Bell, “An 
Investigation of Alternative Cache Organi- 
zations,” IEEE Trans. Computers, Vol. 
C-23, No. 4, Apr. 1974, pp. 346-351. 

5. A.J. Smith, “A Comparative Study of Set 
Associative Memory Mapping Algorithms 
and Their Use for Cache and Main Mem- 

ory,” IEEE Trans. Software Engineering, 
Vol. SE-4, No. 2, Mar. 1978, pp. 121-130. 

6. C. Alexander et al., “CacheMemory Per- 
formance in a Unix Environment,” Com- 
puter Architecture News, Vol. 14, No. 3, 
June 1986, pp. 14-70. 

7. A. Agarwal, Analysis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Cache Perfor- 
mance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor Operating Systems and Micro- 
programming, PhD dissertation, Tech. 
Report CSL-TR-87-332, Stanford Univer- 
sity, Stanford, Calif., May 1987. 

8. S. Przybylski, M. Horowitz, and J. Hen- 
nessy, “Performance Tradeoffs in Cache 
Design,” Proc. 15th Ann. Int’l Symp. 
Computer Architecture, No. 861, Com- 
puter Society Press, Los Alamitos, Calif., 
1988, pp. 290-298. 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
University of Nebraska - Lincoln 

Computer Science and Engineering Department 
Department Chair 

The University of Nebraska-Lincoln seeks a dynamic individual for the position of Chair of 
the Department of Computer Science and Engineering. The department currently has 14 fa- 
culty members, has in place rigorous programs in computer science and has initiated a pro- 
gram in computer engineering. Programs are offered in two colleges, Arts and Sciences and 
Engineering and Technology. Currently about 380 Undergraduates, 55 Masters and 15 Ph.D. 
candidates are enrolled in Computer Science and Engineering programs. 

The department has strong research programs in algorithms, theoretical computer science, 
communications theory and networks, coding theory and data encryption, combinatorics, fault 
tolerant computing, formal languages, and symbolic and algebraic computation. Research 
strengths also exist in artificial intelligence, computer architecture, VLSI, programming Ian- 
guages, numerical analysis, information retrieval. human factors, and data base. 

Strong interdisciplinary ties exist between the Departments of Computer Science and Engi- 
neering; Mathematics and Statistics; Electrical Engineering; and Computer Resources Center. 
The University has recently created a Centerfor Communication and Information Science 
based mainly on research faculty in the Computer Science and Engineering Department, but 
also including faculty from the above named departments. The new chairperson will have a 
leadership role in shaping the Center’s future direction. 

The University of Nebraska - Lincoln is the primary campus for research and graduate stud- 
ies in the State of Nebraska. The University has a wide variety of computing resources linked 
by a sophisticated campus-wide network. UNL is the leading institution in the NSF-funded re- 
gional network MIDnet, and a node on the NSFnet backbone. 

The State of Nebraska’s commitment to technology has been underscored by the Gover- 
nor’s Proposal to increase funding for research at the University of Nebraska. The five year 
plan would provide an additional $4 million each year over the previous year, leading to a $20 
million increment in the fifth year. The State Legislature has appropriated funds to start this 
ambitious project. Some of these funds are now available to support the Center for Communi- 
cation and Information Science. 

Qualifications require earned doctorate in computer science or related field, strong leader- 
ship for research and academic programs, and credentials appropriate for appointment as a full 
professor. Administrative experience is desirable. 

The starting date for this appointment is August, 1989. The closing date is December 15, 
1988, or until the position is filled. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASalary will be commensurate with qualifications. Women 
and minorities are particularly encouraged to apply. 

Qualified applicants should send resumes and names of three references to Prof. Spyros S. 

Magliveras, Chairman, Search Committee, Computer Science and Engineering Department, 
Ferguson Hall, University of Nebraska, Lincoln, NE 68588-01 15. E-mail address: spy- 
ros@ fergvax.unl.edu. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

An Equal Opporiuni~lAffirniati~,e Action Employer 

9. M.D. Hill, Aspectsof CacheMemoryand 
Instruction Buffer Performance, PhD dis- 
sertation, Tech. Report 87/381, Computer 
Science Dept., Univ. of California, Ber- 
keley, Calif., Nov. 1987. 

10. J.R Goodman, “Coherency for Multipro- 
cessor Virtual Address Caches,” Proc. 
Symp. Architectural Support for  Program- 
ming Languages and Operating Systems, 
No. M805 (microfiche), Computer Society 
Press, Los Alamitos, Calif., 1987, pp.72-81. 

1 1 .  D.A. Wood et al., “An In-Cache Address 
Translation Mechanism,” Proc. 13th Ann. 
Int’l Symp. Computer Architecture, No. 
719, Computer  Society Press, Los 
Alamitos, Calif., 1986, pp. 358-365. 

12. J.H. Chang, H. Chao, andK.  So, “Cache 
Design of a Sub-Micron CMOS Sys- 
tem/370,” Proc. 14th Ann. Int’l Symp. 
Computer Architecture, No. 716, Com- 
puter Society Press, Los Alamitos, Calif., 
1987, pp. 208-213. 

13. R.T. Short and H.M. Levy, “ASimulation 
Study of Two-Level Caches,” Proc. 15th 
Ann. Int ’1 Symp. Computer Architecture, 
NO. 861, Computer Society Press, Los 
Alamitos, Calif., 1988, pp. 81-88. 

14. J.R Goodman, “Using Cache Memory to 
Reduce Processor-Memory Traffic,” Proc. 
10th Ann. Int’l Symp. ComputerArchitec- 
ture, No. M473 (microfiche), Computer 
Society Press, Los Alamitos, Calif., 1983, 
pp. 124-131. 

Mark D. Hill is an assistant professor in the 
Computer Sciences Department at the Univer- 
sity of Wisconsin at Madison. His research 
interests center on performance arid implemen- 
tation factors in memory systems. He was a 
principal contributor to the SPUR project to 
build a shared-bus multiprocessor at the Univer- 
sity of California at Berkeley. He is currently 
working on Multicube, a project designing a 
multiprocessor using a grid of buses. 

Hill earned a BS in computer engineering 
from the University of Michigan in 1981, and 
an MS and PhD in computer science from the 
University of California at Berkeley in 1983 and 
1987, respectively. Heis amember of IEEE, the 
IEEE Computer Society, and ACM. 

Hill may be contacted at  the University of 
Wisconsin-Madison, Computer Sciences 
Department, 1210 W. Dayton St., Madison, WI 
53706. 

COMPUTER 

http://fergvax.unl.edu

