
 Open access Proceedings Article DOI:10.1109/ISQED.2009.4810328

A case for exploiting complex arithmetic circuits towards performance yield
enhancement — Source link

Shingo Watanabe, Masanori Hashimoto, Toshinori Sato

Institutions: Kyushu Institute of Technology, Osaka University, Fukuoka University

Published on: 16 Mar 2009 - International Symposium on Quality Electronic Design

Topics: Statistical static timing analysis, Electronic circuit, Logic gate and Microarchitecture

Related papers:

 Statistical timing yield improvement of dynamic circuits using negative capacitance technique

 Soft error vulnerability aware process variation mitigation

 Quantifying and coping with parametric variations in 3D-stacked microarchitectures

 Effect of gate-level design margin relaxation on overall circuit performance metrics in VLSI design

 Impact of spatial intrachip gate length variability on the performance of high-speed digital circuits

Share this paper:

View more about this paper here: https://typeset.io/papers/a-case-for-exploiting-complex-arithmetic-circuits-towards-
3199jzduy6

https://typeset.io/
https://www.doi.org/10.1109/ISQED.2009.4810328
https://typeset.io/papers/a-case-for-exploiting-complex-arithmetic-circuits-towards-3199jzduy6
https://typeset.io/authors/shingo-watanabe-2i0c17q2mp
https://typeset.io/authors/masanori-hashimoto-4ynxe9fz11
https://typeset.io/authors/toshinori-sato-2f4d30lmpv
https://typeset.io/institutions/kyushu-institute-of-technology-21mtejko
https://typeset.io/institutions/osaka-university-33f34z98
https://typeset.io/institutions/fukuoka-university-2utamwqs
https://typeset.io/conferences/international-symposium-on-quality-electronic-design-39q6fm1y
https://typeset.io/topics/statistical-static-timing-analysis-1kb1kqce
https://typeset.io/topics/electronic-circuit-3n7jd74k
https://typeset.io/topics/logic-gate-2jm053f7
https://typeset.io/topics/microarchitecture-29hv9jx1
https://typeset.io/papers/statistical-timing-yield-improvement-of-dynamic-circuits-4m8ow4xujh
https://typeset.io/papers/soft-error-vulnerability-aware-process-variation-mitigation-2qbcj72ukj
https://typeset.io/papers/quantifying-and-coping-with-parametric-variations-in-3d-4olv3nybcg
https://typeset.io/papers/effect-of-gate-level-design-margin-relaxation-on-overall-24e42759ir
https://typeset.io/papers/impact-of-spatial-intrachip-gate-length-variability-on-the-3rg1rj7bc5
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-case-for-exploiting-complex-arithmetic-circuits-towards-3199jzduy6
https://twitter.com/intent/tweet?text=A%20case%20for%20exploiting%20complex%20arithmetic%20circuits%20towards%20performance%20yield%20enhancement&url=https://typeset.io/papers/a-case-for-exploiting-complex-arithmetic-circuits-towards-3199jzduy6
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-case-for-exploiting-complex-arithmetic-circuits-towards-3199jzduy6
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-case-for-exploiting-complex-arithmetic-circuits-towards-3199jzduy6
https://typeset.io/papers/a-case-for-exploiting-complex-arithmetic-circuits-towards-3199jzduy6

978-1-4244-2953-0/09/$25.00 ©2009 IEEE 401 10th Int'l Symposium on Quality Electronic Design

A Case for Exploiting Complex Arithmetic Circuits towards

Performance Yield Enhancement

Shingo Watanabe1, Masanori Hashimoto2, Toshinori Sato3
1 Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, 820-8502 Japan

2 Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871 Japan
3Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180 Japan

3E-mail: toshinori.sato@computer.org

1 The author is currently with Fujitsu Limited.
3 The author is also with Kyushu University and CREST, JST.

Abstract
As semiconductor technologies are aggressively

advanced, the problem of parameter variations is emerging.

Process variations in transistors affect circuit delay, resulting

in serious yield loss. Considering the situations, variation-

aware designs for yield enhancement interest researchers.

This paper investigates to exploit the statistical features in

circuit delay and to cascade dependent instructions for

reducing variations. From statistical static timing analysis in

circuit level and performance evaluation in processor level,

this paper tries to unveil how efficiently instruction cascading

improves performance yield of processors. Cascading

instructions increases logic depth and decreases the standard

deviation of the circuit delay. That might improve

performance yield of microprocessors. Unfortunately,

however, it is found that variability reduction in the circuit

level does not always mean yield enhancement in the

microarchitecture level.

Keywords
Process variations, yield enhancement, microarchitecture

1. Introduction
Popularly known as Moore’s law, advanced

semiconductor technologies have increased the number of

transistors on a single chip and contributed to improve

processor performance. Unfortunately, however, aggressive

integration technologies recently unveil a serious problem of

parameter variations [3, 4]. Variations on a single chip are

classified into die-to-die (D2D) and within-die (WID)

variations. Recently, the latter ones, especially random WID

variations, have become serious. Randomdopant fluctuations

and line-edge roughness (Process variations), uneven supply

voltage distribution (Voltage variations), and temperature

fluctuations (Temperature variations) cause parameter

variations. Process variations are essential in semiconductor

technologies and they affect each transistor’s threshold

voltage, resulting in performance variability. This paper

focuses on process variations. Process variations influence

circuit delay. Even though chips have identical design and

environment, some of them may violate timing specifications.

It is easily expected that the number of bad chips increases,

resulting in yield loss, in the near future. The goal of this

study is to improve performance yield via variability

reduction techniques in the microarchitecture level.

In order to reduce the variability in circuit delay and

hence to enhance performance yield, the well-known

statistical features on circuit delay [5, 8] should be exploited.

Every circuit delay is strongly dependent upon the number of

critical paths and the logic depth. As the number of critical

paths increases, the mean delay increases and the standard

deviation decreases. Similarly, as the logic depth increases,

the mean delay increases and the standard deviation

decreases. This paper investigates the instruction cascading

(or ALU collapsing [21]) to exploit the statistical features in

the microarchitecture level. The instruction cascading is a

technique to collapse dependent instructions. Several

instructions are cascaded and executed in a single cycle using

cascaded units. Cascading multiple execution units increases

the logic depth and thus the standard deviation may decrease.

The negative impact on performance due to the decline in

clock frequency may be compensated by the increase in

instructions per cycle (IPC). This is because the multiple

numbers of dependent instructions are executed in a single

cycle. This paper statistically analyzes the delay of the

cascaded adder, evaluates IPC gain obtained by the

instruction cascading, and estimates performance yield.

This paper is organized as follows. The next section

summarizes related works. Section 3 introduces the statistical

features of circuit delay. Section 4 describes instruction

cascading. Section 5 introduces our evaluation methodology

and Section 6 presents the results. Finally, Section 7

concludes.

2. Related Works
Variation-aware designs for yield enhancement are a hot

topic [9, 11-16, 18-20, 22]. These techniques take the

approach of post-silicon compensation. Liang et al. [12] and

Mohapatra et al. [13] avoid timing errors in register files and

arithmetic units by adaptively switching to a longer latency.

Ozdemir et al. [14] address the issue of scheduling

complexity for variable-access L1 cache by using additional

load-bypass buffers. Tiwari et al. [19] extend the variable

latency technique into the pipeline. In the cases of

unacceptable operating frequency, deeper pipeline depth is

selected. K et al. [9] utilize the observation that every entry in

the instruction queue is not fully affected by variations and

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on April 24, 2009 at 05:31 from IEEE Xplore. Restrictions apply.

store instructions with one or two ready input operands in

partially affected entries. This avoids multi-cycle accesses.

Romanescu et al. [15] and Sato et al. [16] exploit instruction

criticality to reduce the impact of long latency units. Priority

for fast units is given to critical instructions. Romanescu et al.

[15] also utilize prefetching to mitigate the impact of slow

cache accesses. SAVS [11] and X-Pipe [22], which are

extensions of Razor [6], are techniques to detect every timing

violation caused by variability and to revert processor state to

a safe point where it is detected. Adaptive body bias (ABB)

[20] controls the substrate bias to improve transistor speed by

lowering the threshold voltage. Teodorescu et al. [18] show

that ABB is effective when it is applied at the block level.

As mentioned above, these techniques only compensate

the impact of variations. To the best of our knowledge, it has

not been considered yet to mitigate variability itself by some

techniques in the microarchitecture level. In contrast to the

previous works, this paper tries to reduce timing variability in

the microarchitecture level by exploiting the statistical

features of circuit delay

3. Statistical Features of Path Delay
This section explains the statistical features of circuit

delay. Figure 1 illustrates the dependence of the WID

maximum critical path delay density function on the number

of critical paths [5, 8]. The horizontal axis indicates the delay

and the vertical axis indicates the density. It is assumed that

the paths are completely independent and are modeled as

normal distributions N(6, 12), where the mean delay (μ) is 6

and the standard deviation (σ) is 1. ‘n’ in Figure 1 presents

the number of completely independent critical paths. Hence,

the bold line denoted by ‘n=1’ shows the normal

distributions N(6, 12). As the number of critical paths

increases, the mean delay increases. This is because the

slowest critical path limits the circuit’s overall performance.

In contrast, the standard deviation decreases.

Figure 1: Dependence of circuit delay on number of critical

paths.

Figure 2 illustrates the dependence of the delay density

function on the logic depth of the critical paths, when the

number of critical paths is 100. As same to Figure 1, the

horizontal axis indicates the delay and the vertical axis

indicates the density. ‘m’ in the figure presents the relative

logic depth of one critical path. As the logic depth of a path

increases, its standard deviation decreases. This is because

the total delay of a path is averaged as the number of gates in

the path increases. The impact of each gate’s variability is

reduced. As the logic depth (m) increases, the standard

deviation relatively decreases by a factor of 1/√m. The dotted

line denoted by ‘m’ is identical with the broken line denoted

by ‘n=100’ in Figure 1. As the logic depth of all paths

increases, the mean delay increases and the standard

deviation decreases.

Figure 2: Dependence of circuit delay on logic depth.

R1 R2 R4

R1 R2 R4

R5

R3 R5

R3

(a) Cascading (b) Traditional

Inst #1: R3 = R1 + R2
Inst #2: R5 = R3 + R4

Forwarding

Figure 3: Instruction cascading.

4. Variability Reduction Microarchitecture
This section investigates a microarchitecture technique to

reduce delay variability. It focuses on the execution stage in

the pipeline. In other words, this paper assumes that the

execution stage determines the clock frequency of the

microprocessor. This is similar to an assumption used in [11].

An important thing to consider is that influences to the other

stages due to microarchitecture modifications in the

execution stage should be as small as possible.

In order to mitigate the variability in circuit delay, the use

of instruction cascading is proposed by exploiting the

statistical feature of circuit delay. As shown in Figure 3(a),

the result of the producer instruction is directly fed into the

consumer one. The cascaded unit executes multiple

dependent instructions in a single cycle [21]. Conventional

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on April 24, 2009 at 05:31 from IEEE Xplore. Restrictions apply.

processors cannot execute multiple dependent instructions in

a single cycle, as shown in Figure 3(b). In contrast, the

cascaded unit executes the two instructions in a single cycle

and thus it improves IPC. Cascading multiple execution units

increases the logic depth and thus mitigates delay variability.

On the other hand, cascading multiple units increases

circuit delay. This has an advantage and a disadvantage. The

advantage is that timing margins in the other pipeline stages

rather than the execution stage increase. Since the clock

frequency decreases, the timing constraints in the other stages

are mitigated. The disadvantage is that net processor

performance might be degraded. Later, this paper evaluates

processor performance considering both the increase in IPC

and the decline in clock frequency.

In this paper, to cascade dependent instructions is called

grouping. It should be noted that grouping does not mean

instruction fusion [7]. Those instructions are still two

instructions and the total number of instructions does not

change. Grouping is operated as follows.

1. Grouping is performed on two instructions. A pair of

instructions are denoted as a group. Grouping three and

more instructions is prohibited. Every instruction is

included in at most one group. Every consumer

instruction that has only one unready operand is a

candidate for grouping.

2. Grouping is performed at the instruction decode stage. If

two consecutive instructions form a pair of producer and

consumer instructions, they are grouped. Later in this

paper, we adopt the instruction cascading to a 2-way

inorder processor. Hence, determining whether grouping

is possible or not is easily implemented at the decode

stage as a part of the mechanism detecting a dependence

between the two instructions.

3. Every load instruction is not considered as a producer

instruction for grouping. This does not mean memory

operations are outside of candidates for cascading. Every

load or store instruction is divided into an address

calculation operation and a memory access operation,

and hence an address calculation operation can be a

consumer in a group.

5. Evaluation Methodology
Our evaluation consists of statistical static timing analysis

and IPC performance evaluation. Processor performance is

obtained from clock frequency and IPC. Combining SSTA

results with IPC evaluation results gives us net processor

performance.

5.1. Statistical Static Timing Analysis
We built an SSTA flow shown in Figure 4. It consists of

Synopsys Design Compiler and two in-house tools.

1. From an RT level HDL design, a netlist and its

associated SDF (standard delay format) file are

generated. Synopsys Design Compiler is used.

2. A lot of SDF files, where there are variations in gate

delay, are generated from the original SDF file. In an

SDF file, timing specifications associate rising and

falling delay values with input-to-output paths. The

delay values are modified randomly assuming variations.

This process is repeated just like Monte-Carlo simulation

and a lot of sampled SDF files are obtained. The delay

values are modeled as normal distributions. The

deviance is provided according to an assumed ratio of

the standard deviation to the mean delay (σ). For

example, the typical gate σ/μ value of 0.064 for 65nm

technology [3] is given. An in-house tool is used.

3. For each SDF file, an STA is performed on the netlist.

Design Compiler is used.

4. All STA results are statistically processed and an SSTA

result is obtained. An in-house tool is used.

Static Timing Analisys

Netlist
(HDL)

SDF
File

Netlist
(Gate-level)

STA
Results

Logic Synthesis

Variations Generation Statistics Processing

SSTA
Result

Static Timing AnalisysStatic Timing Analisys

SDF
Files

1

2

3

4

Figure 4: SSTA flow.

As you guess, you can easily build the additional tools.

Only Design Compiler is required for generating a netlist and

its corresponding SDF file and for performing a number of

STAs. An advantage of this flow is that it considers the entire

circuit rather than a part of the circuit. It analyzes not only

most critical paths but also every possible path, and thus

unexpected effects of variations on circuit delay can be

identified. Another advantage is its short processing time due

to the static nature of the analysis. A limitation is that it does

not consider correlations in delay values. Since the variability

of the rising and falling delay is randomly generated, the

effect of circuit topology on the delay values is not

considered. This might reduce accuracy. It is expected that

increasing the number of SDF samples improves the accuracy.

As mentioned above, this paper bases on the assumption

that the execution stage determines the clock frequency. This

methodology follows that used in [11]. One of the

performance critical units in the execution stage is ALUs.

This paper focuses on ALUs, especially on addition. Hence,

our evaluation methodology uses adders as a representative

that determines the clock frequency. It should be noted there

are other performance critical units in a microprocessor.

Focusing on adders is a first step towards variability

reduction microarchitectures that considers whole processor.

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on April 24, 2009 at 05:31 from IEEE Xplore. Restrictions apply.

Five kinds of 32b adders are analyzed by the SSTA tool.

They are carry select adder (CSA), carry look-ahead adder

(CLA), ripple-block CLA, block CLA, and Lander-Fischer

adder. A CSA is designed by hand and the other adders are

generated by the Arithmetic Module Generator [23]. They are

described by Verilog-HDL language. For every adder, two

types of adders are analyzed. One is the conventional 2-input

adder. The other is a 3-input 2-output adder, which consists

of two conventional 2-input adders. They are cascaded and

form the 3-input 2-output adder. Synopsys Design Compiler

generates their netlists. Hitachi 0.18μm cell library is used.

The 3-input 2-output adders are synthesized after its

hierarchy is flattened.

In the following analysis, σ/μ is used as a metric to

evaluate how delay variability is mitigated. The typical σ/μ
value in gate delay is 0.064 for 65nm technology [3] and it is

used to estimate the impact on circuit delay of variations in

the current technologies. 10,000 SDF samples are generated

for every SSTA.

5.2. IPC Performance Evaluation
SimpleScalar tool set [1] is used for evaluating IPC.

Alpha instruction set is used. Six programs from SPEC2000

CINT and eight programs from MediaBench [10] are used as

benchmark programs. For SPEC programs, first 1 billion

instructions are skipped and the following 2 billion

instructions are simulated in detail. For MediaBench, each

program is executed from beginning to end. The

configuration of the baseline processor is shown in Table 1.

It is a 2-way inorder processor and is based on Intel Atom

200 series 1.6GHz/FSB 533MHz [17].

Hereafter, the processor utilizing the cascaded units is

called CASCADE processor. In CASCADE processor, the

total number of component units in Table 1 does not change.

6. Results

6.1. SSTA Results
Table 2 presents μ, σ, and σ/μ values of each adder’s path

delay. The first column shows the types of adders. The next

Table 1: Baseline processor configuration.

Fetch width 2 instructions

L1 I-cache 32KB, 2way, 1 cycle

Branch predictor gshare, 4K entries, 12 histories

Instruction buffer 16 entries

Issue width 2 instructions

Integer ALUs 2 units, 1 cycle

Integer multipliers 2 units

 MULT 3 cycles, DIV 20 cycles

Floating ALUs 2 units, 2 cycles

Floating multipliers 2 unit

 MULT 4 cycles, DIV 12 cycles,

 SQRT 24 cycles

L1 D-cache port 2 ports

L1 D-cache 32KB, 2way, 2 cycles

Unified L2 cache 512KB, 8way, 16 cycles

Memory 34 cycles

Commit width 2 instructions

three columns are μ, σ, and σ/μ values of 2-input adders and

the next three are those of 3-input 2-output ones. The last

column explains how the σ/μ value is reduced from the 2-

input adders to the 3-input 2-output ones. In other words, it

presents the mitigation in delay variability. Since each 3-

input 2-output adder has larger path delay than its

corresponding 2-input one does, both μ and σ are larger in the

former than in the latter. An interesting observation is that

σ/μ is reduced. That means the cascading succeeds in

mitigating delay variability.

As can be seen in Table 2, five adders show the same

tendency. Therefore, the following analysis focuses on the

CSAs. In order to consider optimistic and pessimistic cases as

well as the typical one, gate σ/μ values of 0.040, 0.080, and

0.100 are used as delay variability. In the rest of this paper,

the 2-input CSA and the 3-input 2-output one are called

2CSA and 3CSA, respectively.

Table 2: Path delay variability of five adders.

 2-input 3-input 2-output Imp.(%)

Adders μ σ σ/μ μ σ σ/μ

CSA 4.82 0.088 0.0183 5.96 0.093 0.0155 15.1

CLA 4.84 0.087 0.0179 6.00 0.088 0.0146 18.4

Ripple-block CLA 4.92 0.088 0.0179 6.16 0.092 0.0149 16.7

Block CLA 4.90 0.089 0.0181 6.00 0.090 0.0149 17.4

Lander-Fischer 4.84 0.087 0.0181 6.04 0.093 0.0153 15.1

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on April 24, 2009 at 05:31 from IEEE Xplore. Restrictions apply.

Figure 5: Dependence of path delay on gate delay

variability.

Figure 5 presents frequency distributions of maximum

critical path delay for both 2CSA and 3CSA. The horizontal

axis indicates the delay and the vertical axis indicates the

counts of the number of adders equal to the corresponding

value. Graphs shown left are for 2CSA and those shown

right are for 3CSA. Table 3 summarizes μ, σ, and σ/μ of path

delay. The fifth column in the table explains how the σ/μ
value of 3CSA is smaller than that of 2CSA. As the σ/μ value

of gate delay increases, the mean delay, the standard

deviation, and the σ/μ value of path delay increase.

Table 3: Influence of gate delay variability on μ, σ, and σ/μ
of path delay.

Gate σ/μ μ σ σ/μ Imp.(\%)

2CSA 0.040 4.68 0.056 0.0120 -

 0.064 4.82 0.088 0.0183 -

 0.080 4.91 0.108 0.0219 -

 0.100 5.03 0.134 0.0267 -

3CSA 0.040 5.82 0.062 0.0107 10.8

 0.064 5.96 0.093 0.0155 15.1

 0.080 6.05 0.117 0.0192 12.5

 0.100 6.18 0.143 0.0231 13.4

0

5

10

15

20

25

30

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35

2CSA 2CSA x2 3CSA

Figure 6: Influence of number of adders on circuit delay.

As the number of adders increases, the number of critical

path also increases. Hence, the path delay is dependent upon

the number of units. Hereafter, the path delay distributions

analyzed above are modeled as normal distributions. Based

on the statistical MAX operation [2], the dependence of path

delay on the number of adders is estimated. Figure 6

presents frequency distributions of maximum path delay,

when the number of units is considered. ‘2CSA’, ‘2CSAx2’,

and ‘3CSA’ in the figure denote the distribution in the cases

of one 2CSA, two 2CSAs, and one 3CSA. All values are

normalized by the mean delay of the 2CSA. As we already

know in Figure 1, the increase in the number of adders

means larger mean delay.

6.2. IPC Results
Figure 7 shows IPC improvement for CASCADE

processor over the baseline processor. The horizontal axis

indicates benchmark programs and the vertical axis indicates

the IPC improvement. The instruction cascading increases

IPC by 11.2% on average. Figure 6 explains the clock

frequency of CASCADE processor is more than 20% slower

than that of the baseline. The IPC improvement of 11.2%

cannot compensate the slower clock frequency. Hence, it is

afraid that CASCADE processor is inferior in performance

in comparison with the baseline.

0%

5%

10%

15%

20%

25%

30%

Figure 7: IPC Improvement.

6.3. Performance Yield Results
Combining the SSTA results with the IPC results gives

us estimations on performance yield of processors.

Processor performance is obtained from IPC and clock

frequency. Frequency distributions are obtained from the

SSTA results. Therefore, performance distributions are

obtained from the SSTA and IPC results. Figure 8 shows

performance distributions. The horizontal axis indicates the

normalized performance and the vertical axis indicates the

performance density. Performance is normalized by that of

the baseline processor consisting of the 2CSAs with the

mean delay value.

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on April 24, 2009 at 05:31 from IEEE Xplore. Restrictions apply.

0

5

10

15

20

25

30

0.8 0.85 0.9 0.95 1 1.05 1.1

Baseline CASCADE

Figure 8: Performance distributions.

The effectiveness of cascading on performance yield is

investigated. The baseline processor provides better

performance than CASCADE processor does. Even though

IPC is larger in CASCADE processor than in the baseline

one, net performance is better in the baseline processor than

in CASCADE one. This is because the gain in IPC does not

compensate the decline in clock frequency. A surprising

result is that σ/μ is almost the same between CASCADE and

the baseline processors. In other words, timing variability in

the processor level is not improved, even though that in the

component level (i.e. adders) is improved. This is due to the

dependence of delay on the number of critical paths. The

maximum delay in the baseline processor is determined by

two 2CSAs. On the other hand, that in CASCADE processor

is determined one 3CSA. It has been seen in Section 3 that

σ/μ decreases as the number of critical paths increases. On

the other hand, it has been also seen that σ/μ decreases as the

logic depth increases. Hence, it is found that the effect of the

increase in logic depth and that of the increase in the

numbers of critical paths are comparable.

From the observations above, the following findings are

obtained. Even though increasing logic depth of an adder

improves its timing variability, performance yield of

processors is not improved. There are several reasons. First,

the IPC gain does not compensate the decline in clock

frequency. Second, the dependence of path delay on the

logic depth and that on the number of critical path are

comparable. Therefore, it is found that focusing on a part of

a processor is not enough to improve its performance yield.

Instead, global and aggressive refinements on

microarchitecture will be required. In order to keep clock

frequency, functional units with small delay should be used.

A special 3-input 1-output adder consisting of carry save

adders is a good candidate. However, two issues should be

considered. One is that a microarchitecture change is

required. Intermediate results are lost and thus a mechanism

to provide precise interruptus should be innovated. Its

complexity must not increase. The other is that timing

margins in the other stages are reduced. The delay

variability in the other stages should be considered.

7. Conclusions
This paper considered to utilize the cascaded units to

improve performance yield of processors. The SSTA results

explained that timing variability of an adder is mitigated.

However, unfortunately, microarchitecture level

performance evaluation showed the IPC gain is not enough

to compensate the decline in clock frequency caused by the

increase in the logic depth. Consequently, processor's

performance yield was not improved when the yield

enhancement technique was applied only on a part of the

processor. The contribution of this paper is to present the

SSTA methodology for microarchitecture evaluations. The

other contribution is to unveil that variability reduction in

the circuit level does not always mean yield enhancement in

the microarchitecture level.

8. Acknowledgments
Hitachi 0.18μm standard cell libraries are provided by

VDEC (VLSI Design and Education Center) in the

University of Tokyo. This research has been supported by

the Kayamori Foundation of Informational Science

Advancement. It is also supported by Grant-in-Aid for

Scientific Research (KAKENHI) (A) #19200004 and (B)

#20300019 from Japan Society for the Promotion of Science

(JSPS), and by the Core Research for Evolutional Science

and Technology (CREST) program of Japan Science and

Technology Agency (JST).

9. References
[1] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: an

infrastructure for computer system modeling”, IEEE

Computer, 35(2), 2002.

[2] M. Berkelaar, “Statistical delay calculation, a linear

time method”, 6th International Workshop on Logic

Synthesis, 1997.

[3] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch,

B. L. Ji, S. R. Nassif, E. J. Nowak, D. J. Pearson, and

N. J. Rohrer, “High-performance CMOS variability in

the 65-nm regime and beyond”, IBM Journal of

Research and Development, 50(4/5), 2006.

[4] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A.

Keshavarzi, and V. De, “Parameter variations and

impact on circuits and microarchitecture”, 40th

ACM/IEEE Design Automation Conference, 2003.

[5] K. A. Bowman, S. Duvall, and J. Meindl, “Impact of

die-to-die and within-die parameter fluctuations on the

maximum clock frequency distribution for gigascale

integration”, IEEE Journal of Solid-State Circuits,

37(2), 2002.

[6] D. Ernst, N. S. Kim, S. Das, S. Pant, R. R. Rao, T.

Pham, C. H. Ziesler, D. Blaauw, T. M. Austin, K.

Flautner, and T. N. Mudge, “Razor: a low-power

pipeline based on circuit-level timing speculation”, 36th

ACM/IEEE International Symposium on

Microarchitecture, 2003.

[7] P. Gepner and M. F. Kowalik, “Multi-core processors:

new way to achieve high system performance”, 5th

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on April 24, 2009 at 05:31 from IEEE Xplore. Restrictions apply.

International Symposium on Parallel Computing in

Electrical Engineering, 2006.

[8] M. Hashimoto and H. Onodera, “Increase in delay

uncertainty by performance optimization”, IEEE

International Symposium on Circuits and Systems,

2001.

[9] R. K and M. Mutyam, “Process variation aware issue

queue design”, Design, Automation and Test in

Europe, 2008.

[10] C. Lee, M. Potkonjak, and W. H. Mangione-Smith,

“`MediaBench: a tool for evaluating and synthesizing

multimedia and communications systems”, 30th

ACM/IEEE International Symposium on

Microarchitecture, December 1997.

[11] H. Li, Y. Chen, K. Roy, and C.-K. Koh, “SAVS: a

self-adaptive variable supply-voltage technique for

process-tolerant and power-efficient multi-issue

superscalar processor design”, 11th Asia and South

Pacific Design Automation Conference, 2006.

[12] X. Liang and D. Brooks, “Mitigating the impact of

process variations on processor register files and

execution units”, 39th ACM/IEEE International

Symposium on Microarchitecture, 2006.

[13] D. Mohapatra, G. Karakonstantis, and K. Roy, “Low-

power process-variation tolerant arithmetic units using

input-based elastic clocking”, ACM/IEEE International

Symposium on Low Power Electronics and Design,

2007.

[14] S. Ozdemir, D. Sinha, G. Memik, J. Adams, and H.

Zhou, “Yield-aware cache architectures”, 39th

ACM/IEEE International Symposium on

Microarchitecture, 2006.

[15] B. F. Romanescu, M. E. Bauer, S. Ozev, and D. J.

Sorin, “Reducing the impact of intra-core process

variability with criticality-based resource allocation

and prefetching”, ACM International Conference on

Computing Frontiers, 2008.

[16] T. Sato and S. Watanabe, “Instruction scheduling for

variation-originated variable latencies”, 9th IEEE

International Symposium on Quality Electronic

Design, 2008.

[17] T. Thakkar, “Mobile internet devices enabling the best

internet experience in your pocket”, 11th IEEE

Symposium on Low-Power and High-Speed Chips,

2008.

[18] R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas,

“Mitigating parameter variation with dynamic fine-

grain body biasing”, 40th ACM/IEEE International

Symposium on Microarchitecture, 2007.

[19] A. Tiwari, S. R. Sarangi, and J. Torrellas, “ReCycle:

pipeline adaptation to tolerate process variation”, 34th

ACM/IEEE International Symposium on Computer

Architecture, 2007.

[20] J. W. Tschanz, J. T. Kao, S. G. Narendra, R. Nair, D.

A. Antoniadis, A. P. Chandrakasan, and V. De,

“Adaptive body bias for reducing impacts of die-to-die

and within-die parameter variations on microprocessor

frequency and leakage”, IEEE Journal of Solid-State

Circuits, 37(11), 2002.

[21] S. Vassiliadis, J. Phillips, and B. Blaner, “Interlock

collapsing ALU’s”, IEEE Transactions on Computers,

42(7), 1993.

[22] X. Vera, O. Unsal, and A. Gonzalez, “X-Pipe: an

adaptive resilient microarchitecture for parameter

variations”, Workshop on Architectural Support for

Gigascale Integration, 2006.

[23] Y. Watanabe, N. Homma, T. Aoki, and T. Higuchi,

“Arithmetic module generator based on arithmetic

description language”, 13th Workshop on Synthesis and

System Integration of Mixed Information

Technologies, 2006.

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on April 24, 2009 at 05:31 from IEEE Xplore. Restrictions apply.

