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Abstract 
As semiconductor technologies are aggressively 

advanced, the problem of parameter variations is emerging. 

Process variations in transistors affect circuit delay, resulting 

in serious yield loss. Considering the situations, variation-

aware designs for yield enhancement interest researchers. 

This paper investigates to exploit the statistical features in 

circuit delay and to cascade dependent instructions for 

reducing variations. From statistical static timing analysis in 

circuit level and performance evaluation in processor level, 

this paper tries to unveil how efficiently instruction cascading 

improves performance yield of processors. Cascading 

instructions increases logic depth and decreases the standard 

deviation of the circuit delay. That might improve 

performance yield of microprocessors. Unfortunately, 

however, it is found that variability reduction in the circuit 

level does not always mean yield enhancement in the 

microarchitecture level. 

Keywords 
Process variations, yield enhancement, microarchitecture 

1. Introduction 
Popularly known as Moore’s law, advanced 

semiconductor technologies have increased the number of 

transistors on a single chip and contributed to improve 

processor performance. Unfortunately, however, aggressive 

integration technologies recently unveil a serious problem of 

parameter variations [3, 4]. Variations on a single chip are 

classified into die-to-die (D2D) and within-die (WID) 

variations. Recently, the latter ones, especially random WID 

variations, have become serious. Randomdopant fluctuations 

and line-edge roughness (Process variations), uneven supply 

voltage distribution (Voltage variations), and temperature 

fluctuations (Temperature variations) cause parameter 

variations. Process variations are essential in semiconductor 

technologies and they affect each transistor’s threshold 

voltage, resulting in performance variability. This paper 

focuses on process variations. Process variations influence 

circuit delay. Even though chips have identical design and 

environment, some of them may violate timing specifications. 

It is easily expected that the number of bad chips increases, 

resulting in yield loss, in the near future. The goal of this 

study is to improve performance yield via variability 

reduction techniques in the microarchitecture level. 

In order to reduce the variability in circuit delay and 

hence to enhance performance yield, the well-known 

statistical features on circuit delay [5, 8] should be exploited. 

Every circuit delay is strongly dependent upon the number of 

critical paths and the logic depth. As the number of critical 

paths increases, the mean delay increases and the standard 

deviation decreases. Similarly, as the logic depth increases, 

the mean delay increases and the standard deviation 

decreases. This paper investigates the instruction cascading 

(or ALU collapsing [21]) to exploit the statistical features in 

the microarchitecture level. The instruction cascading is a 

technique to collapse dependent instructions. Several 

instructions are cascaded and executed in a single cycle using 

cascaded units. Cascading multiple execution units increases 

the logic depth and thus the standard deviation may decrease. 

The negative impact on performance due to the decline in 

clock frequency may be compensated by the increase in 

instructions per cycle (IPC). This is because the multiple 

numbers of dependent instructions are executed in a single 

cycle. This paper statistically analyzes the delay of the 

cascaded adder, evaluates IPC gain obtained by the 

instruction cascading, and estimates performance yield. 

This paper is organized as follows. The next section 

summarizes related works. Section 3 introduces the statistical 

features of circuit delay. Section 4 describes instruction 

cascading. Section 5 introduces our evaluation methodology 

and Section 6 presents the results. Finally, Section 7 

concludes. 

2. Related Works 
Variation-aware designs for yield enhancement are a hot 

topic [9, 11-16, 18-20, 22]. These techniques take the 

approach of post-silicon compensation. Liang et al. [12] and 

Mohapatra et al. [13] avoid timing errors in register files and 

arithmetic units by adaptively switching to a longer latency. 

Ozdemir et al. [14] address the issue of scheduling 

complexity for variable-access L1 cache by using additional 

load-bypass buffers. Tiwari et al. [19] extend the variable 

latency technique into the pipeline. In the cases of 

unacceptable operating frequency, deeper pipeline depth is 

selected. K et al. [9] utilize the observation that every entry in 

the instruction queue is not fully affected by variations and 
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store instructions with one or two ready input operands in 

partially affected entries. This avoids multi-cycle accesses. 

Romanescu et al. [15] and Sato et al. [16] exploit instruction 

criticality to reduce the impact of long latency units. Priority 

for fast units is given to critical instructions. Romanescu et al. 

[15] also utilize prefetching to mitigate the impact of slow 

cache accesses. SAVS [11] and X-Pipe [22], which are 

extensions of Razor [6], are techniques to detect every timing 

violation caused by variability and to revert processor state to 

a safe point where it is detected. Adaptive body bias (ABB) 

[20] controls the substrate bias to improve transistor speed by 

lowering the threshold voltage. Teodorescu et al. [18] show 

that ABB is effective when it is applied at the block level. 

As mentioned above, these techniques only compensate 

the impact of variations. To the best of our knowledge, it has 

not been considered yet to mitigate variability itself by some 

techniques in the microarchitecture level. In contrast to the 

previous works, this paper tries to reduce timing variability in 

the microarchitecture level by exploiting the statistical 

features of circuit delay 

3. Statistical Features of Path Delay 
This section explains the statistical features of circuit 

delay. Figure 1 illustrates the dependence of the WID 

maximum critical path delay density function on the number 

of critical paths [5, 8]. The horizontal axis indicates the delay 

and the vertical axis indicates the density. It is assumed that 

the paths are completely independent and are modeled as 

normal distributions N(6, 12), where the mean delay (μ) is 6 

and the standard deviation (σ) is 1. ‘n’ in Figure 1 presents 

the number of completely independent critical paths. Hence, 

the bold line denoted by ‘n=1’ shows the normal 

distributions N(6, 12). As the number of critical paths 

increases, the mean delay increases. This is because the 

slowest critical path limits the circuit’s overall performance. 

In contrast, the standard deviation decreases. 

 

 
Figure 1: Dependence of circuit delay on number of critical 

paths. 
 

Figure 2 illustrates the dependence of the delay density 

function on the logic depth of the critical paths, when the 

number of critical paths is 100. As same to Figure 1, the 

horizontal axis indicates the delay and the vertical axis 

indicates the density. ‘m’ in the figure presents the relative 

logic depth of one critical path. As the logic depth of a path 

increases, its standard deviation decreases. This is because 

the total delay of a path is averaged as the number of gates in 

the path increases. The impact of each gate’s variability is 

reduced. As the logic depth (m) increases, the standard 

deviation relatively decreases by a factor of 1/√m. The dotted 

line denoted by ‘m’ is identical with the broken line denoted 

by ‘n=100’ in Figure 1. As the logic depth of all paths 

increases, the mean delay increases and the standard 

deviation decreases. 
 

 
Figure 2: Dependence of circuit delay on logic depth. 
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Figure 3: Instruction cascading. 

4. Variability Reduction Microarchitecture 
This section investigates a microarchitecture technique to 

reduce delay variability. It focuses on the execution stage in 

the pipeline. In other words, this paper assumes that the 

execution stage determines the clock frequency of the 

microprocessor. This is similar to an assumption used in [11]. 

An important thing to consider is that influences to the other 

stages due to microarchitecture modifications in the 

execution stage should be as small as possible. 

In order to mitigate the variability in circuit delay, the use 

of instruction cascading is proposed by exploiting the 

statistical feature of circuit delay. As shown in Figure 3(a), 

the result of the producer instruction is directly fed into the 

consumer one. The cascaded unit executes multiple 

dependent instructions in a single cycle [21]. Conventional 
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processors cannot execute multiple dependent instructions in 

a single cycle, as shown in Figure 3(b). In contrast, the 

cascaded unit executes the two instructions in a single cycle 

and thus it improves IPC. Cascading multiple execution units 

increases the logic depth and thus mitigates delay variability. 

On the other hand, cascading multiple units increases 

circuit delay. This has an advantage and a disadvantage. The 

advantage is that timing margins in the other pipeline stages 

rather than the execution stage increase. Since the clock 

frequency decreases, the timing constraints in the other stages 

are mitigated. The disadvantage is that net processor 

performance might be degraded. Later, this paper evaluates 

processor performance considering both the increase in IPC 

and the decline in clock frequency. 

In this paper, to cascade dependent instructions is called 

grouping. It should be noted that grouping does not mean 

instruction fusion [7]. Those instructions are still two 

instructions and the total number of instructions does not 

change. Grouping is operated as follows. 

1. Grouping is performed on two instructions. A pair of 

instructions are denoted as a group. Grouping three and 

more instructions is prohibited. Every instruction is 

included in at most one group. Every consumer 

instruction that has only one unready operand is a 

candidate for grouping. 

2. Grouping is performed at the instruction decode stage. If 

two consecutive instructions form a pair of producer and 

consumer instructions, they are grouped. Later in this 

paper, we adopt the instruction cascading to a 2-way 

inorder processor. Hence, determining whether grouping 

is possible or not is easily implemented at the decode 

stage as a part of the mechanism detecting a dependence 

between the two instructions. 

3. Every load instruction is not considered as a producer 

instruction for grouping. This does not mean memory 

operations are outside of candidates for cascading. Every 

load or store instruction is divided into an address 

calculation operation and a memory access operation, 

and hence an address calculation operation can be a 

consumer in a group. 

5. Evaluation Methodology 
Our evaluation consists of statistical static timing analysis 

and IPC performance evaluation. Processor performance is 

obtained from clock frequency and IPC. Combining SSTA 

results with IPC evaluation results gives us net processor 

performance. 

5.1. Statistical Static Timing Analysis 
We built an SSTA flow shown in Figure 4. It consists of 

Synopsys Design Compiler and two in-house tools. 

1. From an RT level HDL design, a netlist and its 

associated SDF (standard delay format) file are 

generated. Synopsys Design Compiler is used. 

2. A lot of SDF files, where there are variations in gate 

delay, are generated from the original SDF file. In an 

SDF file, timing specifications associate rising and 

falling delay values with input-to-output paths. The 

delay values are modified randomly assuming variations. 

This process is repeated just like Monte-Carlo simulation 

and a lot of sampled SDF files are obtained. The delay 

values are modeled as normal distributions. The 

deviance is provided according to an assumed ratio of 

the standard deviation to the mean delay (σ). For 

example, the typical gate σ/μ value of 0.064 for 65nm 

technology [3] is given. An in-house tool is used. 

3. For each SDF file, an STA is performed on the netlist. 

Design Compiler is used. 

4. All STA results are statistically processed and an SSTA 

result is obtained. An in-house tool is used. 
 

Static Timing Analisys

Netlist
(HDL)

SDF
File

Netlist
(Gate-level)

STA
Results

Logic Synthesis

Variations Generation Statistics Processing

SSTA
Result

Static Timing AnalisysStatic Timing Analisys

SDF
Files

1

2

3

4

 
 

Figure 4: SSTA flow. 
 

As you guess, you can easily build the additional tools. 

Only Design Compiler is required for generating a netlist and 

its corresponding SDF file and for performing a number of 

STAs. An advantage of this flow is that it considers the entire 

circuit rather than a part of the circuit. It analyzes not only 

most critical paths but also every possible path, and thus 

unexpected effects of variations on circuit delay can be 

identified. Another advantage is its short processing time due 

to the static nature of the analysis. A limitation is that it does 

not consider correlations in delay values. Since the variability 

of the rising and falling delay is randomly generated, the 

effect of circuit topology on the delay values is not 

considered. This might reduce accuracy. It is expected that 

increasing the number of SDF samples improves the accuracy. 

As mentioned above, this paper bases on the assumption 

that the execution stage determines the clock frequency. This 

methodology follows that used in [11]. One of the 

performance critical units in the execution stage is ALUs. 

This paper focuses on ALUs, especially on addition. Hence, 

our evaluation methodology uses adders as a representative 

that determines the clock frequency. It should be noted there 

are other performance critical units in a microprocessor. 

Focusing on adders is a first step towards variability 

reduction microarchitectures that considers whole processor. 
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Five kinds of 32b adders are analyzed by the SSTA tool. 

They are carry select adder (CSA), carry look-ahead adder 

(CLA), ripple-block CLA, block CLA, and Lander-Fischer 

adder. A CSA is designed by hand and the other adders are 

generated by the Arithmetic Module Generator [23]. They are 

described by Verilog-HDL language. For every adder, two 

types of adders are analyzed. One is the conventional 2-input 

adder. The other is a 3-input 2-output adder, which consists 

of two conventional 2-input adders. They are cascaded and 

form the 3-input 2-output adder. Synopsys Design Compiler 

generates their netlists. Hitachi 0.18μm cell library is used. 

The 3-input 2-output adders are synthesized after its 

hierarchy is flattened. 

In the following analysis, σ/μ is used as a metric to 

evaluate how delay variability is mitigated. The typical σ/μ 
value in gate delay is 0.064 for 65nm technology [3] and it is 

used to estimate the impact on circuit delay of variations in 

the current technologies. 10,000 SDF samples are generated 

for every SSTA. 

5.2. IPC Performance Evaluation 
SimpleScalar tool set [1] is used for evaluating IPC. 

Alpha instruction set is used. Six programs from SPEC2000 

CINT and eight programs from MediaBench [10] are used as 

benchmark programs. For SPEC programs, first 1 billion 

instructions are skipped and the following 2 billion 

instructions are simulated in detail. For MediaBench, each 

program is executed from beginning to end. The 

configuration of the baseline processor is shown in Table 1. 

It is a 2-way inorder processor and is based on Intel Atom 

200 series 1.6GHz/FSB 533MHz [17]. 

Hereafter, the processor utilizing the cascaded units is 

called CASCADE processor. In CASCADE processor, the 

total number of component units in Table 1 does not change. 

6. Results 

6.1. SSTA Results 
Table 2 presents μ, σ, and σ/μ values of each adder’s path 

delay. The first column shows the types of adders. The next 

Table 1: Baseline processor configuration. 

 

Fetch width 2 instructions 

L1 I-cache 32KB, 2way, 1 cycle 

Branch predictor gshare, 4K entries, 12 histories 

Instruction buffer 16 entries 

Issue width 2 instructions 

Integer ALUs 2 units, 1 cycle 

Integer multipliers 2 units 

 MULT 3 cycles, DIV 20 cycles 

Floating ALUs 2 units, 2 cycles 

Floating multipliers 2 unit 

 MULT 4 cycles, DIV 12 cycles, 

 SQRT 24 cycles 

L1 D-cache port 2 ports 

L1 D-cache 32KB, 2way, 2 cycles 

Unified L2 cache 512KB, 8way, 16 cycles 

Memory 34 cycles 

Commit width 2 instructions 

 

three columns are μ, σ, and σ/μ values of 2-input adders and 

the next three are those of 3-input 2-output ones. The last 

column explains how the σ/μ value is reduced from the 2-

input adders to the 3-input 2-output ones. In other words, it 

presents the mitigation in delay variability. Since each 3-

input 2-output adder has larger path delay than its 

corresponding 2-input one does, both μ and σ are larger in the 

former than in the latter. An interesting observation is that 

σ/μ is reduced. That means the cascading succeeds in 

mitigating delay variability. 

As can be seen in Table 2, five adders show the same 

tendency. Therefore, the following analysis focuses on the 

CSAs. In order to consider optimistic and pessimistic cases as 

well as the typical one, gate σ/μ values of 0.040, 0.080, and 

0.100 are used as delay variability. In the rest of this paper, 

the 2-input CSA and the 3-input 2-output one are called 

2CSA and 3CSA, respectively. 

 

Table 2: Path delay variability of five adders. 

 

 2-input 3-input 2-output Imp.(%) 

Adders μ σ σ/μ μ σ σ/μ  

CSA 4.82 0.088 0.0183 5.96 0.093 0.0155 15.1 

CLA 4.84 0.087 0.0179 6.00 0.088 0.0146 18.4 

Ripple-block CLA 4.92 0.088 0.0179 6.16 0.092 0.0149 16.7 

Block CLA 4.90 0.089 0.0181 6.00 0.090 0.0149 17.4 

Lander-Fischer 4.84 0.087 0.0181 6.04 0.093 0.0153 15.1 
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Figure 5: Dependence of path delay on gate delay 

variability. 

Figure 5 presents frequency distributions of maximum 

critical path delay for both 2CSA and 3CSA. The horizontal 

axis indicates the delay and the vertical axis indicates the 

counts of the number of adders equal to the corresponding 

value. Graphs shown left are for 2CSA and those shown 

right are for 3CSA. Table 3 summarizes μ, σ, and σ/μ of path 

delay. The fifth column in the table explains how the σ/μ 
value of 3CSA is smaller than that of 2CSA. As the σ/μ value 

of gate delay increases, the mean delay, the standard 

deviation, and the σ/μ value of path delay increase. 

 

Table 3: Influence of gate delay variability on μ, σ, and σ/μ 
of path delay. 

 

Gate σ/μ μ σ σ/μ Imp.(\%) 

2CSA 0.040 4.68 0.056 0.0120 - 

 0.064 4.82 0.088 0.0183 - 

 0.080 4.91 0.108 0.0219 - 

 0.100 5.03 0.134 0.0267 - 

3CSA 0.040 5.82 0.062 0.0107 10.8 

 0.064 5.96 0.093 0.0155 15.1 

 0.080 6.05 0.117 0.0192 12.5 

 0.100 6.18 0.143 0.0231 13.4 
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Figure 6: Influence of number of adders on circuit delay. 

 

As the number of adders increases, the number of critical 

path also increases. Hence, the path delay is dependent upon 

the number of units. Hereafter, the path delay distributions 

analyzed above are modeled as normal distributions. Based 

on the statistical MAX operation [2], the dependence of path 

delay on the number of adders is estimated. Figure 6 

presents frequency distributions of maximum path delay, 

when the number of units is considered. ‘2CSA’, ‘2CSAx2’, 

and ‘3CSA’ in the figure denote the distribution in the cases 

of one 2CSA, two 2CSAs, and one 3CSA. All values are 

normalized by the mean delay of the 2CSA. As we already 

know in Figure 1, the increase in the number of adders 

means larger mean delay. 

 

6.2. IPC Results 
Figure 7 shows IPC improvement for CASCADE 

processor over the baseline processor. The horizontal axis 

indicates benchmark programs and the vertical axis indicates 

the IPC improvement. The instruction cascading increases 

IPC by 11.2% on average. Figure 6 explains the clock 

frequency of CASCADE processor is more than 20% slower 

than that of the baseline. The IPC improvement of 11.2% 

cannot compensate the slower clock frequency. Hence, it is 

afraid that CASCADE processor is inferior in performance 

in comparison with the baseline. 
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Figure 7: IPC Improvement. 

 

6.3. Performance Yield Results 
Combining the SSTA results with the IPC results gives 

us estimations on performance yield of processors. 

Processor performance is obtained from IPC and clock 

frequency. Frequency distributions are obtained from the 

SSTA results. Therefore, performance distributions are 

obtained from the SSTA and IPC results. Figure 8 shows 

performance distributions. The horizontal axis indicates the 

normalized performance and the vertical axis indicates the 

performance density. Performance is normalized by that of 

the baseline processor consisting of the 2CSAs with the 

mean delay value. 
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Figure 8: Performance distributions. 

 

The effectiveness of cascading on performance yield is 

investigated. The baseline processor provides better 

performance than CASCADE processor does. Even though 

IPC is larger in CASCADE processor than in the baseline 

one, net performance is better in the baseline processor than 

in CASCADE one. This is because the gain in IPC does not 

compensate the decline in clock frequency. A surprising 

result is that σ/μ is almost the same between CASCADE and 

the baseline processors. In other words, timing variability in 

the processor level is not improved, even though that in the 

component level (i.e. adders) is improved. This is due to the 

dependence of delay on the number of critical paths. The 

maximum delay in the baseline processor is determined by 

two 2CSAs. On the other hand, that in CASCADE processor 

is determined one 3CSA. It has been seen in Section 3 that 

σ/μ decreases as the number of critical paths increases. On 

the other hand, it has been also seen that σ/μ decreases as the 

logic depth increases. Hence, it is found that the effect of the 

increase in logic depth and that of the increase in the 

numbers of critical paths are comparable. 

From the observations above, the following findings are 

obtained. Even though increasing logic depth of an adder 

improves its timing variability, performance yield of 

processors is not improved. There are several reasons. First, 

the IPC gain does not compensate the decline in clock 

frequency. Second, the dependence of path delay on the 

logic depth and that on the number of critical path are 

comparable. Therefore, it is found that focusing on a part of 

a processor is not enough to improve its performance yield. 

Instead, global and aggressive refinements on 

microarchitecture will be required. In order to keep clock 

frequency, functional units with small delay should be used. 

A special 3-input 1-output adder consisting of carry save 

adders is a good candidate. However, two issues should be 

considered. One is that a microarchitecture change is 

required. Intermediate results are lost and thus a mechanism 

to provide precise interruptus should be innovated. Its 

complexity must not increase. The other is that timing 

margins in the other stages are reduced. The delay 

variability in the other stages should be considered. 

7. Conclusions 
This paper considered to utilize the cascaded units to 

improve performance yield of processors. The SSTA results 

explained that timing variability of an adder is mitigated. 

However, unfortunately, microarchitecture level 

performance evaluation showed the IPC gain is not enough 

to compensate the decline in clock frequency caused by the 

increase in the logic depth. Consequently, processor's 

performance yield was not improved when the yield 

enhancement technique was applied only on a part of the 

processor. The contribution of this paper is to present the 

SSTA methodology for microarchitecture evaluations. The 

other contribution is to unveil that variability reduction in 

the circuit level does not always mean yield enhancement in 

the microarchitecture level. 
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