¢

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-CONF-422888

A Case for Including
Transactions in OpenMP

M. Wong, B. L. Bihari, B. R. de Supinski, P. Wu,
M. Michael, Y. Liu, W. Chen

January 26, 2010

International Workshop on OpenMP
Tsukuba, Japan
June 14, 2010 through June 16, 2010

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

A Case for Including Transactions in OpenMP

Michael Wond, Barna L. Bihar?, Bronis R. de SupinsKi
Peng W4, Maged Michaél, Yan Liu, Wang Cheh

L IBM Corporation? Lawrence Livermore National Laboratory
{m chael w, yanl i u, wdchen}@a. i bm com
{bi hari 1, broni s}@1I nl . gov
{pengwu, nagedm}@s. i bm com

Abstract. Transactional Memory (TM) has received significant atamtecently
as a mechanism to reduce the complexity of shared memoryagmoging. We

explore the potential of TM to improve OpenMP applicatiovde combine a
software TM (STM) system to support transactions with anr®ffe implemen-

tation to start thread teams and provide task and loop-leallelization. We

apply this system to two application scenarios that refleglistic TM use cases.
Our results with this system demonstrate that even withetaively high over-

heads of STM, transactions can outperform OpenMP critieatiens by 10%.

Overall, our study demonstrates that extending OpenMPdodie transactions
would ease programming effort while allowing improved penfiance.

1 Introduction

Many have observed that Transactional Memory (TM) couldptiimshared memory
programming substantially by simply marking a group of leadl store instructions to
execute atomically, rather than using locks or other syomlzation techniques. TM's
promise of easier program understanding, along with comtgbty and liveness guar-
antees has led to a fad status for TM. As a result, extensio@p&nMP [] to include
transactions have received interest in the OpenMP comgnfini{. However, we must
first determine whether TM can be more than just a researdbetfmye these extensions
can receive serious consideration.

Two implementation strategies are available for TM. HandwiaM (HTM) modifies
the memory system, typically through modifications to thechthe, to support atomic
execution of groups of memory instructions. Software Taatienal Memory (TM)
provides similar functionality without using special hasate. In this paper, we combine
an STM system that provides the transaction primitive witlopenMP implementation
that provides all other shared memory functionality. Thenbaation is natural since
the TM system relies on compiler directives that are simida@penMP’s syntax.

The remainder of this paper is organized as follows. We pitesr STM system in
Section2. We then review its integration with a production-qualitggdMP compiler
in Section3. In Section4, we present performance results for two application scesar
which demonstrate that transactions can improve perfocmbag 10% over a produc-
tion quality critical section implementation even with tredatively high overhead of
STM. Overall, we conclude that extending OpenMP to includegactions would re-
duce programming effort while supporting potential pemiance gains.

2 The IBM XL STM Compiler

Generally, an STM system uses a runtime system to manageadlaictional states.
This runtime annotates reads and writes for version coatrdlconflict detection. If two
transactions conflict, (i. e., the write set of one intersedgth the read set of the other),
the system may delay or abort and retry one of them. The sy&didates the reads at
the end of the transaction (i. e., any loaded values havehatged). The system then
commits the writes (i. e., stores them to their actual menhacgtions) if it does not
detect any conflicts. Compared to HTM, STM does not requieeisph hardware while
enabling scalability of inherently concurrent workloadshee cost of higher overhead,
particularly when no conflicts occur.

IBM released a freely downloadable STM compiler under alibiksR) site [/]
based on its production IB® XL C/C++ Enterprise Edition for AD®), Version 9.0,
called IBM XL C/C++ for Transactional Memory for AlX in 200&his implementation
includes standard and debugging versions of the runtimarlds. Fig.l shows the TM
features {] of our XL STM compiler.

et IBM STM compiler Scientific || Data-mining || In-memory DB| Online games

oatien ok - Sicssim. | - SAT sovers | - Oje e
* physics sim. || « SAT solvers * ObjectGrid TP

Direct/Deferred Update | Deferred or Lazy - -
STM compiler STM JIT compiler

Conflict Detection Early(read after write)
Late (write after write) |

. TMAPI ~

Inconsistent Reads Tolerated(signals and !
infinite loop checks)
™ il oftware
design ™

Simulator

Conflict Resolution :
design

Fig. 2. Project Components of our STM that

Fig. 1. Transactional features of XL STM rely on OpenMP

Our STM uses a block-based mapping of shared memory locatidrich enables
support for different languages, unlike the alternativieobbased mapping. The sys-
tem buffers writes, which are written to the global addrgsss only when the transac-
tion is guaranteed to commit. When a transaction writes ta@kdocation or privately
allocated memory that has not yet escaped the thread (irenzory location that is not
yet visible to other threads), the write does not induce amyflict. These contention-
free writes do not require write-barriers, but may need toneenory checkpointed if
the system must recover the overwritten values upon a réfry [

Using data-flow analysis, the compiler can exclude writesitst contention-free
locations from memory checkpointing. Basically, the wriggquires no checkpointing if
the variable or heap location is private to a transactianathl scope (e.g., transactional
block or procedure), that is, the variable is not live upotryeand exit to the lexical

scope. However, contention-free writes often have uses efiting the transaction. In
this case, we can still avoid checkpointing if the locatismot live upon entry to the
transactional scope the write to the location dominatedrtiresaction end. The latter
property guarantees that the location will always be rengefiupon retry and, thus,
we do not need to recover the original value. Finally, uratited locations upon a
transaction entry require no checkpointing. This alsoudebk the case when a heap
location is allocated within the transaction.

The read barrier does not write to shared meta-data. Thé&pbt barrier records
the original value for writes to contention-free locatiombe compiler implements re-
tries withset j np andl ongj np. In addition, our STM system focuses on instrumen-
tation statistics to identify STM bottlenecks in appliceais, thus avoiding time consum-
ing and error-prone manual instrumentation.

We use C to implement the runtime system, the source codeiohvigtfreely avail-
able as part of an Open Source Amino projegdt This runtime supports exploration
of a range of TM scenarios (HTM, STM and hardware acceler&Ed) in multiple
languages including C, C++ and J&V4 as Fig.2 shows. The current implementation
assumesveak isolation: accesses to a particular shared location always occuimwith
transactions (dransactional location) or never within them. Further, it assumes that
transactions only include any revocable operations witlse effects (e.g., no file
I/0) and, hence, we can safely undo and retry them.

Our runtime uses metadata to synchronize transactionakad¢o shared memory
locations. We associate a metadata entry with transattassion. This entry includes
a version number for tracking updates of the location andck to protect updates
of it. A thread can write to memory only if it holds the assdethmetadata lock. A
transaction increments the version number when it releiigemetadata lock, which
guarantees that the data has not changed if the version musnibechanged. Thus, a
transaction can read a metadata version number and thesgbeiaed data and then
later check the version number to determine if the data ibanged.

Our runtime maintains information for each thread thatudels its read set, write
set, statistics, status, level of nesting, and lists of otsll frees and modified local
variables. The read set information is the metadata locatia version number. The
write set information contains the address, value, sizenagiddata location.

When a thread begins a transaction, it sets its transatttatas data. It also reads
some global data in some configurations. The thread themdedtbe current version
number before it reads a transactional location. In somégumations, the thread also
checks the consistency of the read set. For transactiontaiswthe thread records the
target address and the value to be written. In some configngtt acquires the cor-
responding metadata lock; otherwise, it acquires metddeiks for all locations in its
write set at the end of the transaction. When the transaetiais, the thread then val-
idates the consistency of its read set. If that fails, thedtraborts the transaction by
releasing the metadata locks and jumping to the beginnirthefransaction. Other-
wise, the thread writes the values to the addresses in ite get, releases the metadata
locks and then resets its transactional status data.

The STM runtime can collect statistics related to a progsaimherent transac-
tional characteristics (i. e., independent of our STM impdatation), such as trans-

| Statistic

|Description

READ_ONLY_COMMITS

Number of committed transactions with no writes

READ_WRITE.COMMITS

Number of committed transactions with writes

TOTAL_COMMITS

Number of successfully committed transactions

TOTAL_RETRIES

Number of retried transactions

AVG_RETRIESPERTXN

Average number of retries per committed transaction

MAX _NESTING Maximum level of transaction nesting
READ_SET.SIZES Unique locations in read sets of committed transactions
WRITE_SET_SIZES Unique locations in write sets of committed transactions

AVG_READ_SET.SIZE

Average number of unique locations in read set per trar@a

cti

AVG_WRITE_SET.SIZE:

Average number of unique locations in write set per transal

READ_SET-MAX _SIZE

Maximum number of unique locations in a read set

WRITE_.SET-MAX _SIZE

Maximum number of unique locations in a write set

READ_LIST_-MAX _SIZE

Maximum number of locations in a read list

WRITE_LIST_MAX _SIZE

Maximum number of locations in a write list

DUPLICATE_.READS

Number of transactional reads of locations previously
read in the same transaction

PCT.DUPLICATE_.READS

Percentage of transactional reads of locations previously
read in the same transaction

DUPLICATE.WRITES

Number of transactional writes to locations previously
written in the same transaction

PCTDUPLICATE.WRITES

Percentage of transactional writes to locations previousl
written in the same transaction

NUM_SILENT-WRITES

Number of transactional writes of already stored value

PCTSILENT_WRITES

Percentage of transactional writes of already stored value

READ_AFTER.WRITE_.MATCHES

Number of transactional reads that follow a transactional
write of the same location in the same transaction

PCT.READ_AFTERWRITE

Percentage of transactional reads that follow a transaaitio
write to the same location in the same transaction

NUM_MALLOCS

Number of calls taral | oc inside transactions

NUM_FREES

Number of calls td r ee inside transactions

NUM_FREEPRIVATE

Number of calls td r ee blocks allocated in that transaction|

Table 1. STM runtime statistics

action sizes. It can also track implementation specific,dateh as metadata locks ac-
quired. We collate these statistics by static transact{oms, source code file name
and first line number). We also generate aggregate stati€mlecting these statistics
incurs a significant performance cost but can guide optitisizaf TM programs.

The program must calt mst at s_out in order to generate the statistics files.
We allow multiple calls tast mst at s_out . The statistics can be inconsistent if the
call occurs while any transactions are active since théstta can change during the
snapshot. We recommend only callisgmst at s_out when only the main thread is
active, which ensures the statistics are consistent.stta s. h file has a full list of
the statistics; we provide some of the most important on@alitel.

We have ported our STM runtime to several platforms inclgdiX and Linux®
on IBM PowerP@), LinuxX86, and LinuxX8664, in 32 or 64bit mode. IBM XL

C/C++ for Transactional Memory for AIX generates code fds timterface for pro-
grams that use the high-level interface that we discusseéméxt section. Other com-
pilers could also use our open source STM runtime for thisrfate.

3 IBM STM Compiler design

3.1 Syntax

Programs define transactions for our STM compitgitifirough a simple directive:

1#pragma tm atomic [default(trans|notrans)]

2 {

3

4}

in whichdef aul t (t rans| not r ans) defines the default behavior of memory ref-
erenced in the lexical scope of the transactional regidhelfiser specifiedef aul t (t r ans)
then the compiler translates references to shared vasiabthe transactional region to
STM runtime calls, often referred to as STM read-write-leais; that ensure the cor-
rectness of the execution. If the user specifiesaul t (not r ans) thenthe compiler
does not translate any memory references in the region to i@atwrite-barriers. The

def aul t clause is optional; the default valuetisans.

The code region encapsulated within our transactionaltoactss basically a struc-
tured block although the block cannot include any OpenMBtants. We impose this
restriction since otherwise an aborted transaction ca#d to an inconsistent state for
the OpenMP runtime library, such as acquiring a lock thatlitvever release.

Fig. 3 shows an example transactional region within an OpenMPllphragion.
The compiler insertst mbegi n() andst mend() around the transactional region.
These calls allow our STM runtime to monitor all shared mgmemcess within the
transactional region in order to ensure the transactioowtgs correctly.

3.2 Special Transactional Function Attributes

Users must annotate functions that are called within tretiszal regions so that the
compiler can correctly transform memory references withsfunction to STM run-
time barrier calls. We provide two function attributes fhistpurposet mf unc and

t mf unc_not r ans. The user specifiesat t ri but e__((t mf unc)) with a func-
tion declaration to indicate that a transactional regianeal the function so the com-
piler must transform its memory references to STM runtimiéscahe user specifies
attribute((tmfunc_notrans)) withafunction declaration to indicate that
transactional region can call the function but the comieruld not transform its mem-
ory accesses to STM runtime calls. Neither attribute is irequf transactional regions
cannot call the function. Figl shows an annotated function declaration.

Our transactional function attributes reflect two key dedagtors. First, they al-
low function calls within transactions without requiriniget user to make major code
modifications. Second, the attributes allow the compilestteck that the function call
conforms to our restriction that transactional regionsxcaimclude any OpenMP con-
structs. The compiler issues a warning for any unannotatedtibns that are called

1 int b[25], j:
2 int index[5] = {4,5,675,22,3%;
3

4 for(j =0 ;j<25; j++)

5 b[j] = 0;

6

7 #pragna onp parallel for

8

9 for (j=0; j<25; j++)

10 {

11

12

13 #pragma tm atomic

14 {

15 blindex[j]] = ...;

16

17 }

18 }

19 }

Fig. 3. Sample code of using #pragma tm atomic
1int foo (int sum) __attribute__ ((tm_func));
2int foo (int sum)

24
4 return ++sum;
5}

Fig. 4. Sample code of annotating function attribute to a function.

within a transactional region. The programmer must enswaethe call is safe with
the default behavior that does not transform memory reteeto STM runtime calls.
These attributes are only needed for STM; HTM implementatio not require them.

4 Experimental Results

We provide results that evaluate the potential for TM to i¢iseientific computing.
In particular, we consider the opportunities to use trati@as in unstructured-mesh
multi-physics simulation applications, which are widesed because of their geometric
and architectural flexibility. These applications typigdlave many compute-intensive
loops with complicated memory referencing patterns. Altjiothese applications usu-
ally exhibit good scalability with MPI-based domain-deqawsition, the trend toward
systems built with multicore nodes motivates exploratiohsnoving them to a hy-
brid OpenMP/MPI programming model. However, many userg/\fee complexity of
shared memory programming in general, and of ensuring da&afreedom in particu-
lar, as a significant barrier. Transactions directly adsitieis concern.

While no production HTM implementations currently existNBprovides a mecha-
nism to experiment with using transactions within thesdiagtions. Thus, we have im-
plemented a Benchmark for Unstructured-mesh Softwares@i@ional Memory (BUSTM).
BUSTM provides a simple code in which to explore the progranghenefits of trans-

1#pragma tm atomic default(trans)

2{
3 gradient[cellLno_.1] += incr;
4 gradient[cellLno_.2] —= incr;
5}

Fig. 5. Gradients accumulated within transactiorcionput e _cel |

actions and any performance implications as it mimics tgerithms and behavior of
real unstructured mesh applications.

When we construct a benchmark of an application scenarionugt ensure that it
captures the salient features of the target applicatiocesfince we primarily focus on
race conditions and the potential benefits of TM, we artillicigenerate memory con-
flicts in either a deterministic or random yet still conteddle manner. That is, even with
random conflicts, we can configure their probabilities iadily through input param-
eters. The benchmark also must include rigorous error ¢hgdlr example problems
with known or independently computable answers to enswaetkte threaded experi-
ments (with or without transactions) execute correctly.

BUSTM meets these requirements and uses realistic unsteactnesh connectiv-
ity. It mimics the complex and flexible bookkeeping commorutsstructured mesh
applications. BUSTM can handle unstructured cells with duiti@ry number of faces.
We have already used a wide range of cell types, includiagguilar prisms, hexahedra,
tetrahedra and pyramids. Like real unstructures meshagijans, BUSTM cross ref-
erences the basic unstructured mesh building blockedés facesandcellsin almost
all combinations, so thahdirect indexing pervades the code. This indirect addressing
leads to extensive synchronization requirements to usedhmemory programming,
which is exactly when TM should provide benefits. The remairaf this section ex-
plores the benefits of our STM implementation with both detarstic and probabilistic
conflicts.

4.1 Deterministic Conflicts

Domain decomposition based on MPI message passing hasipdosuccessful par-
allelization of conservative finite volume schemes on wstred grids. Our careful
evaluation of their typical memory access patterns, howdéwand that conflicts may
occur as cells are updated during the traversal of faceddases. Although these con-
flicts rarely occur in practice, we cannot assume they do eotio Since ignoring
them would lead to incorrect results, we must protect theth wdme synchroniza-
tion method. However, locks have relatively high overheaémvconflicts are unlikely.
Thus, TM may provide substantial performance benefits fisrdbenario.

Short of a full-blown CFD solver, we simulate face-by-faecefcomputations with
thenumerical divergence of a mesh-function that we define on an unstructured mesh in
a cell-centered sense. This emulation computes the gtaddiaifunction. If the function
is constant, its gradient and, thus, divergence is zero 38pows the transaction.

Since real finite-volume codes have significant computaterdace, BUSTM loops
over the faces, as Fig.shows. Memory conflicts can occur if different faces updage t

1

2
3
4
5
6
7

#pragma onp parallel for

for (i=0; i < maxface; i++)Y
left_neighbor = leftcells[i];
right_.neighbor = rightcells[i];
computecell(incr, left.neighbor); //face increments left cell
computecell(incr, right.neighbor); //face increments right cell

Fig. 6. Threaded face loop that catt®nput e_cel |

same cell. They only actually occur, resulting in incorectcution, itonput e _cel |
does not use transactions or other synchronization suctcas i cal section, and
two updates happen at the same physical time. Thus, thelglitpaf conflicts is ex-
tremely low and many of our experimental runs had no conflicts

Our experiements use a mesh of 119893 triangular prism aglbéeged as a 2-D
layer of 3-D cells. This mesh has 420060 faces (some qusatdlaothers triangular)
and 123132 nodes. The total number of potential conflictxedfivith this mesh al-
though the actual number of conflicts varies between runsobgerve the number of
resolved conflicts from the statistics available with ouMsSimplementations.

Fig. 7 shows the number of conflicts resolved in each of 1000 runbvays less
than ten and frequently zero. Figshows the sum of the number of conflicts that our
STM implementation resolves over 1000 runs versus the totaiber of errors com-
mitted (without STM) over 1000 runs for a range of thread ¢suwe observe many
fewer STM retries than errors with the unsynchronized cétimvever, both exhibit
similar trends with increasing thread counts and rarelypcelative to the number of
potential conflicts. Despite the relatively small mesh @hlincreasesthe conflict prob-
ability), only 0.00042% of all cell updates incurred cortlion 16 threads. No conflicts
occur with just two threads (or one, which is clearly expdgtevhich makes debugging
the unsynchronized code more difficult. The number of casfliecreases significantly
with the number of threads, with conflicts being fairly likelith 16 threads.

Conflicts detected Conflicts and errors
10 ‘ 1 thread g 2000 :
2 thread = -
ﬁ : 4Eh:2:dz o —-without ST
S o 8threads % 1500; with STM
(@] =
o - 16 threads =
S 5] g 1000¢
g) 5
S o a & 500¢
=] ‘ Qo)
2 fm e -t g /«::‘J*”””"‘"
% 500 000 =2 % 10 20
Run number Number of threads

Fig. 7. Resovled deterministic conflicts Fig. 8. Total conflicts or errors

1#pragma tm atomic default(trans)
2{
3 cell_counter[cellLno] ++;

4}

Fig. 9. Cell counter incremented within transactionnar k _cel | .

4.2 Probabilistic Conflicts

Monte Carlo applications are another common type of sdierapplication in which
memory conflicts potentially occur with threaded implenagions. In these applica-
tions, randomly released particles travel through a coatfmrtal mesh and increment a
cell-based physical quantity each time they touch a cethlRdizing over the particles
results in almost embarassingly parallel loops, exceptiferrace condition produced
by two particles (belonging to two different threads) tiyto update the same cell at the
same time. Although these memory conflicts are unlikely,esauifi occur with enough
particles and threads.

We exploit the unstructured bookkeeping in BUSTM in ordeetoulate the be-
havior of particles without implementing a real Monte Caalgplication. Instead of
particles that travel along a straight line through spaueey travel from cell to cell via
the neighbor information available for each adjacent @dlus, our benchmark has two
levels of randomness. First, we randomly select the celliickvthe particle is “born”.
Second, we randomly choose the face that the particle édtsurrent cell.

We make sure the number of particles is independent of théoauof cells. After
being created, or “born,” each particle is “alive” as longtatays within the computa-
tional domain (i. e., the face through which it exits the eatrcell is an interior face).
If that randomly selected face is a boundary face, it exiesdbmain and completes
its path. This scheme results in a wide variance in the panpiath lengths; some will
have a short lifespan while others stay active within the @ionfor a long time. This
property, which is consistent with real Monte Carlo simiglas, limits scalability.

Fig. 9 shows the simple transaction that safely increments aesicgjl-based in-
teger. Fig.10 shows the loop that distributes the particles across treatts. As dis-
cussed above, each randomly generated particle movegthtbe mesh until it ex-
its the domain. We also increment a separate counter for paditle so that we
can compute the total number of touches without concern étergial conflicts as
cel |l _count er xparti cl e.count er. This check usually fails if we do not use
any synchronization for thear k_cel | calls.

Our probabilistic experiments use the same triangulanpn®esh as the determin-
istics ones and we report conflict statistics observed bySdM implementation. We
performed 100 runs, using 12000 random particles (10% afitimeber of cells) during
each run. Fig1ll shows a much higher number of conflicts than in the detertignis
case. The conflicts are fairly consistent for a given threathtand appear almost lin-
early proportional to that count. We observe the oppositiedifrom the deterministic
case between the total number of STM resolved conflicts antbtal number of unsyn-
chronized errors for this probabilistic test, as Fig.shows. We find that STM incurs

1 #pragma onp parallel for
2for (i=0; i<max.particles; i++)

3 next.cell = rand();

4 while(inside){
mark_cell(nextcell); //particle increments cells
next.-face = rand ();
next.cell = neighbor(nextface);

if (next.cell < 0)inside = 0;
}
}

o ©®~N o’

i

Fig. 10.Threaded particle loop that calisr k_cel |

4 Conflicts detected 6 Conflicts and errors
x 10 %) x 10
2.5 525 ; ; ‘
% ; IE::ZgS % ——without STM
= 2 . Athreads || 3 2| - with STM
Q o 8threads 2
o 1.5 - 16 threads || = 1.5
o 38
g 1 46 1’
E 0.5¢ . 205
z IS
0 50 100 150 0 5 10 15 20
Run number Number of threads
Fig. 11.Resolved probabilistic conflicts Fig. 12.Total conflicts or errors

many more conflicts, sometimes by an order of magnitude. &\ are still investi-
gating this discrepancy, the much heavier computatiorsal Imposed by the frequent
invocation of a random number generator may cause it. Nefest, the total number
of resolved conflicts and committed errors is still small pamed to the number of up-
dates. For example, the conflict probability is only 0.009%4tos relatively small mesh
with 16 threads.

While the deterministic and probabilistic algorithms regent very different numer-
ical algorithms and in their relationships of resolved datdlto errors, they also have
similarities. In both cases we have low conflict probalgt{much less than 0.01%)
and both use the same unstructured mesh. Indeed, the resoftsn our conjecture
that the algorithms are well suited to transactions sinadlicts rarely occur. We can
observe reasonably good performance even with STM and ekjgger performance
with HTM since conflict resolution is generally the dominaast with TM. Lock based
implementations, on the other hand, would suffer much mesrh®ad. Preliminary
timing results that compare our STM implementations to ahas use the OpenMP
critical constructindicate that STM provides about a 10% performativantage
despite the relatively large overheads of ST\ [

5 Conclusions and Future work

We have presented the design and implementation of a seftnarsactional memory
system. Our system combines an open source runtime withficetibns to the pro-
duction IBM®R XL C/C++ Enterprise Edition for AIXR), Version 9.0 compiler. This
system uses OpenMP to generate threads and parallelizeajupls. Transactions de-
noted by a simple directive serve as an alternative to OpesyviEhronization. Users
also must annotate declarations of any functions accestkuh\a transaction. These
annotations would be unnecessary with HTM support sincgdirect the compiler to
transform memory accesses to STM primitives.

We evaluate the efficacy of TM for scientific computing. Intmardar, we develop
a new TM benchmark, BUSTM, that explores the use of transastior unstructured
mesh applications. We present two distinct scenarios thiE8 BV can emulate: CFD
applications and Monte Carlo applications. In both casesfind that conflicts for
the transactions are infrequent; however, correct execuéquires synchronization of
some sort. Our initial performance results found that th¥$fplementation outper-
formed the equivalent OpenMP implementation withi t i cal regions by 10%, a
significant result considering that STM has relatively hinferhead. Although we are
continuing to explore these performance results with oiffié meshes, we expect that
the emulated scientific applications will benefit substiytfrom HTM support.

Acknowledgements

The authors wish to thank John Gyllenhaal and Scott FutralldfL for numerous
fruitful discussions on this subject and for support of thigk. The second author also
acknowledges past financial support from Rockwell Inteomat, Boeing, and Hyper-
comp, Inc. in developing the unstructured mesh bookkeeysegl in the experiments,
and from Icon Consulting and IBM in writing the BUSTM code.

Part of this work was performed under the auspices of the Department of En-
ergy by Lawrence Livermore National Laboratory under CacttDEAC52-07NA27344
(LLNL-CONF-422888).

IBM, the IBM logo, and ibm.com are trademarks or registeradémarks of Inter-
national Business Machines Corp., registered in manydigtions worldwide. Other
product and service names might be trademarks of IBM or abepanies. A current
list of IBM trademarks is available on the Web at "Copyrightdarademark informa-
tion” at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are tradenfi&ts Microsystems,
Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the EdiStates, other coun-
tries, or both.

Other brands and names are the property of their respeatiners.

References

1. B. L. Bihari. Experiments Using IBM's Software Transacial Memory Compiler.
http://spscicomp.org/ScicomP15/slides/user/bihdfj.play 2009.

o

. IBM. Concurrent Building Block. http://sourceforgethojects/amino-cbbs/, May 2008.
. IBM. IBM XL C/C++ for Transactional Memory for AlX, V0.9 Laguage Extensions and

Users Guide. http://dl.alphaworks.ibm.com/technolskilestm/xlcstm-whitepaper.pdf, May
2008.

. J.R. Larus and R. Rajwafransactional Memory (Synthesis Lectures on Computer Architec-

ture). Morgan & Claypool Publishers, January 2007.

. M. Milovanovi¢, R. Ferrer, O. Unsal, A. Cristal, X. Marall, E. Ayguadé, J. Labarta, and

M. Valero. Transactional Memory and OpenMP. Pnoc. of the 3rd Intl. Workshop on
OpenMP: Practical Programming Model for the Multi-Core Era, pages 37-53, Beijing,
China, June 2007. LNCS 4935.

. OpenMP ARB. OpenMP Application Program Interface, v, 81@y 2008.
. M. Wong. IBM XL C/C++ for Transactional Memory for AIX. 2@ http://www-

949.ibm.com/software/rational/cafe/blogs/ccpp-palahulticore/2009/08/11/ibms-
alphaworks-software-transactional-memory-compilarg 2009.

. B. Woongki, C.C. Minh, M. Trautmann, C. Kozyrakis, and Hukbtun. The OpenTM Trans-

actional Application Programming Interface. BACT' 07: Proceedings of the 16th Inter-
national Conference on Parallel Architec-ture and Compilation Techniques, pages 376-587,
Washington, DC, USA, June 2007. IEEE Computer Society.

. P. Wu, M. Michael, C. von Praun, T. Nakaike, R. BordawekirCain, C. Cascaval, S. Chat-

terjee, S. Chiras, R. Hou, M. Mergen, X. Shen, M. Spear, H. ahgy and K. Wang. Compiler
and Runtime Techniques for Software Transactional Memapgin@zation. InJournal of
Concurrency and Computation: Practice and Experience, pages 7-23, Chichester, UK, July
2009. IEEE Computer Society.

