
LLNL-CONF-422888

A Case for Including
Transactions in OpenMP

M. Wong, B. L. Bihari, B. R. de Supinski, P. Wu,
M. Michael, Y. Liu, W. Chen

January 26, 2010

International Workshop on OpenMP
Tsukuba, Japan
June 14, 2010 through June 16, 2010

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

A Case for Including Transactions in OpenMP

Michael Wong1, Barna L. Bihari2, Bronis R. de Supinski2,
Peng Wu1, Maged Michael1, Yan Liu1, Wang Chen1

1 IBM Corporation2 Lawrence Livermore National Laboratory
{michaelw,yanliu,wdchen}@ca.ibm.com

{bihari1,bronis}@llnl.gov
{pengwu,magedm}@us.ibm.com

Abstract. Transactional Memory (TM) has received significant attention recently
as a mechanism to reduce the complexity of shared memory programming. We
explore the potential of TM to improve OpenMP applications.We combine a
software TM (STM) system to support transactions with an OpenMP implemen-
tation to start thread teams and provide task and loop-levelparallelization. We
apply this system to two application scenarios that reflect realistic TM use cases.
Our results with this system demonstrate that even with the relatively high over-
heads of STM, transactions can outperform OpenMP critical sections by 10%.
Overall, our study demonstrates that extending OpenMP to include transactions
would ease programming effort while allowing improved performance.

1 Introduction

Many have observed that Transactional Memory (TM) could simplify shared memory
programming substantially by simply marking a group of loadand store instructions to
execute atomically, rather than using locks or other synchronization techniques. TM’s
promise of easier program understanding, along with composability and liveness guar-
antees has led to a fad status for TM. As a result, extensions to OpenMP [6] to include
transactions have received interest in the OpenMP community [5,8]. However, we must
first determine whether TM can be more than just a research toybefore these extensions
can receive serious consideration.

Two implementation strategies are available for TM. Hardware TM (HTM) modifies
the memory system, typically through modifications to the L1cache, to support atomic
execution of groups of memory instructions. Software Transactional Memory (TM)
provides similar functionality without using special hardware. In this paper, we combine
an STM system that provides the transaction primitive with an OpenMP implementation
that provides all other shared memory functionality. The combination is natural since
the TM system relies on compiler directives that are similarto OpenMP’s syntax.

The remainder of this paper is organized as follows. We present our STM system in
Section2. We then review its integration with a production-quality OpenMP compiler
in Section3. In Section4, we present performance results for two application scenarios,
which demonstrate that transactions can improve performance by 10% over a produc-
tion quality critical section implementation even with therelatively high overhead of
STM. Overall, we conclude that extending OpenMP to include transactions would re-
duce programming effort while supporting potential performance gains.

2 The IBM XL STM Compiler

Generally, an STM system uses a runtime system to manage all transactional states.
This runtime annotates reads and writes for version controland conflict detection. If two
transactions conflict, (i. e., the write set of one intersects with the read set of the other),
the system may delay or abort and retry one of them. The systemvalidates the reads at
the end of the transaction (i. e., any loaded values have not changed). The system then
commits the writes (i. e., stores them to their actual memorylocations) if it does not
detect any conflicts. Compared to HTM, STM does not require special hardware while
enabling scalability of inherently concurrent workloads at the cost of higher overhead,
particularly when no conflicts occur.

IBM released a freely downloadable STM compiler under alphaWorksR© site [7]
based on its production IBMR© XL C/C++ Enterprise Edition for AIXR©, Version 9.0,
called IBM XL C/C++ for Transactional Memory for AIX in 2008.This implementation
includes standard and debugging versions of the runtime libraries. Fig.1 shows the TM
features [4] of our XL STM compiler.

Fig. 1.Transactional features of XL STM
Fig. 2.Project Components of our STM that
rely on OpenMP

Our STM uses a block-based mapping of shared memory locations, which enables
support for different languages, unlike the alternative object-based mapping. The sys-
tem buffers writes, which are written to the global address space only when the transac-
tion is guaranteed to commit. When a transaction writes to a stack location or privately
allocated memory that has not yet escaped the thread (i.e., amemory location that is not
yet visible to other threads), the write does not induce any conflict. These contention-
free writes do not require write-barriers, but may need to bememory checkpointed if
the system must recover the overwritten values upon a retry [9].

Using data-flow analysis, the compiler can exclude writes tomost contention-free
locations from memory checkpointing. Basically, the writerequires no checkpointing if
the variable or heap location is private to a transactional lexical scope (e.g., transactional
block or procedure), that is, the variable is not live upon entry and exit to the lexical

scope. However, contention-free writes often have uses after exiting the transaction. In
this case, we can still avoid checkpointing if the location is not live upon entry to the
transactional scope the write to the location dominates thetransaction end. The latter
property guarantees that the location will always be re-defined upon retry and, thus,
we do not need to recover the original value. Finally, uninitialized locations upon a
transaction entry require no checkpointing. This also includes the case when a heap
location is allocated within the transaction.

The read barrier does not write to shared meta-data. The checkpoint barrier records
the original value for writes to contention-free locations. The compiler implements re-
tries withsetjmp andlongjmp. In addition, our STM system focuses on instrumen-
tation statistics to identify STM bottlenecks in applications, thus avoiding time consum-
ing and error-prone manual instrumentation.

We use C to implement the runtime system, the source code of which is freely avail-
able as part of an Open Source Amino project [2]. This runtime supports exploration
of a range of TM scenarios (HTM, STM and hardware acceleratedSTM) in multiple
languages including C, C++ and JavaTM as Fig.2 shows. The current implementation
assumesweak isolation: accesses to a particular shared location always occur within
transactions (atransactional location) or never within them. Further, it assumes that
transactions only include any revocable operations without side effects (e. g., no file
I/O) and, hence, we can safely undo and retry them.

Our runtime uses metadata to synchronize transactional access to shared memory
locations. We associate a metadata entry with transactional location. This entry includes
a version number for tracking updates of the location and a lock to protect updates
of it. A thread can write to memory only if it holds the associated metadata lock. A
transaction increments the version number when it releasesthe metadata lock, which
guarantees that the data has not changed if the version number is unchanged. Thus, a
transaction can read a metadata version number and then the associated data and then
later check the version number to determine if the data is unchanged.

Our runtime maintains information for each thread that includes its read set, write
set, statistics, status, level of nesting, and lists of mallocs, frees and modified local
variables. The read set information is the metadata location and version number. The
write set information contains the address, value, size andmetadata location.

When a thread begins a transaction, it sets its transactional status data. It also reads
some global data in some configurations. The thread then records the current version
number before it reads a transactional location. In some configurations, the thread also
checks the consistency of the read set. For transactional writes, the thread records the
target address and the value to be written. In some configurations, it acquires the cor-
responding metadata lock; otherwise, it acquires metadatalocks for all locations in its
write set at the end of the transaction. When the transactionends, the thread then val-
idates the consistency of its read set. If that fails, the thread aborts the transaction by
releasing the metadata locks and jumping to the beginning ofthe transaction. Other-
wise, the thread writes the values to the addresses in its write set, releases the metadata
locks and then resets its transactional status data.

The STM runtime can collect statistics related to a program’s inherent transac-
tional characteristics (i. e., independent of our STM implementation), such as trans-

Statistic Description

READ ONLY COMMITS Number of committed transactions with no writes
READ WRITE COMMITS Number of committed transactions with writes
TOTAL COMMITS Number of successfully committed transactions
TOTAL RETRIES Number of retried transactions
AVG RETRIESPERTXN Average number of retries per committed transaction
MAX NESTING Maximum level of transaction nesting
READ SET SIZES Unique locations in read sets of committed transactions
WRITE SET SIZES Unique locations in write sets of committed transactions
AVG READ SET SIZE Average number of unique locations in read set per transaction
AVG WRITE SET SIZE: Average number of unique locations in write set per transaction
READ SET MAX SIZE Maximum number of unique locations in a read set
WRITE SET MAX SIZE Maximum number of unique locations in a write set
READ LIST MAX SIZE Maximum number of locations in a read list
WRITE LIST MAX SIZE Maximum number of locations in a write list
DUPLICATE READS Number of transactional reads of locations previously

read in the same transaction
PCT DUPLICATE READS Percentage of transactional reads of locations previously

read in the same transaction
DUPLICATE WRITES Number of transactional writes to locations previously

written in the same transaction
PCT DUPLICATE WRITES Percentage of transactional writes to locations previously

written in the same transaction
NUM SILENT WRITES Number of transactional writes of already stored value
PCT SILENT WRITES Percentage of transactional writes of already stored value
READ AFTER WRITE MATCHES Number of transactional reads that follow a transactional

write of the same location in the same transaction
PCT READ AFTER WRITE Percentage of transactional reads that follow a transactional

write to the same location in the same transaction
NUM MALLOCS Number of calls tomalloc inside transactions
NUM FREES Number of calls tofree inside transactions
NUM FREEPRIVATE Number of calls tofree blocks allocated in that transaction

Table 1.STM runtime statistics

action sizes. It can also track implementation specific data, such as metadata locks ac-
quired. We collate these statistics by static transactions(i. e., source code file name
and first line number). We also generate aggregate statistics. Collecting these statistics
incurs a significant performance cost but can guide optimization of TM programs.

The program must callstm stats out in order to generate the statistics files.
We allow multiple calls tostm stats out. The statistics can be inconsistent if the
call occurs while any transactions are active since the statistics can change during the
snapshot. We recommend only callingstm stats out when only the main thread is
active, which ensures the statistics are consistent. Thestats.h file has a full list of
the statistics; we provide some of the most important ones inTable1.

We have ported our STM runtime to several platforms including AIX and Linux R©

on IBM PowerPCR©, LinuxX86, and LinuxX8664, in 32 or 64bit mode. IBM XL

C/C++ for Transactional Memory for AIX generates code for this interface for pro-
grams that use the high-level interface that we discuss in the next section. Other com-
pilers could also use our open source STM runtime for this interface.

3 IBM STM Compiler design

3.1 Syntax

Programs define transactions for our STM compiler [3] through a simple directive:

1 #pragma tm atomic [d e f a u l t (t r a n s| n o t r a n s)]
2 {
3

4 }

in whichdefault(trans|notrans) defines the default behavior of memory ref-
erenced in the lexical scope of the transactional region. Ifthe user specifiesdefault(trans)
then the compiler translates references to shared variables in the transactional region to
STM runtime calls, often referred to as STM read-write-barriers, that ensure the cor-
rectness of the execution. If the user specifiesdefault(notrans) then the compiler
does not translate any memory references in the region to STMread-write-barriers. The
default clause is optional; the default value istrans.

The code region encapsulated within our transactional construct is basically a struc-
tured block although the block cannot include any OpenMP constructs. We impose this
restriction since otherwise an aborted transaction could lead to an inconsistent state for
the OpenMP runtime library, such as acquiring a lock that it will never release.

Fig. 3 shows an example transactional region within an OpenMP parallel region.
The compiler insertsstm begin() andstm end() around the transactional region.
These calls allow our STM runtime to monitor all shared memory access within the
transactional region in order to ensure the transaction executes correctly.

3.2 Special Transactional Function Attributes

Users must annotate functions that are called within transactional regions so that the
compiler can correctly transform memory references withinthe function to STM run-
time barrier calls. We provide two function attributes for this purpose:tm func and
tm func notrans. The user specifiesattribute ((tm func)) with a func-
tion declaration to indicate that a transactional region can call the function so the com-
piler must transform its memory references to STM runtime calls. The user specifies
attribute ((tm func notrans))with a function declaration to indicate that

transactional region can call the function but the compilershould not transform its mem-
ory accesses to STM runtime calls. Neither attribute is required if transactional regions
cannot call the function. Fig.4 shows an annotated function declaration.

Our transactional function attributes reflect two key design factors. First, they al-
low function calls within transactions without requiring the user to make major code
modifications. Second, the attributes allow the compiler tocheck that the function call
conforms to our restriction that transactional regions cannot include any OpenMP con-
structs. The compiler issues a warning for any unannotated functions that are called

1 i n t b [2 5] , j ;
2 i n t i nde x [5] = {4 ,5 ,675 ,22 ,34} ;
3

4 f o r (j = 0 ; j <25; j ++)
5 b [j] = 0 ;
6

7 #pragma omp parallel f o r
8 {
9 f o r (j =0 ; j <25; j ++)

10 {
11 . . .
12

13 #pragma tm atomic
14 {
15 b [i nde x [j]] = . . . ;
16 }
17 }
18 }
19 }

Fig. 3.Sample code of using #pragma tm atomic

1 i n t foo (i n t sum) a t t r i b u t e ((tm func)) ;
2 i n t foo (i n t sum)
3 {
4 re turn ++sum ;
5 }

Fig. 4.Sample code of annotating function attribute to a function.

within a transactional region. The programmer must ensure that the call is safe with
the default behavior that does not transform memory references to STM runtime calls.
These attributes are only needed for STM; HTM implementations do not require them.

4 Experimental Results

We provide results that evaluate the potential for TM to benefit scientific computing.
In particular, we consider the opportunities to use transactions in unstructured-mesh
multi-physics simulation applications, which are widely used because of their geometric
and architectural flexibility. These applications typically have many compute-intensive
loops with complicated memory referencing patterns. Although these applications usu-
ally exhibit good scalability with MPI-based domain-decomposition, the trend toward
systems built with multicore nodes motivates explorationsof moving them to a hy-
brid OpenMP/MPI programming model. However, many users view the complexity of
shared memory programming in general, and of ensuring data race freedom in particu-
lar, as a significant barrier. Transactions directly address this concern.

While no production HTM implementations currently exist, STM provides a mecha-
nism to experiment with using transactions within these applications. Thus, we have im-
plemented a Benchmark for Unstructured-mesh Software Transactional Memory (BUSTM).
BUSTM provides a simple code in which to explore the programming benefits of trans-

1 #pragma tm atomic d e f a u l t (t r a n s)
2 {
3 g r a d i e n t [c e l l n o 1] += i n c r ;
4 g r a d i e n t [c e l l n o 2] −= i n c r ;
5 }

Fig. 5.Gradients accumulated within transaction incompute cell

actions and any performance implications as it mimics the algorithms and behavior of
real unstructured mesh applications.

When we construct a benchmark of an application scenario, wemust ensure that it
captures the salient features of the target application space. Since we primarily focus on
race conditions and the potential benefits of TM, we artificially generate memory con-
flicts in either a deterministic or random yet still controllable manner. That is, even with
random conflicts, we can configure their probabilities indirectly through input param-
eters. The benchmark also must include rigorous error checking for example problems
with known or independently computable answers to ensure that the threaded experi-
ments (with or without transactions) execute correctly.

BUSTM meets these requirements and uses realistic unstructured mesh connectiv-
ity. It mimics the complex and flexible bookkeeping common tounstructured mesh
applications. BUSTM can handle unstructured cells with an arbitrary number of faces.
We have already used a wide range of cell types, including triangular prisms, hexahedra,
tetrahedra and pyramids. Like real unstructures mesh applications, BUSTM cross ref-
erences the basic unstructured mesh building blocks ofnodes, facesandcellsin almost
all combinations, so thatindirect indexing pervades the code. This indirect addressing
leads to extensive synchronization requirements to use shared memory programming,
which is exactly when TM should provide benefits. The remainder of this section ex-
plores the benefits of our STM implementation with both deterministic and probabilistic
conflicts.

4.1 Deterministic Conflicts

Domain decomposition based on MPI message passing has provided successful par-
allelization of conservative finite volume schemes on unstructured grids. Our careful
evaluation of their typical memory access patterns, however, found that conflicts may
occur as cells are updated during the traversal of face-based loops. Although these con-
flicts rarely occur in practice, we cannot assume they do not occur. Since ignoring
them would lead to incorrect results, we must protect them with some synchroniza-
tion method. However, locks have relatively high overhead when conflicts are unlikely.
Thus, TM may provide substantial performance benefits for this scenario.

Short of a full-blown CFD solver, we simulate face-by-face flux computations with
thenumerical divergence of a mesh-function that we define on an unstructured mesh in
a cell-centered sense. This emulation computes the gradient of a function. If the function
is constant, its gradient and, thus, divergence is zero. Fig. 5 shows the transaction.

Since real finite-volume codes have significant computationper face, BUSTM loops
over the faces, as Fig.6 shows. Memory conflicts can occur if different faces update the

1 #pragma omp parallel f o r
2 f o r (i =0 ; i < max face ; i ++){
3 l e f t n e i g h b o r = l e f t c e l l s [i] ;
4 r i g h t n e i g h b o r = r i g h t c e l l s [i] ;
5 c o m p u t e c e l l (i nc r , l e f t n e i g h b o r) ; / / face increments l e f t c e l l
6 c o m p u t e c e l l (i nc r , r i g h t n e i g h b o r) ; / / face increments r i g h t c e l l
7 }

Fig. 6.Threaded face loop that callscompute cell

same cell. They only actually occur, resulting in incorrectexecution, ifcompute cell
does not use transactions or other synchronization such as acritical section, and
two updates happen at the same physical time. Thus, the probability of conflicts is ex-
tremely low and many of our experimental runs had no conflicts.

Our experiements use a mesh of 119893 triangular prism cellsarranged as a 2-D
layer of 3-D cells. This mesh has 420060 faces (some quadrilateral, others triangular)
and 123132 nodes. The total number of potential conflicts is fixed with this mesh al-
though the actual number of conflicts varies between runs. Weobserve the number of
resolved conflicts from the statistics available with our STM implementations.

Fig. 7 shows the number of conflicts resolved in each of 1000 runs is always less
than ten and frequently zero. Fig.8 shows the sum of the number of conflicts that our
STM implementation resolves over 1000 runs versus the totalnumber of errors com-
mitted (without STM) over 1000 runs for a range of thread counts. We observe many
fewer STM retries than errors with the unsynchronized code.However, both exhibit
similar trends with increasing thread counts and rarely occur relative to the number of
potential conflicts. Despite the relatively small mesh (which increases the conflict prob-
ability), only 0.00042% of all cell updates incurred conflicts on 16 threads. No conflicts
occur with just two threads (or one, which is clearly expected), which makes debugging
the unsynchronized code more difficult. The number of conflicts increases significantly
with the number of threads, with conflicts being fairly likely with 16 threads.

0 500 1000
0

5

10

Run number

N
um

be
r

of
 c

on
fli

ct
s

Conflicts detected

 1 thread
2 threads
4 threads
8 threads
16 threads

Fig. 7.Resovled deterministic conflicts

0 10 20
0

500

1000

1500

2000

Number of threads

N
um

be
r

of
 c

on
fli

ct
s/

er
ro

rs

Conflicts and errors

without STM
with STM

Fig. 8.Total conflicts or errors

1 #pragma tm atomic d e f a u l t (t r a n s)
2 {
3 c e l l c o u n t e r [c e l l n o] ++;
4 }

Fig. 9.Cell counter incremented within transaction ofmark cell.

4.2 Probabilistic Conflicts

Monte Carlo applications are another common type of scientific application in which
memory conflicts potentially occur with threaded implementations. In these applica-
tions, randomly released particles travel through a computational mesh and increment a
cell-based physical quantity each time they touch a cell. Parallelizing over the particles
results in almost embarassingly parallel loops, except forthe race condition produced
by two particles (belonging to two different threads) trying to update the same cell at the
same time. Although these memory conflicts are unlikely, some will occur with enough
particles and threads.

We exploit the unstructured bookkeeping in BUSTM in order toemulate the be-
havior of particles without implementing a real Monte Carloapplication. Instead of
particles that travel along a straight line through space, they travel from cell to cell via
the neighbor information available for each adjacent cell.Thus, our benchmark has two
levels of randomness. First, we randomly select the cell in which the particle is “born”.
Second, we randomly choose the face that the particle exits the current cell.

We make sure the number of particles is independent of the number of cells. After
being created, or “born,” each particle is “alive” as long asit stays within the computa-
tional domain (i. e., the face through which it exits the current cell is an interior face).
If that randomly selected face is a boundary face, it exits the domain and completes
its path. This scheme results in a wide variance in the particle path lengths; some will
have a short lifespan while others stay active within the domain for a long time. This
property, which is consistent with real Monte Carlo simulations, limits scalability.

Fig. 9 shows the simple transaction that safely increments a single cell-based in-
teger. Fig.10 shows the loop that distributes the particles across the threads. As dis-
cussed above, each randomly generated particle moves through the mesh until it ex-
its the domain. We also increment a separate counter for eachparticle so that we
can compute the total number of touches without concern for potential conflicts as
cell counter∗particle counter. This check usually fails if we do not use
any synchronization for themark cell calls.

Our probabilistic experiments use the same triangular prism mesh as the determin-
istics ones and we report conflict statistics observed by ourSTM implementation. We
performed 100 runs, using 12000 random particles (10% of thenumber of cells) during
each run. Fig.11 shows a much higher number of conflicts than in the deterministic
case. The conflicts are fairly consistent for a given thread count and appear almost lin-
early proportional to that count. We observe the opposite trend from the deterministic
case between the total number of STM resolved conflicts and the total number of unsyn-
chronized errors for this probabilistic test, as Fig.12 shows. We find that STM incurs

1 #pragma omp parallel f o r
2 f o r (i =0 ; i<m a x p a r t i c l e s ; i ++){
3 n e x t c e l l = rand () ;
4 whi le (i n s i d e){
5 m a r k c e l l (n e x t c e l l) ; / / p a r t i c l e increments c e l l s
6 n e x t f a c e = rand () ;
7 n e x t c e l l = ne ighbo r (n e x tf a c e) ;
8 i f (n e x t c e l l < 0) i n s i d e = 0 ;
9 }

10 }

Fig. 10.Threaded particle loop that callsmark cell

0 50 100 150
0

0.5

1

1.5

2

2.5x 10
4

Run number

N
um

be
r

of
 c

on
fli

ct
s

Conflicts detected

1 thread
2 threads
4 threads
8 threads
16 threads

Fig. 11.Resolved probabilistic conflicts

0 5 10 15 20
0

0.5

1

1.5

2

2.5x 10
6

Number of threads

N
um

be
r

of
 c

on
fli

ct
s/

er
ro

rs

Conflicts and errors

without STM
with STM

Fig. 12.Total conflicts or errors

many more conflicts, sometimes by an order of magnitude. While we are still investi-
gating this discrepancy, the much heavier computational load imposed by the frequent
invocation of a random number generator may cause it. Nonetheless, the total number
of resolved conflicts and committed errors is still small compared to the number of up-
dates. For example, the conflict probability is only 0.009% on this relatively small mesh
with 16 threads.

While the deterministic and probabilistic algorithms represent very different numer-
ical algorithms and in their relationships of resolved conflicts to errors, they also have
similarities. In both cases we have low conflict probabilities (much less than 0.01%)
and both use the same unstructured mesh. Indeed, the resultsconfirm our conjecture
that the algorithms are well suited to transactions since conflicts rarely occur. We can
observe reasonably good performance even with STM and expect higher performance
with HTM since conflict resolution is generally the dominantcost with TM. Lock based
implementations, on the other hand, would suffer much more overhead. Preliminary
timing results that compare our STM implementations to onesthat use the OpenMP
critical construct indicate that STM provides about a 10% performance advantage
despite the relatively large overheads of STM [1].

5 Conclusions and Future work

We have presented the design and implementation of a software transactional memory
system. Our system combines an open source runtime with modifications to the pro-
duction IBM R© XL C/C++ Enterprise Edition for AIXR©, Version 9.0 compiler. This
system uses OpenMP to generate threads and parallelize applications. Transactions de-
noted by a simple directive serve as an alternative to OpenMPsynchronization. Users
also must annotate declarations of any functions accessed within a transaction. These
annotations would be unnecessary with HTM support since they direct the compiler to
transform memory accesses to STM primitives.

We evaluate the efficacy of TM for scientific computing. In particular, we develop
a new TM benchmark, BUSTM, that explores the use of transactions for unstructured
mesh applications. We present two distinct scenarios that BUSTM can emulate: CFD
applications and Monte Carlo applications. In both cases, we find that conflicts for
the transactions are infrequent; however, correct execution requires synchronization of
some sort. Our initial performance results found that the STM implementation outper-
formed the equivalent OpenMP implementation withcritical regions by 10%, a
significant result considering that STM has relatively highoverhead. Although we are
continuing to explore these performance results with different meshes, we expect that
the emulated scientific applications will benefit substantially from HTM support.

Acknowledgements

The authors wish to thank John Gyllenhaal and Scott Futral ofLLNL for numerous
fruitful discussions on this subject and for support of thiswork. The second author also
acknowledges past financial support from Rockwell International, Boeing, and Hyper-
comp, Inc. in developing the unstructured mesh bookkeepingused in the experiments,
and from Icon Consulting and IBM in writing the BUSTM code.

Part of this work was performed under the auspices of the U.S.Department of En-
ergy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344
(LLNL-CONF-422888).

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of Inter-
national Business Machines Corp., registered in many jurisdictions worldwide. Other
product and service names might be trademarks of IBM or othercompanies. A current
list of IBM trademarks is available on the Web at ”Copyright and trademark informa-
tion” at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarksof Sun Microsystems,
Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other coun-
tries, or both.

Other brands and names are the property of their respective owners.

References

1. B. L. Bihari. Experiments Using IBM’s Software Transactional Memory Compiler.
http://spscicomp.org/ScicomP15/slides/user/bihari.pdf, May 2009.

2. IBM. Concurrent Building Block. http://sourceforge.net/projects/amino-cbbs/, May 2008.
3. IBM. IBM XL C/C++ for Transactional Memory for AIX, V0.9 Language Extensions and

Users Guide. http://dl.alphaworks.ibm.com/technologies/xlcstm/xlcstm-whitepaper.pdf, May
2008.

4. J.R. Larus and R. Rajwar.Transactional Memory (Synthesis Lectures on Computer Architec-
ture). Morgan & Claypool Publishers, January 2007.

5. M. Milovanović, R. Ferrer, O. Unsal, A. Cristal, X. Martorell, E. Ayguadé, J. Labarta, and
M. Valero. Transactional Memory and OpenMP. InProc. of the 3rd Intl. Workshop on
OpenMP: Practical Programming Model for the Multi-Core Era, pages 37–53, Beijing,
China, June 2007. LNCS 4935.

6. OpenMP ARB. OpenMP Application Program Interface, v. 3.0, May 2008.
7. M. Wong. IBM XL C/C++ for Transactional Memory for AIX. 2008. http://www-

949.ibm.com/software/rational/cafe/blogs/ccpp-parallel-multicore/2009/08/11/ibms-
alphaworks-software-transactional-memory-compiler, Aug 2009.

8. B. Woongki, C.C. Minh, M. Trautmann, C. Kozyrakis, and K. Olukotun. The OpenTM Trans-
actional Application Programming Interface. InPACT’07: Proceedings of the 16th Inter-
national Conference on Parallel Architec-ture and Compilation Techniques, pages 376–587,
Washington, DC, USA, June 2007. IEEE Computer Society.

9. P. Wu, M. Michael, C. von Praun, T. Nakaike, R. Bordawekar,H. Cain, C. Cascaval, S. Chat-
terjee, S. Chiras, R. Hou, M. Mergen, X. Shen, M. Spear, H. Y. Wang, and K. Wang. Compiler
and Runtime Techniques for Software Transactional Memory Optimization. InJournal of
Concurrency and Computation: Practice and Experience, pages 7–23, Chichester, UK, July
2009. IEEE Computer Society.

