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ABSTRACT

The application of fundamental option pricing models (OPMs), such as the binomial and the Black-Scholes
models, to problems in information technology (IT) investment decision making have been the subject of
some debate in the last few years.  Prior research, for example, has made the case that pricing “ real options”
in real world operational and strategic settings offers the potential for useful insights in the evaluation of
irreversible investments under uncertainty.  However, most authors in the IS literature have made their cases
using ill ustrative, rather than actual real world examples, and have always concluded with caveats and
questions for future research about the applicabilit y of such methods in practice.  This paper makes three
important contributions in this context: (1) it provides a formal theoretical grounding for the validity of the
Black-Scholes option pricing model in the context of the spectrum of capital budgeting methods that might
be employed to assess IT investments; (2) it shows why the assumptions of both the Black-Scholes and the
binomial option pricing models place constraints on the range of IT investment situations that one can
evaluate that are similar to those implied by traditional capital budgeting methods such as discounted cash
flow analysis; and (3) it presents the first application of the Black-Scholes model that uses a real world
business situation involving IT as its test bed.  Our application focuses on an analysis of the timing of the
deployment of point-of-sale (POS) debit services by the Yankee 24 shared electronic banking network of
New England.  This application enables us to make the case for the generalizabilit y of the approach we
discuss to four IT investment settings.  
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1.  INTRODUCTION

Recent research in the Information Systems (IS) literature (e.g., Clemons, 1991; Dos Santos, 1991;
Kambil et al., 1993; Kumar, 1996; Chalasani, Jha and Sulli van, 1997) has recognized the importance
of utili zing the theory of irreversible investment under uncertainty (Dixit and Pindyck, 1994) to
emphasize the option-like characteristics of information technology (IT) project investments.  A
project embeds a real option (e.g., Sick, 1990; Nichols, 1994; Trigeorgis, 1995 and 1996) when it
offers management the opportunity to take some future action (such as abandoning, deferring, or
scaling up the project) in response to events occurring within the firm and its business environment. 
Yet, in spite of this new interest, littl e work published in the IS literature addresses the problem of
evaluating such "real options" in practice.  Moreover, various authors have expressed a number of
concerns related to the eff icacy of applying option pricing theory to IT investments.

The field of Finance has developed a variety of option pricing models (OPMs), with the
fundamental ones being the binomial and the Black-Scholes model option pricing models. Because
these models were originally developed to evaluate options on securities traded in the financial
markets (e.g., European and American put and call options), they make certain assumptions that more
naturally apply to options on traded assets.  Over time, these models and their extensions have also
been used in a variety of evaluative settings involving capital budgeting investments embedding real
options (e.g., Kogut and Kulatilaka, 1994; and Baldwin and Clark, 1994).  In this context, however,
the validity of these models is often questioned: the criticisms primarily focus on whether one can
analyze non-traded assets using models that were formulated to evaluate assets that are traded in a
financial market.

The Black-Scholes model is especially interesting in this regard.  Although there exists a general
perception among IS researchers that OPMs, and the Black-Scholes model in particular, may not be
applicable in IT capital budgeting due to their theoretical basis and key assumptions (Kauffman et al.,
1993, p. 588), our reading of the relevant literature in Finance suggests a different view -- one that we
develop fully in this research note. This paper makes three important contributions in this context:
(1) it provides a formal theoretical grounding for the validity of the Black-Scholes option pricing
model in the context of the spectrum of capital budgeting methods that might be employed to
assess IT investments; (2) it shows why the assumptions of both the Black-Scholes and the
binomial option pricing models place constraints on the range of IT investment situations that one
can model that are similar to those implied by traditional capital budgeting methods such as
discounted cash flow analysis; and (3) it presents the first application of the Black-Scholes model
that uses a real world business situation involving IT as its test bed.  Our application focuses on an
analysis of the timing of the deployment of point-of-sale (POS) debit services by the Yankee 24
shared electronic banking network of New England, and enables us to make the case for the
generalizabilit y of the approach we discuss.

2.  IT INVESTMENT OPTIONS: MODELING ISSUES

The application of option pricing models to evaluate projects has been reported by researchers and
practitioners. Baldwin and Clark (1994) examined how the design of software creates options for
rapid deployment of future software products development when software is reused.  Kogut and
Kulatilaka (1994) used OPMs to gauge the value of production flexibilit y in world-wide
manufacturing operations affected by foreign exchange rate movements.  And, Nichols (1994), in an
interview with Judy Lewent, then chief financial off icer of Merck & Co., the pharmaceutical
manufacturer, discusses how OPMs are used to evaluate corporate acquisitions that promote
pharmaceutical R&D.  We next introduce the IT investment problem that Yankee 24 faced, and
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explain the situational specifics that prompt us to frame Yankee’s situation in terms of techniques
from the literature on irreversible investment under uncertainty, instead of the usual capital budgeting
techniques associated with net present value analysis.

2.1.  The Yankee 24 Timing Option

Yankee 24 was formed in 1984 to provide electronic banking network services to its more than 200
member institutions.  It charged a one-time membership fee and a transaction fee for all electronic
banking transactions serviced by the Yankee switch.  In 1987, Richard P. Yanak, Yankee's president,
evaluated the business case for providing POS debit card network to member firms, in addition to its
traditional business of switching automated teller machine (ATM ) transactions.

Entry as early as 1987 into the POS debit market had broad appeal.  It would have generated
revenues and created entry barriers for potential network competitors.  Additionally, there was good
potential for future revenues, e.g., the possibilit y that state governments would start using electronic
payments to deliver welfare benefits was one indication of how large the revenues could grow. 
However, at this time the POS debit card business involved considerable uncertainty.  For example,
the perceived environmental risk was substantial; the expected revenues in New England might be
low, if consumer acceptance and retailer adoption were as slow as what had been observed in
Cali fornia earlier in the decade.  Retailer adoption was perceived to be especially critical: the state of
Massachusetts, representing about 50% of the total New England market, regulated the adoption of
electronic banking services by non-banking industry participants.  A second source of uncertainty
derived from Yankee's lack of maturity as an ATM service provider.  The network, whose ATM
service infrastructure would subsequently grow to serve more than 700 firms, did not have all of the
network resources it needed to support a new business in place at the time.  Time would tell whether
growth in the ATM business would provide the complementary network technology assets to make
the costs of entry into the POS debit market acceptable.

Yanak’s strategic vision of the growth potential of Yankee's electronic banking services
encompassed growth outside the limited realm of ATM banking.  He also recognized that Yankee had
the option to wait to achieve the best timing for entry; in his view, this was three years later.  Thus,
from Yanak's perspective, a decision to enter the debit card business was a matter of timing.  Yankee
could afford to wait because there were no credible threats in its immediate markets: the only possible
competitor at the time, the New York Cash Exchange (NYCE), a joint venture of several New York
City-based commercial banks, had no presence in the ATM or the POS debit markets in New
England.  In this sense, Yanak believed that Yankee 24 could operate as a near monopoly in New
England -- at least until NYCE or some other competitor chose to enter the POS debit market.  By
waiting, Yanak reasoned, uncertainties concerning the acceptance of POS debit services in Yankee's
markets and the viabilit y of additional irreversible network infrastructure investment would be
resolved.  In turn, this would enable Yanak to learn more about the potential returns to such
investment.  For example, the acceptance rate might increase as consumers learned about the
convenience and value of POS debit services.  Simultaneously, Yankee could take actions to lower its
market entry risk, e.g., by lobbying for changes in Massachusetts' statutes to promote POS debit
adoption.  Naturally, by waiting Yankee would lose some revenues.  More importantly, waiting too
long could lead to market share gains by competitors who had no prior presence in the market. 

With these concerns in mind, Yanak posed two key questions: how long should Yankee 24 wait to
enter the POS debit card market?  Could quantitative analysis bear out his intended approach, given
Yankee’s overall strategy and the prevaili ng competitive situation?
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2.2.  Modeling Issues

Two alternative approaches to modeling Yankee’s decision problem are discounted cash flow (DCF)
analysis and option pricing analysis.   The second approach is relevant in this instance because of
Yankee’s abilit y to defer entry: it possessed a deferral option.  This option existed because, at the
time, Yankee had a near monopoly right to invest in the New England market for POS debit services.
(More precisely, Yankee operated in a duopoly, but it expected to hold a “ leadership” position for at
least the next three years, due to the lack of other credible threats.)   NYCE, for example, did not have
suff icient infrastructure in New England to enter the POS debit market.  More importantly, NYCE did
not have the installed base of member banks that Yankee had in New England.  These banks were the
ones responsible for planning and aggressively promoting POS debit services to retailers who would
use the services to garner additional income. Yanak felt that NYCE would need at least three years to
develop these "resources."   Yankee’s abilit y to flexibly defer this roll out can be viewed as an
American call option.  In financial market terms, a call option confers upon the owner the right, but
not the obligation, to purchase a security at future date at a price that is established when the option is
created.  American options are those which can be exercised on or before their expiration date (unlike
European options which can be exercised only on their expiration date).

How can NPV and option pricing be used to answer the question Yanak faced?  We identify four
reasons why these approaches will t reat the issues differently.  First, in Yankee’s case, it is important
to recognize that the distribution of the expected returns on the POS debit project probably is not
symmetric.  (See Figure 1A.)   In NPV, an implicit way to account for this asymmetric distribution is
to calculate the NPV for the worst, most likely and best case scenarios, while using one risk-adjusted
discount rate that applies equally well to all these scenarios.  By contrast, option pricing is able to
explicitly model this asymmetric distribution; it allows us to describe the uncertain project revenues in
terms of their expected value and their potential variabilit y (or standard deviation).

------ INSERT FIGURE 1 ABOUT HERE ------

Second, it is important to understand that the NPV and option pricing perspectives differ in the
way they treat Yankee’s abilit y to defer POS debit roll out.   (See Figure 1B.)  The thick line on the
left graph represents the possible investment value based on the usual NPV decision rule:  “Don’t
invest if NPV is negative.”  This line is also the classical “kinked” payoff profile that is often seen in
ill ustrations of simple call option analysis; it coincides with the value line of a call option, but only if
the option were one that matures immediately (i.e., this would have been the case if Yankee’s had a
“now-or-never” type of investment).  Thus, NPV can be said to recognize the value of embedded
deferral options, but only when the options mature immediately.  Overall , if NPV were to allow the
explicit modeling of asymmetric returns, following the decision rule implied by both the NPV and the
option pricing perspectives shifts the distribution of the expected returns to the right.

Third, an option to flexibly defer investment for some time T>0 has a larger expected value than a
now-or-never type of investment.  Recall that by waiting Yankee hopes to get additional information
to make a more informed investment decision, assuming that the value of this information could
exceed any possible loss occurring during a reasonable deferral period (e.g., loss of market share to
competition).  Hence, at any moment Yankee can choose to continue to wait and thus hold the option
(i.e., as an investment opportunity), CT, or implement the operational project, A–X  (i.e., as an
exercised option that yields revenues with the value A and results in real costs, X).  (See Figure 1C.)
Yankee should be indifferent between these two alternatives only when the information available at
time T indicates that A is expected to be higher than the point where the two curves become tangent in
the left graph.
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Fourth, it is necessary to balance the impacts of obtaining valuable information to inform decision
making and foregoing revenues from an implemented project.  When a firm holds an American IT
investment option and deferral means losing some revenues, waiting until the time that the option
expires to make the investment can be suboptimal.  (See Figure 1D.)  Assume we are at time t1. 
Further waiting until time t2, with t1<t2<T, affects investment value, A–X, such that:

• A declines due to the foregone revenues for not implementing the project;

• the marginal value of waiting from time t1 to t2, to resolve uncertainties about the size of
expected revenues may be uncertain (but it generally declines); and, 

• the initial investment cost, X, will become smaller in present value terms.

So, depending on the magnitude of these value flows, the value of the option exercised at time t1
might be higher than if it were exercised at t2.  Following the logic that Yankee can either hold the
option or the operational project, option pricing analysis implies that it is optimal to invest at time t*,
0≤ t*≤T, when the deferral option takes on its maximum value.

Our discussion to this point suggests major differences between the two modeling approaches. 
The most basic of them is that unless an attempt is made to explicitly model asymmetric returns (as
we explained above), NPV will always undervalue.  In other words, blindly following the NPV>0
decision rule of DCF analysis can be incorrect; for example, a positive NPV at t0 would advise that
the investment be made now; the value of waiting to implement a project, which can change
dramatically under different market conditions, is simply not considered.  And, even if one were to
modify the standard NPV rule to “ invest at time t, such that NPV is maximized (assuming it is
positive),” applying this rule would still i nvolve diff iculties: DCF analysis provides no way to
incorporate new information that arrives, to update estimates of expected revenues; and, calculating
NPV for different points in time requires the analyst to estimate a different discount rate for each.

Option pricing analysis avoids these diff iculties by using models that take into account the fact
that changes in revenue expectations will occur as time passes.  No parameter adjustments (e.g.,
discount rate or the expected value of revenues) are needed.  Instead, these models incorporate this
kind of information by explicitly considering the asymmetric distribution of expected revenues, and
their perceived variabilit y.  This is accomplished with a model parameter that is referred to as
volatilit y in the Finance literature; it reflects the variance of the expected rate of return on the project.
 Aside from this important “ease of use” issue, applying option pricing concepts is attractive because
of the conceptual clarity it brings to the analysis.  Yanak's experience suggested that the high potential
variance of expected revenues from a POS debit roll out would be the key element in making the right
decision; he was far less concerned about the mean value of the distribution of potential outcomes.  In
this sense, option pricing seemed just right: it provides an analytical foundation for structuring
expectations about the firm's future business opportunities in a way that matches the thinking of a
senior management decision maker.

2.3.  Fundamental Option Pr icing Models (OPMs)

We next present the basics of the two models most commonly used to price financial options: the
binomial and the Black-Scholes models.  These are also the most fundamental option pricing models
that can be used in capital budgeting analyses of IT investments.  For clarity in exposition, we first
discuss these models in the context of European options; models for American options can be derived
from them.  We employ the following notation:

C — value of a call option;

A — value of option's underlying risky asset (stated in terms of the present value of expected
revenues from the operational project);
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µ — rate of return expected on  A (growth rate of A over time);

σ — volatilit y, the standard deviation of the expected rate of return on A;1

X — option's exercise price (cost of converting the investment opportunity into the option's
underlying asset, i.e., the operational project);

rf  — the risk-free interest rate (usually implemented as  the rate of return on U.S. Treasury Bill s);

r — 1+rf;

T — option's time to maturity or expiration (i.e., the maximum length of the deferral period).

The binomial model (Cox and Rubinstein, 1985, pp. 171-178) assumes that A follows a binomial
distribution.  Starting at time zero, in one time period ∆t, A may rise to uA with probabilit y q or fall to
dA with probabilit y 1−q, where d<1, u>1, and d<r<u.  The terminal value of a call option on A which
matures in ∆t is Cu=max[0,uA–X] or Cd=max[0,dA–X] with probabiliti es q and 1−q, respectively.  By
setting p≡(r–d)/(u–d), the current value of the call option can be written as:

Equation 1 can be applied to determine the two possible values of the call option at time 1, Cu and Cd,
if the option's underlying asset is uA or dA at time 1, respectively.  Similarly, Equation 1 can be
applied to an option that matures in n time periods (where ∆t=T/n).  The price of a call option
calculated using the binomial model, denoted by CBN, can be written as the implicit function
CBN=CBN(A,X,T,n,u,d,p,r).

In the Black-Scholes model (Hull , 1993, p. 224), the value of a call option is its discounted

expected terminal value, E[CT].  The current value of a call option is given by C e Cr T
T

f= − E[ ] , where

e r Tf−  is the present value factor for risk-neutral investors.2  A risk-neutral investor is indifferent
between an investment with a certain rate of return and an investment with an uncertain rate of return
whose expected value matches that of the investment with the certain rate of return.  Given that
CT=max[0,AT–X], and assuming that AT is log-normally distributed, it can be shown that:

where N() is the cumulative normal distribution.  Call option value, C, calculated using the Black-
Scholes model, denoted CBS, can also be written as the implicit function CBS=CBS(A,σ,X,T,rf).

2.4.  Preliminary Comparative Analysis of  the Binomial and Black-Scholes Models

The next part of our discussion has two objectives.  First, we intend to compare the binomial and the
Black-Scholes models in terms of their major assumptions and strengths. (See Table 1.) For example,
an apparent strength of Black-Scholes is its computational simplicity; it has a closed-form solution. 
This, in turn, makes it easy to conduct sensitivity analysis using partial derivatives. With the Black-
Scholes model, however, what facilit ates the derivation of a closed-form solution is two explicit

                                                
1 Of all the parameters in this model, clearly σ  will be the most diff icult to estimate in a real  option pricing context.  A
and X must be estimated for NPV as well , and µ , as it turns out, does not have to be estimated in our analysis.  We also
avoid having to estimate a discount rate, in lieu of rf , which can be readily observed in the financial markets for a US
government debt security of appropriate maturity. 
2 We will shortly explain that risk neutrality need not be assumed for the results to apply in our analysis.
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assumptions regarding the distribution of  A and the investors' attitude towards risk.  Although it may
seem that these assumptions are strict, we will show that they have reasonable basis of interpretation,
and that they typically apply to the binomial model as well .  Second, we will show that although each
model involves explicit assumptions that apply to options on traded assets, these assumptions do not
prevent use of the models for options on non-traded assets.

2.4.1. Distribution of the Present Value of the Project's Expected Revenues

Whereas the binomial model assumes that A follows a binomial distribution, the Black-Scholes model
assumes that A is lognormally distributed.  Both assumptions are meant to reflect the fact that the
value of the underlying asset, A, can increase to infinity, but only fall to zero. Does the binomial
distribution offer a better description of A’s behavior? One must recognize that even theorists view
the binomial diffusion process as an approximation to another process.  The reason has to do with the
fact that determining u and d is a diff icult empirical problem because asset prices rarely follow the
classical multiplicative binomial process. Hull (1993, p. 202) points out a common way to choose
these parameters:

This choice of parameters assumes that, for a small ∆t, the expected return on A and its variance will
be µ∆t and σ2∆t, respectively.  With this choice of u, d and p, as n→∞ and ∆t→0, A is assumed to
follow the same distribution assumed by the Black-Scholes model — a geometric Brownian motion
process: ∆A/A=µ∆t+σε∆t, where ∆A/A is normally distributed with mean µT and variance σ2T (ε is a
random drawing from a standardized normal distribution).   As ∆t→0 and n→∞, the binomial
diffusion process will converge to the lognormal diffusion process.

2.4.2.  Investors' Risk Attitude

The Black-Scholes model assumes that investors are risk-neutral.3  This assumption eliminates the
need to estimate the opportunity cost of capital of the option, δC.  This cannot be specified because the
risk of an option dynamically changes as the value of A changes and as time passes (Brealey and
Myers, 1988, p. 485).  It enables present value discounting of the expected payoffs from the option by
rf, the continuously compounded risk-free rate of return, independent of risk preferences or market
equili brium considerations.  This means that the Black-Scholes model implicitly requires that A be
traded and that no arbitrage opportunities exist.  Moreover, this also means that, under risk-neutral
valuation, the analyst's experience is prevented from entering the analysis, unlike in other capital
budgeting techniques, where the chosen cost of capital reflects what the analyst perceives to be the
balance between the risk and reward characteristics of the project.

------ INSERT TABLE 1 ABOUT HERE ------

Does Black-Scholes calculate the "correct" option price?  After all , we want to find how much an
IT investment option is worth to a specific decisionmaker, not the entire market.  Also, we know that
many IT projects cannot be readily traded.  This concern also arises with the binomial model.  It

                                                
3 Hull (1993, p. 222) provides another perspective on the assumption of risk-neutrality.  He explains that the solution of Black-
Scholes is valid in all worlds, not just a risk-neutral one.  If anything, this strengthens the case we will make.  When we move to
a risk-averse world, two things happen that always offset each other's effects exactly: µ, the expected growth rate in A, changes,
and δC, the discount rate used for payoffs from the option, changes.  This argument cannot be shown formally, because there is
no analytical or practical expression to price the opportunity cost of capital of an option, δC.  Moreover, in the spirit of Hull 's
argument, Sick (1990, p. 22) showed that the pricing formulas underlying the Black-Scholes model can be alternatively derived
when the decisionmaker is assumed to be risk-averse.  Although Sick's argument applies to options on traded assets, our
upcoming discussion argues that it should hold for options on non-traded assets as well.

.),/()(,/1, ea    dudap     eud     eu ttt ∆∆−∆ =−−==== µσσ
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implicitly assumes risk neutrality because Equation 1 discounts any payoffs from the option by r
=1+rf.  The fact that Equation 1 involves probabilit y p, not q, means that investors will all agree about
the relationship between C, A and r, just as if A were traded.  Note that p≡(r–d)/(u–d) is the risk-
neutral counterpart of the subjective probabilit y q≡(δC–d)/u–d) perceived by a decisionmaker. 
Finally, requiring that d<r<u is akin to assuming no arbitrage opportunities (e.g., when r<d<u, an
investor can borrow money at r and invest in A to make a riskless profit).

The Finance literature offers several strong arguments in support of our case for using the Black-
Scholes model to price IT investment options.  Mason and Merton (1985) suggest that, in capital
budgeting, irrespective of whether a project is traded, we seek to determine what the project cash
flows would be worth if they were traded (i.e., as their contribution to the firm's market value4). 
According to this argument, a firm should seek to avoid having the analyst's subjectivity enter the
analysis so as to prevent arbitrage opportunities.  No matter though: over time project valuation biases
resulting from analyst subjectivity would lead to arbitrage opportunities that the market will "correct".
 To see this point, consider the following two possibiliti es.  First, if the analyst uses a cost of capital
that is too high, the project's calculated NPV will be lower than it should be.  This phenomenon leads
a firm to underinvest, and thus fail to exploit its potential to yield higher returns.  Because the firm
will t hen "trade" for less than it is worth, eventually there will be some economic agent who would be
inclined to purchase the firm.  Alternately, if the analyst uses too low a cost of capital, the firm would
end up investing in projects that don't produce profits consistent with the opportunity costs of capital
invested elsewhere.  If this occurs on a widespread basis within a firm, it is doomed to failure in the
marketplace. 

In summary, our preliminary comparative analysis shows two things.  First, the major
assumptions of the Black-Scholes model are based on a reasonable interpretation of the underlying
economics of capital budgeting in a competitive market.  Second, these assumptions are comparable
to the ones made by the binomial model.  The second observation means that CBN would converge to
CBS under the following conditions (Cox and Rubinstein, 1985, p. 205). In practice, the binomial
model sets a in Equation 3 to be a=er∆t because of the risk-neutrality assumption.  Thus, we can write
CBN=CBN(A,σ,X,T,rf) with u=u(σ,r), d=d(u), p=p(u,d,rf), r=r(rf), and n is an arbitrary value in our
control.  Also, when the period of time, T, is long enough (one year or more), choosing n to be large
enough (where ∆t=T/n, n=300 or so) ensures that the multiplicative binomial process would converge
to the Black-Scholes lognormal diffusion process.

In light of this discussion, we see no disabling conceptual diff iculties associated with our selection
of the Black-Scholes model over the binomial model for analyzing the case of Yankee 24's decision to
roll out POS debit services.5  Black- Scholes offers both computational simplicity and strong support
for sensitivity analysis, as we will shortly ill ustrate.  Because its solution is a closed-form expression,
one can analyze changing expectations about the key variables in a way that matches the analyst's
intuition about the likely impact of a changing environment on profitabilit y estimates that form the
basis for rational decision making.

                                                
4 This is akin to the case where the investing firm is publicly held, and if its managers want their decisions to reflect the
shareholders' interests, they should try to maximize the firm's market value.
5 An alternative approach is suggested by the work of Dixit and Pindyck (1994).  They model investment decisions that involve
options for the firm using a dynamic programming approach to identify critical points at which it would be optimal to exercise
an option (i.e., undertake a project).  Though their analysis would be implemented differently than what we do here, it would
rely on many of the same conceptual preliminaries from financial economics.  In fact, it would lead to an equivalent solution,
under the assumption of risk-neutrality (p. 152).
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3.  APPLYING THE BLACK-SCHOLES MODEL

In Yankee 24’s case, using the standard Black-Scholes model is not possible because Yankee
possessed an American option on a dividend paying asset.  In this instance, the reader can think of
dividends as the revenues lost during the time that Yankee deferred POS debit market entry. 
However, Black-Scholes is the basis for several models for pricing American options; some of these
are analytical in nature and some are procedural, enabling an analyst to establish option value (see
Hull , 1993, p. 235).  Of these models, we chose to use a procedural model called Black’s
approximation for its simplicity and its relative accuracy in computing option value.6  We next review
this model and then discuss the results of its application to Yankee’s decision problem.

3.1.  Pr icing Yankee’s Option Using Black’s Approximation

Black’s approximation assumes the existence of an American call option that matures at time T, where
the underlying asset pays a dividend D at time t, 0<t<T.  To find whether an early exercise at time t is
more profitable, this procedure requires using the standard Black-Scholes to calculate the prices of
European options that mature at T and t, CT  and Ct, and then setting the American price to be the
higher of these two.  Of course, to compute Ct, the value of the underlying asset used in Equation 2
must be A less the foregone dividend, D, discounted for the period T–t.  This procedure can also be
applied when there are a number of ex-dividend dates.

To analyze the investment decision Yankee faced in 1987, we used interview data from senior
managers to arrive at specific assumptions concerning the parameters needed by the Black-Scholes
model.  Based on the earlier POS debit experience in Cali fornia and Yanak’s opinions, our analysis
will assume that the New England market was estimated to be 25% the size of the Cali fornia market
for POS debit transactions.  Another concern was to estimate the range of potential revenues on the
high and the low end, the distribution of revenues (i.e., normal, or skewed to the high or the low side),
the perceived variance or volatilit y (σ) of potential revenues (if there was any), and the uncertainties
that might be resolved and thus contribute to σ.  Interview questions were geared towards revealing
the various estimates, assuming that the actual entry would occur sometime between 1987 and 1990. 
The interview process revealed an estimate for this key model parameter, σ, of between 50% to
100%.7   The estimates were based on crucial uncertainties about when the state of Massachusetts,
representing one-half of the overall market potential, would deregulate POS debit entry by firms
outside the state.  For the present analysis, we chose to use the low end estimate, which may
underestimate the actual uncertainties that Yankee faced with Massachusetts state law.

Using Black-Scholes, we calculated the option value for different exercise dates ranging from
zero to four years at intervals of one-half year, utili zing the parameter values and assumptions shown
in Table 2.  Table 2 also shows results that were computed by applying Black’s approximation.  The
results can be summarized as follows:

                                                
6 Hull (1993, p. 236) reports on the results of an empirical study which compared three models used to price American
options on dividend paying stocks: the standard Black-Scholes, Black’s approximation, and the analytical model of Roll ,
Whaley, and Gesk.  These models produced pricing errors with means of 2.15%, 1.48%, and 1.08%, respectively.
7 Our interviewees, as one might expect for people who are not trained to think in terms of analyzing variances, had some
diff iculty in expressing the variance of the expected value of project returns as a single number, σ.  Recognizing their
diff iculties, we asked them to identify “break points” that were associated with a given percent market size for  New
England compared to California, by determining  for  what level of variance the project deferral option, C, would prompt
Yankee to enter the POS debit market.  As this process ensued, it enabled us to settle on reasonable values for σ. It also
enabled our interviewees to firm up their beliefs about the expected size of the New England market at 25% of California’s
in a comparable adoption time frame.
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• The value of  the project investment option , CT, exercised at maturity, T=4, is $65,300, as
shown in Row CT ;

• The value of the option, Ct , maturing at time t<T, is greater than its value at maturity for
deferrals between 1 1/2 to 3 1/2 years, as shown in Row Ct.   (Ct is calculated based on values
for  At that reflect the loss of revenues and passage of time.)

• The value of the deferral option, Ct , reaches its maximum for a deferral of three years at
$152,955, as shown in bold in Row max(Ct, CT).

------ INSERT TABEL 2 ABOUT HERE ------

These results suggest two conclusions, assuming that the New England market size is 25% of
Cali fornia's and σ  is as high as 50%.  First, Yankee is better off by not waiting to implement the POS
debit project for four years, so long as the roll out occurs after the end of the first year (CT  < Ct, for 1
< t < 4 ).  Second, the optimal time to defer is three years (C3 = $152,955 > Ct , for all t except 3).  
The logic behind these conclusions is clear. Recall from Section 2.2 and Figure 1 that, for certain
expected values of A, the values of the investment opportunity and the operational project were equal.
 As a result, a risk-neutral firm would be indifferent between holding either.  By the same token, profit
maximizing decisions taken by the firm’s management on behalf of its shareholders would prompt it
to convert an investment opportunity into an operational project at that point in time at which the
value of the investment opportunity -- in this case, the deferral option -- takes on its maximum value. 

3.2.  Sensitivity Analysis Using Black-Scholes Derivatives

Sensitivity analysis aims at showing how the results of an analysis change as its underlying
assumptions (expressed in terms of the model's parameters) change.  First derivative analysis in the
context of  the Black-Scholes model is much used in the investment arena for analyzing the sensitivity
of the value of a financial option to changes in the variables.  Vega, delta, xi, theta and rho – the
“Greeks” or “Fraternity Row” as they are often referred to by practitioners -- provide the investment
analyst with a ready means to discover a financial option’s sensitivity to changes in the time to
expiration, increases and decreases in the assessed market value of  the underlying security, and
changes in the exercise price, risk-free rate or the historical price volatilit y of the underlying asset:

As shown in Equation 3, the derivatives are computed with respect to the value of the call option, for
volatilit y, the value of the underlying project asset, the cost to exercise the option, the time decay of
the option as expiration nears, and changes in the risk-free rate, respectively.   In addition to providing
the analyst with a reading on the sensitivity of an option position to these parameters, option
derivative analysis is also used to devise hedging strategies that ensure a position is immunized
against movements or changes in the parameters that create market or instrument risk.

These sensitivity analysis methods are similarly applicable to IT capital budgeting problems.
 The expected value of a project that embeds an option may change as time passes, based on changes
in the exogenous environment of the project, the managerially controllable environment, and so on.  
(In the real world, we observe that IBM OS/2-based computing infrastructures have become less
attractive as time has passed, and Microsoft’s Windows NT has gained installed base in the world of
client-server computing.  As a result, the value of IS projects involving phased roll out of an OS/2
platform, or of applications that depend on OS/2 for crucial support, has been negatively affected over
time.)  To apply these ideas in Yankee’s case, let us assume that the volatilit y of Yankee's POS
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debit-related revenues drops by a certain percentage (e.g., because Yankee is excluded from entering
the Massachusetts market for regulatory reasons).  Would entry still make sense?  Or, what if the time
horizon for deferral were viewed as possibly being longer than four years, based on a reassessment of
NYCE’s inabilit y to put the critical resources in place to enable a competitive POS debit service
launch?  When Black-Scholes is used, we can answer many such questions easily with derivative
analysis, without having to reestimate any variables or recompute any models.

      To answer the first of these two questions, let us consider the first derivative of the Black-Scholes
call option value with respect to volatilit y, vega =Λ= ∂C/∂σ = A√T N'(d1).  Assume that A=$387,166
for a New England market 25% the size of Cali fornia's, with X=$400,000, σ=50%, and t=3.  The vega
derivative results are shown in Table 2, which we examined in the prior subsection.  This relationship
tells us that a 1% change in σ, the variance of the expected revenues from the IT project, causes NPV
to change by Λ.  (Recall that an increase in σ is valuable because of A's asymmetric nature -- the
present value of the project's expected revenues may go 1% higher than before, yet still go no lower
than zero.)  In Yankee's case, Λ=218,284 indicates that an increase in σ from 50% to 51% increases
the value of the deferred investment option by $2,183.  This figure can be viewed as an upper limit on
the amount of money Yankee should be willi ng to spend (e.g., on lobbying for regulatory changes in
Massachusetts) to increase σ by 1%.  It also points out that increasing uncertainty makes the option to
defer entry more valuable.  Table 2 includes the other derivative results for comparison purposes for
the reader.

     A final feature of Black-Scholes analysis is that one can analytically derive values for volatilit y that
are consistent with a given valuation of an investment opportunity.  Finance practitioners know
volatilit y in this guise as implied volatilit y, σ': it is the variance of the underlying asset that is
consistent with (or implied by) the other variables, including the observed market value of the option.
 In theory, this enables an analyst to determine a break-even point for any combination of option
parameters.  Thus, assuming that σ is unknown and that all other parameters, including C, are given,
one can compute the Black-Scholes implied volatilit y.  This is similar conceptually to computing the
internal rate of return (IRR) in the context of NPV analysis.

3.3.  Retrospective Results Analysis

The results of our option pricing analysis are supportive of the decision Yankee's senior executive
made at the time.  Yankee deferred entry into the POS debit market for three years, which was later
recognized to have been just about optimal. However, Yanak’s decision had to be taken without the
kind of supportive quantitative guidance that powerful analytical techniques such as option pricing
can provide. Instead, he admitted to us that there was more “seat-of-the-pants” decision making than
he wished there had been.  First, Yanak believed that uncertainty about the acceptance rate of POS
debit services declined significantly, based on results from POS debit roll out undertaken in other
parts of the country.  For example, by 1989 dramatic growth had begun to occur in Cali fornia's POS
debit market.  Second, Yankee's ATM switching business had reached a mature stage, freeing up
resources to push POS debit services.  Third, and most important, however, was an event in mid-1989
that had been previously unexpected. The Food Marketing Institute, a supermarket industry research
and lobbying organization, released a study that clearly demonstrated to retailers the benefits of POS
debit transactions over other payment forms -- the average transaction cost per sale was 0.82% of the
sale value for POS debit, in contrast to 1.2% for checks and 2.1% for cash.  The results of this study
became the primary tool in educating retailers. With the turn of events in New England, good fortune
played a central role in the outcome of Yankee’s implementation of POS debit.  With option pricing
as an analytical tool to evaluate the project, for the first time, the content of the quantitative analysis
paralleled the content of Yanak’s unassisted reckoning of what to do: the idea of getting the timing
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right, subject to a range of volatile and uncontrollable future events, had now been included in the
formal analysis.

By mid-1990 Yankee had its first commitment from one of the largest regional supermarket
chains, Hanoford Brothers, which decided to pilot the POS debit services in nine supermarkets in
Maine and New Hampshire.  Yankee's second major POS debit sign-up was New England's largest
convenience store chain, Stop & Shop, which chose to pilot POS debit in Rhode Island.  Yankee
hoped that this pilot would help it to persuade legislators that POS debit was a service in the public
interest, and lead to a change of the law in Massachusetts. Since that time, the growth in Yankee's
POS debit business was phenomenal, from no POS debit terminals in 1990 to a total of about 27,000
terminals in early 1993.

4.  BREADTH OF APPLICATION OF OPMS

Although we have ill ustrated the strengths of the Black-Scholes model in a realistic and practical IT
investment evaluation case, we have not discussed some critical issues that can threaten the validity of
our analysis.  The decision to apply OPMs, as well as our selection of the binomial versus the
Black-Scholes model, may appear straightforward to the reader, based on our discussion of the issues
in Section 2.  In practice, however, one must understand the implications of several other issues.
Table 3 shows how these issues relate to implicit assumptions OPMs make concerning the option
being evaluated.

------ INSERT TABEL 3 ABOUT HERE ------

4.1.  Assumptions about the Distr ibution of the Present Value of the Project's Expected
Revenues

Implicit assumptions regarding the behavior and distribution of A raise two important issues.  First,
what happens when A can become negative?  This issue was not relevant in Yankee's case; it would
have been if, for example, below a certain volume of POS debit transactions the cost of processing a
transaction were to exceed the revenues produced by that transaction.  When A may become negative,
both fundamental OPMs cannot be applied.  However, there are alternative models that involve
variations of Black-Scholes and the binomial models that will work.  For example, there is a variation
of Black-Scholes that assumes that A is normally distributed.  A second method based on the binomial
model assumes that A follows an additive binomial process whereby A can go up to A+u or down to
A+d (Sick, 1990, p. 36).  We caution the reader that these models can provide only a "gross"
approximation of the option price.

What happens when A's distribution does not follow the lognormality distribution?  Hull (1993,
pp. 436-438) distinguishes between several such situations and characterizes the resulting Black-
Scholes pricing biases qualitatively, in terms of the option being slightly over- or under-priced. 
Quantifying these biases requires exact modeling of A's distribution.  This observation also applies to
the binomial model when ∆t is suff iciently small and the parameters in Equation 3 are such that the
multiplicative binomial diffusion process converges to the lognormal process.  Otherwise, there is no
way to characterize the resulting price biases in the binomial model -- not even qualitatively.  This
should be of concern when the calculated option  price is small i n absolute terms, something which
could wrongly suggest undertaking an investment.

4.2.  Assumptions about Volatili ty

Two questions arise with respect to the size and behavior of A's volatilit y. What happens when σ is
small?  This question is critical in cases where use of the binomial model is considered.  When σ is
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small , parameter p (expressed as the ratio (r–d)/(u–d)) in Equations 1 and 3 can exceed one and lose
its probabili stic meaning (Hull , 1993, p. 351).  For example, in Yankee's case, the binomial model
would be impossible to use with values of σ smaller than 12%.   In this case, option pricing analysis
would fail to identify cases where the value of a deferred POS debit entry calculated as C would be
large enough to justify a positive investment decision.

And, what happens when σ is not constant? We consider the most likely case to be one in which σ
declines over time when T, the option li fe, is significant relative to the li fe of the underlying project. 
This behavior of σ could also be relevant when the market stops growing quickly, after an initial
period of explosive growth  (e.g., massive initial adoption of some new IT, followed by a rapid slow
down when bugs or integration problems are discovered).  As volatilit y is lost, and the expected, but
uncertain outcome becomes known to the analyst, option pricing becomes less attractive.

4.3.  Assumptions about the Option's Exercise Time

Can the fundamental OPMs find a t≤T for which it is optimal to exercise an option?  In Yankee's case,
since C is not linear with respect to T (and ignoring the competition for a moment), Yanak faced an
especially interesting question: How long could Yankee defer POS debit entry before starting to
observe a diminishing “ investment value”?

The answer to these questions relates to the abilit y to calculate the value of the option, C, on or
before its expiration.  With the standard Black-Scholes model, which computes C assuming that the
option can be exercised only upon its expiration, finding t would require repeating the option pricing
analysis for various entry points within the time frame of T<4 (e.g., 1988, 1989 and 1990 at the
beginning and end of each year), as we did using Black’s approximation.  However, some advanced
variations of Black-Scholes, such as the analytical model developed by McDonald and Siegel (1986),
enable an analyst to determine optimal investment timing (when the model’s underlying assumptions
are met).  The binomial model may also be attractive here because it can easily calculate C on-or-
before expiration.  The mechanism used is to calculate C  for every node in the binomial tree, thereby
allowing the analyst to identify  time t corresponding to a node where C  takes on its maximum value.

4.4.  Assumptions about the Option's Exercise Pr ice

In situations where the exercise price, X, is stochastic -- as it often will be in realistic applications of
option pricing to IT investments -- the binomial model can be readily adapted for the analysis: it
allows the analyst to program the binomial tree to reflect any kind of changes in X that may occur over
time.  Alternately, Margrabe's asset-for-asset exchange model, which Dos Santos (1991) introduced
to the IS literature, deals with this problem in the context of multi -stage IT project investment
analysis, and extends Black-Scholes to handle stochastic exercise prices.  However, applying this
model requires the analyst to develop an understanding of how the underlying asset, A, and the
exercise price, X, are correlated.  Unfortunately, this has proven to be as diff icult an empirical
problem as any we have discussed up to this point in the paper.

For these reasons, we conclude that the binomial model is an attractive alternative for evaluating
IS projects involving options for the firm.  However, it may make more sense to employ
Black-Scholes (or one of its near variants) when the behavior of various option parameters is less
complex.  By contrast, the binomial model's conceptual simplicity is buttressed by the flexibilit y to
allow the analyst to model parameters such as A and σ  by "programming" more complex behaviors
into the binomial tree, for example, to ill ustrate how they evolve over time.
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5.  CONCLUSIONS

A major challenge for IS research lies in making models and theories that were developed in other
academic disciplines usable in IS research and practice.  In this paper, we explored a range of issues
associated with the application of option pricing models to problems in capital budgeting for IT
investment projects.  Though the models and their basis in theory are well known to Finance
academicians, most people who do capital budgeting -- irrespective of their training or the kinds of
projects they typically assess -- are ill -equipped to use option pricing models knowledgeably.  This is
especially true among IS professionals, who have long relied on net present value, simple cost-benefit
analysis, critical success factors and other less-structured techniques to perform their assessments. 
Thus, our goal has been to critically review the case for using option pricing as a basis for IT project
investment analysis and to evaluate its merits in an actual real world business setting.  In the process,
we learned that the binomial, Black-Scholes and the Margrabe models all require different kinds of
information and assumptions than are usually needed to perform traditional capital budgeting analysis
using present value concepts.  But, on the whole, the diff iculties we encountered pose no greater
challenges than when traditional techniques are used.  More importantly, in view of the structure of
many IT projects that involve infrastructure development and wait-and-see deployment opportunities,
it is the logic of option pricing that persuades us – how it can handle getting the timing right, scaling
up or even abandonment, as the organization learns about its business environment with the passage
of time.  The diff iculties that do remain in applying option pricing models (e.g., the restrictions
associated with the assumption of lognormality of the perceived value of the IT project, or the lack of
experience that managers have in estimating the variance of project returns) to IT project assessment
will not be solved by additional Finance research.  Instead, IS researchers must take the lead in
solving them and in better understanding the perceived business value of IT projects.

In closing, we invite the reader/practitioner  to consider the extent to which use of  the Black-
Scholes option pricing model generalizes beyond the case that we describe.  In fact, the Yankee 24
POS debit scenario situation occurs among a number of different classes or kinds of IT investment
situations that we can analyze with these methods.   The key to understanding the IT investment
settings or classes of project investments in which option pricing is worthwhile to use relates to basic
elements of the Black-Scholes model.  For example:

(1)  IT infrastructure investments often are made without any immediate expectation of payback,
however, they can act as a basis for follow on investment that converts investment opportunities
into the option’s underlying asset, the operational IT projects that support a specific business
process which yield measurable revenue.  Some examples of these investments include intranet
and multi -media user interface technologies, financial and operational risk management
technologies and security safeguards, data warehousing, and wireless technical infrastructure.

(2)  Emerging technology investments pose a special challenge for forecasting value payoffs in the
face of uncertain cost, adoption and diffusion.  In this context, the value of the underlying asset –
the project that incorporates the emerging technology – is subject to both changing perceptions of
future costs on the part of the analyst and the marketplace at large. In this case, the analyst’s
interest in reflecting the impact of stochastic cost (uncertain exercise price) is what drives the use
of option pricing. Projects that involve Internet advertising and selli ng, migration to an electronic
market mechanism for transacting, and bets about whether a technical advance will become a
standard in the marketplace are good real world examples.   In each case, the future cost
associated with exercising an option to build on a network, a market mechanism or a standard, is
unknown today.

(3)  Application design prototyping investments also provide significant option value, as Chalasani,
Jha and Sulli van (1997) have observed.  With prototyping, the firm aims to maximize the value
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of an application development project whose value will ultimately be determined by how well it s
functionality can remain in synch with the support needs of a changing business process.   The
value inherent in the underlying asset is of somewhat less interest to the firm than the abilit y to
react: to both adapt and change the application’s functionality as required to remain competitive.
 One can imagine the difference in value that might be obtained by applying option pricing
methods, especially when the application’s requirements specification is subject to significant
change as the project progresses.  Clearly, when there is considerable uncertainty in an
organization about whether an application will be able to “do the job” when it is delivered, or
there is risk aversion on the part of management in making capital investments in IT, efforts to
stage or “chunk” such projects, and monitor their payback over time, is an appropriate approach.8

 From this perspective, much of the value of a prototype project will be in the options that it
offers the firm in the future.  

(4)  Technology-as-product investments represent a fourth class of investments that these methods
can handle well .  When the technology is a core part of a product, issues of level of commitment
and ramp up, timing and roll out, and delay and abandonment must be considered. Here, the
analyst can benefit from framing such choices in the context of option pricing by focusing on
such elements as time remaining to exercise, when the option matures and by tracking the value
of the option to change the course of a project.  Here, so many of the best known stories of our
time about technology-based products come to mind, for example, Otis Elevator and the decision
to re-capture the after-market for its elevator servicing, Chemical Bank’s failure with the Pronto
home banking project, Morgan Bank’s success with RiskMetrics for financial risk management
in international commercial banking, and First Boston Corporation’s decision to create products
and a new company, Seer Technologies, from what had been a major systems infrastructure
building project.

In this paper, we have made the argument that option pricing models can be applied to capital
budgeting decisions involving non-traded information technology assets.  We have discussed a
number of reasons why the discipline of capital budgeting more generally examines asset values as
though the assets were traded, because every firm’s capital budgeting decisions, in the long run, are
subject to market valuation.  This insight opens up a range of new modeling opportunities for project
and information technology investments.  We ill ustrated how the Black-Scholes model can be applied
in the case of a real world IT investment option, where significant uncertainties that are not
appropriately handled using NPV analysis were present.  Yet, much remains to be done if we to are
make sense of the OPMs in the way that Finance professionals do: as a means to evaluate the extent to
which market-sensitive portfolios of financial instruments can be engineered so as to minimize
unacceptable risk.  Perhaps one of the most important next steps in this research stream is to examine
the extent to which option pricing concepts can be applied to gauge the risks associated with the
portfolio of IT projects that make up the IS function in a firm.  This may lead us to a new science of
risk management for the firm’s portfolio of investments in IT, and a new perspective on the business
value of IT for senior executives.
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Figure 1:  Issues in modeling Yankee's decision situation using NPV and option pr icing.

 Investment
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−−X

Possible investment values
that Yankee can “observe” .

Since A can be between 0 and
infinity, it has an asymmetric
probabil ity distribution.
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(A) Expected project returns are asymmetrically distributed.
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The thicker line depicts the investment
values when the NPV decision rule is
followed.  This line matches the value
line of a call option that matures
immediately.

Conceptually, both “views” imply
that the distribution of the expected
investment value shifts to the right
(because all situations involving a
negative NPV are avoided).

(B) NPV and option pricing imply a “right shift” of the expected value function.
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 CT

The value of an option that matures in
time T, C

T
, is greater than that of one

that matures immediately, C0.

This means that the ability to defer
an investment pushes further to the
right the distribution of the expected
investment value.

(C) Now-or-never projects are of lower value than similar projects that offer the opportunity to defer investment.
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For an American option, waiting another
time period might be less beneficial.
Waiting brings more valuable information
as well lowers the investment cost in
present value terms, but it also results in
the loss of revenues.  Depending on which
of these tendencies is larger, the A–X line
might shift upward or downward, and this
could imply that exercising the option
earlier is more profitable.

(D) Optimal option exercise timing balances costs and benefits.

Legend:
A — present value of expected revenues from the operational project (i.e., the value of option's underlying risky asset).
X — cost of converting the investment opportunity into an operational project (i.e., the option's exercise price).
T — maximum time to defer conversion of the investment opportunity into an operational project (i.e., the option's time to expiration).
C — value of a call option to defer the investment.
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Table 1:  Preliminary comparative analysis of  the binomial and Black-Scholes models.

Standard Black-Scholes Standard Binomial

Explicit Assumptions

 A - value of underlying
project

lognormally distr ibuted binomially distr ibuted
(in practice, binomial parameters are typically

chosen assuming that A is lognormally distributed)

 σ - volatilit y of A constant constant

 X - option's exercise price deterministic deterministic

 r - interest rate constant constant

 T - option's life span short-lived (Hull , 1993, p. 380) no-limit

 Existence of market for A  A is traded and no arbitrage
 opportunities exist

 A is traded and no arbitrage
 opportunities exist

Properties

 Solution approach closed-form (analytic)  formula numeric simulation

 Sensitivity analysis using analytic partial derivatives numeric approximation of "partial  derivatives"
(Hull, 1993, p. 341)

Table 3:  In depth comparative analysis of the fundamental OPMs

Standard Black-Scholes Standard Binomial

Implicit Assumptions

A
  * Allowed to become negative

  * Bias when A is not lognormal

 
* Growth-rate (µ) can fall below rf

  * A  pays dividends

no, A∈∈(0,∞∞)

bias can be characterized quali tatively

not allowed

not allowed
(some variations of Black-Scholes allow)

no, A∈∈(0,∞∞)

bias cannot be characterized, not even
quali tatively

not a concern

allowed

σ
  * Can be (very) small

  * Can  be  non-constant (e.g.,
depend on A, diminish over time)

yes

no

no

yes

Properties

Calculates option price on-or-before 
expiration

no
(only on expiration)

yes
(can find optimal exercise time)

Others Computational simplicity conceptual simplicity and flexibility
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