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Introduction. Although several problems of heat flow in composite cylinders have
been studied, all the cases considered treat the heat flow in the radial direction only
[1, 2, 3]. The case of combined radial and axial heat flow in composite cylinders presents
an interesting boundary value problem which has also considerable significance in the
theory of vibrations and propagation of electromagnetic waves [4, 5, 6]. In this paper,
we consider a case of combined radial and axial heat flow in the unsteady state in finite
cylinders composed of two coaxial parts of different materials. The temperature distri-
bution in the cylinder at any instant under the assumed boundary and initial conditions
has been obtained by the use of the Laplace transformation. The procedure is illustrated
by a numerical calculation in a particular case.

The Problem. Composite cylinder made of two different materials, the inner cylinder
0 < r < a and the outer cylinder a < r <b having thermal conductivity and diffusivity
coefficients ex and fc, and e2 and k2 respectively.f Boundary conditions: The flat ends
of the cylinder x = 0 and x = I kept at zero temperature with the outer surface insulated
and perfect thermal contact at r = a between the two coaxial parts. Initially the cylinder
is assumed to be heated to constant unit temperature. Required the temperature dis-
tribution in the cylinder for any time t > 0 (see Fig. 1).
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Fig. 1. Composite cylinder, the inner cylinder having conductivity and diffusivity coefficients et and k1
respectively and the outer c2 and k2.
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fThroughout this article the subscripts 1 and 2 refer to the regions 0 < r < a and a < r < b

respectively.
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Method of solution. The boundary value problem for the temperatures ana u2
in the inner and outer cylinders may be stated as follows:

t - ^

du2 , ( d\2 . 1 du2 . d2u21 . , ,~ = Mtt + + T-i » a<r<b, (2)\dr r dr 3a:/

with the initial conditions

Wi(r, a:, 0) = u2(r, a;, 0) = 1, (3)

and the boundary conditions

ujr, 0, t) = u2(r, 0, t) = 0, (4)

Ui(r, I, t) = u2(r, I, t) = 0, (5)

Ui(a, x, t) = u2(a, x, t), (6)

ex dui(a, x, t)/dr — e2 du2{a, x, t)/dr, (7)

e2 du2(b, x, t)/dr = 0. (8)

We require the temperature functions Ui(r, x, t) and u2(r, x, t) satisfying the equations
from (1) to (8) inclusive.
Let

U,(r, x, s) = I u,(r, x, <)e_s< dtJi(r, x, s) = / Wi(r, x, t)e
•'O

U2(r, x, s) = / u2(r, x, t)e~" dt
Jo

be the Laplace transforms of Ui and u2 . The transforms E/i(r, x, s) and U2(r, x, s) will
then satisfy the equations

d2Ul , 1 §Ul , d2L\ _ ± TT   1 /QN.
dr2 + r dr + dx2 Jfc, 1 fcx' W

d2U2 , 1 d?72 , d2[/2 _ 8_ TT   1_
dr2 + r dr + dx2 Jb, 2 fc2' ( )

and the boundary conditions

Ui(r, 0, s) = U2(r, 0, s) = 0, (11)

Ui(r, I, s) = U2(r, I, s) = 0, (12)

Ui{a, x, s) = U2(a, x, s), (13)

«! dUi(a, x, s)/dr = e2 dU2(a, x, s)/dr, (14)

dU2(b, x, s)/dr = 0. (15)
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In order that U^r, x, s) and U2(r, x, s) may vanish at x = 0 and x = I as required
by the boundary conditions (11) and (12), we expand C/x and U2 as well as the constants
— l/ki and — 1 /k2 on the right hand side of equations (9) and (10) in Fourier sine series

Ui(r, x, s) = 2 Vi»(r, s) sin (rnrx/l), n = 1, 3, 5, • • • ,
n

U2(r, x, s) = V2n(r, s) sin (nirx/l), n = 1, 3, 5, • • • ,
n

~Y = X &i» sin (nirx/l), n = 1, 3, 5, • • • ,

—r = X sin (rnrx/l), n = 1, 3, 5, • • • .

For the sake of brevity, let

a* = s/ki + nV2/Z2 (16)

/32 = s/k2 + n\2/l2 (17)

The radial functions F,„ and V2n now satisfy respectively the equations

d2VltIn i 1 ^ Fjn 21 T7" i ^ln I r*
~ r ~3r a"\ ~c^/ =

dr r dr

These have the solutions

dr2

9 + z ^ - £1 V2n + ^§1 = 0.2" + %)

Fln(r, s) = AJ0(anr) - h,
<*n

V2n{r, s) = BnI0(j3nr) + CnK0(J3nr) - %,

where 70 and 7^0 are respectively the modified Bessel functions of the first and the second
kinds of zeroth order. The constants An , Bn , etc. are now to be determined from the
boundary conditions (13), (14) and (15). Thus we obtain

Ui(r x ^ = j* I" fbin _ &2»\ {hiMK^b) - Ii(l3nb)Ki(l3„a)}Io(ocnr)
n L 2 "V a2 02/ An(s)

i>i„l . W7ra:
 2 sin -y,<*»J t

rr _ V f &2»\ {loiPnrfKjjPnb) - I^fyK^r)}!^
- 2.[_^a2- pj An(s)

(18)

*a)

(19)
nirxsin —,
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where

A„(s) = e2finI0(ana) [I^^K^b) —
(20)

— «1aJ1(«Ba)[/o0311a)iE'1(/8I>6) + I ,(/3n6) Ko(0nd)].

The temperature distribution functions ux(r, x, t) and u2(r, x, t) may be now obtained
from Ui(r, x, s) and U2(r, x, s) by the inversion integrals [7]

1 ry + i<°

w,(r, x, t) = x—. / Ui(r, x, s)e" ds (21)
aTTZ *J *y — i CO

112(r, x, t) = ~ J U2(r, x, s)e" ds (22)

The integrals in (21) and (22) may be expressed as 2iri times the sum of the residues
of the corresponding integrands at their poles. In evaluating the residue of U^r, x, s)
exp (st) it will be noted that the first term in Ui(r, x, s) has got the factor alfinA.Js) in
the denominator. It will be seen further that /?„ = 0 does not give rise to a pole since
the expression remains finite (on account of the singularity of Kx at the origin) as
/3„ —> 0 so that the only poles are those due to an = 0 and A„ = 0. However, the residue
of the first term at an = 0 cancels with that due to the second term and hence the only
significant poles are those of A„ = 0. Similar remarks apply in evaluating the residue
of U2(r, x, s) exp (st). One obtains therefore

, . v"> 4xe2 ki — k2 . nirx
Ui(r, x,t) = 2-i ~/2 n sin ~T

n t /tl/v2 &

{I^jC^KiiPnjb) - J1(j8n,-b)g1(/3n,-a)}/0(ttBi-r) x„(l
t «"^n,Al(Xn,)

(23)

/ a 47r«i ki
u2(r, x, t) = 2- 72 

k2 . nirx
n smI kjk2 I

y* {IoWnj'r)Ki(^„jb) Ii(l3njb)Ko(flnjr)}I1(anjd) x»,<
Y AaX^.)

(24)

where Xni are the zeroes of A„(s) = 0, (n = 1, 3, 5, • ■ •) and anj and pnl are the corre-
sponding values defined by the relations (16) and (17) when s has the values X„,- .

The zeroes of A„ may be obtained from equation (20) by solving the equation

fA Ji(«„a) _ /i(j3„a)gi(|9„6) — L(finb)K,($na)
e2/3„ /0(|8„a) I0(fS„a)Ki(Jinb) +

graphically. The equation (25) may be transformed into a form more suitable for
numerical work by the substitutions

ana = ix, /3„a - iy, (3nb = ipy, (p = b/a),

x and y being related on account of (16) and (17) by the equation

y2 = + nVW/Z2), (26)
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where a" = k,/k2 and 52 = (ki — k2)/ki are dimensionless constants. Introducing an-
other dimensionless constant a'2 = eje2 and transforming the I and K functions into
the corresponding J and Y functions* by the relations

Iv(iz) =

KM = i~'+1[-J,(z) + %Y,(z)]*/ 2,
we obtain in place of (25)

,2 Jx(x) Ji(py)Yi(y) - J Ay) Y,(Py)
" * Ux) V Ji(py)Y0(y) - J0(y)Yl(py)'

Equation (27) has real roots and may be solved by plotting the right and left hand sides
as functions of x. (Note that y on the right hand side is not the corresponding ordinate,
but determined by (26)).

Let
x £n,- j 1, 2, 3, • • • , 7i t- 1, 3, 5j

be the roots of equation (27), the double subscript indicating that £„,• is the jth root
of A„ = 0. Let the corresponding values of ania, etc. be

j $n;(I i(T7];;y , $ni ^ ip&Vnj )

where

uli = %lj + (rnra8/l)2 by equation (26). Then

X», = — (ln,7a2 + nV/t% .
Ui(r, x, t) and u2(r, x, t) can be now expressed in terms of £n, and r?„,- as follows:

Ul(r, x, t) = ^ Znsm^j: F,Apa^ ' ^ (2g)
i /Ci (T n i j ^niVni -L^nK^ni)

u>{r, x, t) = ^ Z n sin , (29)
L K\(J n L j q njVnj ^n\^nj)

where

DJKi) = — (r1 - —W,-)F11(p<7Vni , *„.,)® Vnj'

(30)

_|_ £i& j 1(£nj)F00(p(jrtnj f ar)nj)
® Vni

+ t2bJ0(£ni)Flo(o-77n,' , p<TVni)

+ ^ (l — ^]jo(Li)Foi(^Vni , P<?Vni),
c \ a /

F„ = JJx) Y„(y) - J,(y)Y»(x). (31)
*Ref. [3], Appendix III.
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Verification of the solution.* As the series solution established by the Laplace trans-
form method is purely formal, it is necessary to show that it satisfies all the conditions
of the boundary value problem and is unique. It is obvious that the series solutions (28)
and (29) for Wi(r, x, t) and u2(r, x, t) respectively satisfy the boundary conditions (4)
and (5). It is also seen that the boundary conditions (7) and (8) are satisfied by direct
substitution of the expressions for ux and u2 , and (6) is satisfied on account of the
relation A„(X„,) = 0. It only remains, therefore, to verify that the initial condition, viz.,
Mi = w2 = 1 for t = 0. This is done most conveniently with the contour integral form
of the solutions (21) and (22). Consider ux for example.
For t = 0 we have from (18) and (21)

, 4 . nirx , 4 . mrx 1 + .Ui(r, x, 0) = 2^ — sm ~T~ + —8m T' o~~- / AJaiptj) ds (32)» riT I „ nir I 2m Jy-f„

where

. _ f2(fc1 — k2) /rwrV Ji(ffng)gi(j3,b) — . .
ktk2 \l) t3nalA „(s) ' ^

since

where

Ei . nirx , .— sin —r- = 1 we may write Ui = 1 + i>i
„ nir I

Vl= D - sin ^ ~ f"+"" AnI0(anr) ds. (34)
„ nir I imJy-iso

It thus suffices to show that = 0. The path of integration is a straight line parallel to
the imaginary axis such that all the poles of the integrand lie to the left of this line.
As the poles Xn, are all negative we can choose the path with any y > 0. We shall choose
7 large and positive. Since a2n = s/ki + n2ir 2/I2 and = s/k-2 + n2ir2/l2 it is clear that
| a2 | and | | will be large both for large £ and large r?. Further, if k, > k2 (say) we have
on the path of integration | an \ < | |8n |.

Replacing now the modified Bessel functions in equation (33) for An by their asymp-
totic expansions for large argument and retaining only the dominant terms in the numera-
tor and denominator we find that the integral in (34) becomes, apart from a constant
factor

a\ f+"° e~a" ds« y +

n \r) Jy-ic e20„ + e&n (a„/3„)'i/'i

It may be shown that the absolute value of this expression is less than

2(61 + 62)(r) n2 CXP {"(21, + 212 )(a ~ r)} /„ (P2 + QW)1/2
dt]

Thus the absolute values of the terms of the series in (34) are majorized by

a\1/2 / r , -.r, \ / n2ir2c^-J exp (a ~ r)j X) K(ri) exp j——[2 (a - r) f, (35)

*Ref. [3], Appendix I.



1952] RADIAL AND AXIAL HEAT FLOW IN COMPOSITE CYLINDERS 261

where K(n) is 0(nu) with a fixed finite m- The expression (35) shows that vs can be made
arbitrarily small by making y large. Hence it follows that ih = 0. Similar reasoning shows
that u2 also satisfies the initial condition.

The proof of the uniqueness of the solution is well known and need not be repeated
here.

A numerical example. To illustrate the numerical procedure, the temperature dis-
tribution in a composite cylinder having the following parameters is calculated

ki = 1, k2 = 0.1, €j = 0.4, a 2 = 0.04

a = 1, b — 1.5, I = 10; w,(r, x, 0) = u2(r, x, 0) = 1

Equation (27) leading to the roots £„,■ in this particular case is plotted in Fig. 2.

OS IO 1-5 20 25 30 35 40 45 50

Fig. 2. Graphical solution of the first few roots of the eq. 27 for n = 1, 3, 5.

The first few roots are given in the table below.

j

1.18

1.03

0.75

2.83

2.74

2.52

3.88

3.85

3.78

5.04

4.98

4.88
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Fig. 3. Distribution of temperature in the composite cylinder along the radius at x = 1/4 and x = 21/3
for t = 1 and t = 2 sees.

The distribution of temperature along the radius at x = 21/3 and 1/4. for t = 1 sec. and
2 sees, is plotted in Fig. 3.

Bibliography

1. J. C. Jaeger, Heat conduction in composite circular cylinders, Phil. Mag. (213) 32, 324-335 (1941).
2. L. P. Smith, Heat flow in an infinite solid bounded internally by a cylinder, Jour. App. Phys. (6) 8,

441-448 (1937).
3. H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, Oxford, 1947, Art. 119.
4. W. J. Jacobi, Propagation of sound waves along liquid cylinders, Jour. Acous. Soc. Amer. (2) 21, 120-127

(1949).
5. L. Pincherle, Electromagnetic waves in metal tubes filled longitudinally with two dielectrics, Phys. Rev.

(5,6) 66, 118-130 (1944).
6. R. D. Teasdale and T. J. Higgins, Electromagnetic waves in circular wave guides containing two coaxial

media, Proc. National Electronics Conference (USA), 5, 427-441 (1949).
7. R. V. Churchill, Modern operational methods in engineering, McGraw Hill, 1944, p. 157.


