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Genebanks are responsible for collecting, maintaining, characterizing, documenting, and distributing plant genetic
resources for research, education, and breeding purposes. The rationale for requests of plant materials varies highly
from areas of anthropology, social science, small-holder farmers, the commercial sector, rehabilitation of degraded
systems, all the way to crop improvement and basic research. Matching ‘‘the right’’ accessions to a particular request
is not always a straightforward process especially when genetic resource collections are large and the user does not
already know which accession or even which species they want to study. Some requestors have limited knowledge of
the crop; therefore, they do not know where to begin and thus, initiate the search by consultation with crop curators to
help direct their request to the most suitable germplasm. One way to enhance the use of genebank material and aid in
the selection of genetic resources is to have thoroughly cataloged agronomic, biochemical, genomic, and other traits
linked to genebank accessions. In general, traits of importance to most users include genotypes that thrive under
various biotic and abiotic stresses, morphological traits (color, shape, size of fruits), plant architecture, disease
resistance, nutrient content, yield, and crop specific quality traits. In this review, we discuss methods for linking traits
to genebank accessions, examples of linked traits, and some of the complexities involved, while reinforcing why it is
critical to have well characterized accessions with clear trait data publicly available.
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Introduction

Ex situ collections such as genebanks serve to maintain
genetic diversity for current and future use in crop im-

provement, research, and educational programs. Maintenance
of genetic resources into perpetuity along with making this
material available to researchers worldwide helps ensure food
security for the future. The underlying genetic diversity in the
plant germplasm is the lifeblood of plant breeding, making
conservation of the diversity of major crops critical, and mining
these collections for useful traits.1 However, the major obstacle
to enhancing genebank materials is the lack of adequate eval-
uation data, and thus, the inability to adequately respond to
inquiries for those particular accessions that directly meet the
needs of the user.2 For the majority of germplasm accessions,
only basic passport data (an internationally accepted set of data
that genebankers use to provide minimum necessary informa-
tion about the accessions in their collections, www.genbank.at/
en/national-inventory/database-descriptors/passport-data.html)
is available and data on unique proprieties/traits is generally
lacking.3,4 Even newly acquired material rarely has more in-

formation associated with it other than basic passport informa-
tion. While passport information is important, it often does not
help a user of the genebank to discern which of the thousands of
accessions in a database potentially contain the trait they want.

Collecting trait data is labor intensive, costly, and requires
multiple sites/years to evaluate the magnitude and structure of
genotype-by-environment (GxE) variation in the expression of
a given trait that is influenced by the population and the en-
vironments under study. Environments should cover a wide
range of geographical locations and seasons for better decision
making on which accession performs optimally in varying
environments. A minimum of three locations are needed to
evaluate GxE for most agronomic traits, but more locations
may be needed to fully predict how the trait is influenced by the
environment. Even when extensive phenotyping is performed
with multiple locations evaluated, it is often difficult to display
the information succinctly in a database (dbase) or predict how
the accession would perform in a new environment.

In the Second Report on The State of the World’s Plant
Genetic Resources for Food and Agriculture,5 it was esti-
mated that there are over 1750 genebanks worldwide, holding

1CIP-International Potato Center, Lima, Peru.
2ICARDA-International Center for Agricultural Research in the Dry Areas, Rabat, Morocco.
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*7.4 million accessions; yet, the report claims that only
25%–30% of these accessions are genetically unique. Fur-
thermore, the majority of these collections are securely pre-
served, but largely unused. Even though ex situ collections
have increased over the last few decades in a global effort to
conserve plant genetic resources, the size of these collections
complicate the maintenance and evaluation of these genetic
resources.6 Moreover, the lack of publicly available infor-
mation has resulted in low use of these resources.7

Historically, many of the accessions added to genebank
collections came without information on specific traits or
sometimes even lacking basic passport information. In ad-
dition, some genetic resources were collected by eager sci-
entists on mission trips to find new species or explore new
geographical locations for their crop of interest and some-
times only basic information such as the collecting site or
putative species was noted due to time constraints of the
mission. Also, older plant collection trips did not always
have easy access to GPS locators or GPS applications on
cellular phones. In other cases, material was collected in
open air markets or donated from other collaborators and
arrived in the genebank without any information on its
parentage or unique attributes. Evaluating, accurately scor-
ing, and documenting most traits of agronomic, nutritional,
or other interest often requires several years of intensive
field phenotyping and/or specialized equipment for labo-
ratory measurements along with bona fide documentation
so the information becomes available to the community.

Genebanks are often referred to as the crown jewels in
organizations to which they belong. They house numerous
plants that have been collected worldwide and preserved ex
situ for future generations to utilize. The plants and seeds
maintained in these genebanks hold various genes and traits
that may be the keys to solving current or future biotic and
abiotic challenges that arise, especially important consid-
ering the pressures from a changing climate. Genetic re-
sources, however, are often ‘‘diamonds in the rough’’ and
need further work, such as extensive evaluation to uncover
their true nature or prebreeding efforts, to elucidate their
value. The value of some accessions may never be realized
especially if they remain uncharacterized and unutilized like
many of the holdings in global genebank.

A great example of a ‘‘diamond in the rough’’ is PI
203396 (Arachis hypogaea), which was collected in 1952 in
a market in Porto Alegre, Brazil and added as an accession
to the peanut germplasm collection in the United States
Department of Agriculture (USDA) genebank in Griffin, GA
USA. PI 203396 sat mainly unused except for regular re-
generation cycles needed to keep the seed viable. Yet, this
accession contained gene(s) for resistance to tomato spotted
wilt virus (TSWV) resistance and the incorporation of these
alleles into peanut varieties has now been estimated to have
an economic value of more than $200 million annually.8

Even today, the majority of the peanut varieties released
have some ancestry linked back to PI 203396 or its deriv-
atives to confer TSWV resistance. This diamond in the
rough likely would have never been discovered if it hadn’t
been for TSWV devastating the peanut production in the
Southeast of the United States starting in 1987 with little to
no resistance in commercially grown varieties at that time.
Breeders raced to find a solution and it came from a single
accession. Even though it is well known that this accession
confers TSWV resistance and its alleles are integrated into

most of the commercial peanut varieties grown today, the
information is not documented or associated with this ac-
cession in the observational data in the USDA Genetic Re-
sources Information Network (GRIN) public dbase. This
makes it hard to impossible for worldwide researchers or
those new to peanut breeding to find information and order
this accession that contains TSWV resistance. Notably, in
GRIN this accession is listed as being resistant to leaf spot.

The peanut accession PI 203396 is not a unique case of
undocumented material in genebanks. In the Second Report
on the state of the world’s plant genetic resources for food
and agriculture,5 they state that there are considerable gaps
in basic documentation and characterization data for plant
genetic resources, and this is a major limitation for use of
Plant and Genetic Resources for Food and Agriculture
(PGRFA) in breeding programs. Many ex situ banks are still
documenting information on paper or Excel sheets and do
not have a publicly accessible dbase. As a whole, genebanks
have characterized and evaluated their collections, but on
average only 64% are characterized morphologically, 51%
agronomically, 14% biochemically, 14% for abiotic traits,
and 22% for biotic traits. One of the main recommendations
from this report5 was to strengthen the characterization and
evaluation of these genetic resources to encourage and in-
crease the use of germplasm. Further, search tools and public
dbases are needed to hold and make accessible all the in-
formation. Even in well funded genebanks with public
dbases significant gaps appear for various traits where some
accessions will have data and the rest are uncharacterized.
For example, the International Potato Center (CIP) has over
5800 accessions with morphological or trait data for potato,
but the number of accessions characterized for each trait
vary from 2 to over 5000 accessions with morphological
descriptor data being the most common. The sweetpotato
collection at CIP, which started later than potato, has over
3400 accessions with some associated data yet, some traits
are only evaluated for less than 10 accessions.

Many accessions maintained in genebanks were originally
collected as populations and not as individuals, meaning the
genotype and phenotype within an accession can be vastly
different from plant to plant; therefore, purification of seed
lots that are heterogeneous needs to be a priority to make
these accessions of value to breeders or for molecular/geno-
mic analyses. Once a seed lot is purified then specific traits
can be tagged to an accession and made available to others.
The major limitation with this philosophy is that if you purify
each accession with an average of 10 different phenotypes
then you increase the size of the collection 10-fold and if you
multiple this by thousands of accessions, the number of ac-
cessions to maintain becomes overwhelming for genebanks
that are already limited in terms of resources. Also, some
crops are not amenable to selfing, and thus, cannot be easily
purified so clonal maintenance is the only solution to
maintain specific genotypes. Maintaining clones is consid-
erably more expensive than seed collections.

In addition to identifying and purifying heterogenous
accessions, prebreeding may be required to produce a line
worthy of future crosses for a breeder. Prebreeding identifies
and captures desirable characteristics from unadapted plants
that cannot be directly used in breeding populations and trans-
fers these genes into an intermediate stage that can be directly
used by a breeder. This is necessary for accessions not adapted
to a particular target environment, closely related wild species
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that can cross to the cultivated form, and for distant wild spe-
cies that are difficult to cross.9 Some curators of genebank crop
collections have a background in breeding and therefore can
facilitate prebreeding work to aid crop breeders and provide
improved material. Many genebanks, however, do not have
dedicated prebreeders, and thus, scientists outside of the
genebank or individual breeders carry out this work inde-
pendently, which usually means the information gained is
not deposited back to the public genebank dbase. In addition,
the information obtained is often decoupled from the origi-
nal accession because the focus for phenotyping is on the
new progeny or progenies produced from a cross and not the
original accession from the genebank. Although genebanks
always encourage feedback of data from all users of genetic
resources, seldom does data return to the genebank to add
value back to the original accession.

Curators do regularly measure morphological descriptors
on the accessions they maintain and regenerate, which in
effect describe particular attributes of the accession such as
flower color, leaf shape, and so on; however, these traits are
largely ignored3 and often are of little value to breeders.
Generally, the morphological descriptors selected for char-
acterizing genebank accessions are chosen based on char-
acters that do not vary dramatically between environments
yet have a strong genetic component so that one accession

can be differentiated from another over several environ-
ments. Characterization is normally done in very irregular
cycles over multiple years as the accession needs re-
generating due to low viability, seed stocks become low, and
with different sets of accessions in each regeneration cycle.
Next generation phenotyping and genotyping have emerged
as methods to capture quality data on genetic resources, but
these techniques are often quite costly for a genebank to
procure and require considerable IT infrastructure to im-
plement these systems.3,4 For genebanks to stay relevant in
the 21st century, it is necessary to embrace the digital in-
formation age and invest in the infrastructure to provide
useful data (genomics and phenomics) to its users.

To promote and enhance germplasm use, value needs to be
added in the form of comprehensive cataloging and associa-
tion of important traits to each accession. Users of genetic
resources are interested in various traits, though yield quality
traits, nutrients, and disease resistance are among the most
commonly requested. There are several methods that can
be utilized to link or discover traits in accessions, such as
standard phenotyping, marker assisted selection (MAS), ge-
nome wide association studies (GWAS), prediction based
on known data, core/mini core collections, and mining pub-
lications and public datasets for information. These various
methods along with a few select examples of each method are

Table 1. Different Approaches Discussed in This Review That Genebanks Can Utilize to Link Traits

to Accessions Along with Their Major Advantages and Disadvantages

Methods Advantages Disadvantages

Mining public data Low cost, no research required, only
cost is personnel time to mine data
and format information.

Lose quality control, no input on experimental
design, may not include enough replications
or GXE analysis, difficult to summarize all
meta data within genebank dbase or harmo-
nize among scoring of traits from different
experiments/labs.

User feedback No cost, long-term users in the commu-
nity are invested and are conscientious
about data fidelity/quality.

Difficult to receive feedback before publication
and after publication no feedback is generally
ever received, need more than anecdotal
evidence to link trait to accession.

Brute force phenotyping Quality control, traits important to the
breeding/user community can be se-
lected.

Requires significant funding and personnel time
especially for large numbers of accessions
and multi-location testing.

Core/Mini core Reduces number of accessions to screen
for a trait of interest.

Not all desired traits can be found in a
core/mini core.

Focused identification
of germplasm strategy

Limits number of accessions to screen
and gives a ‘‘best bet’’ of accessions
to find trait of interest using available
data. High probability of finding
sought traits in a manageable subset.

Traits are not always predictable based on the
information available and complexity of the trait.
Some evaluation data needed to develop the
algorithms for predicting the relationship be-
tween the environmental conditions and the trait.

Marker assisted selection Straightforward approach to identify
traits without needing mature plants to
evaluate, can screen large numbers of
accessions efficiently.

Does not work on complex quantitative traits,
expensive if markers are not already de-
veloped, requires specialized laboratory
equipment.

Genome wide
association studies

Links markers to traits of interest that
can be used for selection/screening in
germplasm, traits with few loci with
large effects work well. Families not
required.

Spurious associations occur so validation is
required, genotyping and phenotyping is
required so cost is significant, complex traits
can be difficult for GWAS, no guarantee on
which trait(s) will have strong association to
molecular markers. Affected by heritability,
GxE, population size, and genotyping quality.

GWAS, genome wide association studies; GxE, genotype by environment.
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discussed in this review (Table 1). This is not meant to be an
exhaustive list of all methods and examples of each method,
but an overview of some useful methods to link traits to
accessions.

Methods

One fairly easy, low cost way to link traits to accessions is by
mining publicly available data. The only requirement is staff
time needed to search for the information and format it ap-
propriately. Searches can be made for the crop of interest to
discover publications and evaluate the samples chosen in each
study that were distributed from the genebank. Open access
datasets that have now become a fairly standard require-
ment can be mined to find genebank accessions. In the case
of CGIAR (Consultative Group on International Agricultural
Research) datasets and publications, dataverse* and CGspace**,
respectively are the current mandatory data repositories.
Scientific journals are also now requiring depositing of data
sets in supplemental links to a published article. Once po-
tential publications or datasets are identified with genebank
accessions, the trait data collected can be summarized and
tagged to an accession. In the last 2 years, the International
Potato Center (CIP) genebank has been using this method to
expand the available trait information. This method has pro-
vided data collected by other researchers on 26 traits for 2995
accessions from the genebank of which 529 and 2466 were
sweetpotato and potato, respectively. Information collected
for potato included traits for resistance to late blight and
bacterial wilt, vitamin C content, anthocyanin, dry matter,
tuber bulking maturity, sugar content, glycoalkaloids, cooking
and post cooking quality measurements, chipping color, and
drought index. In sweetpotato, traits such as drought toler-
ance, sweetpotato virus disease resistance, yield, b-carotene,
dry matter, total sugars, starch, and protein were associated
with accessions to aid in germplasm selection. Overall, this
has proven to be a low-cost method of gaining information
from previously conducted studies on genebank accessions.

Another potential strategy is to request and encourage
researchers and breeders to provide data back to the gene-
bank from material they have requested and evaluated. This
can be successful and genebanks receive the information
usually in the form of a publication and can make the data
publicly available without the expense of having to collect
the data. In reality, most of the time, no information is re-
turned even when stakeholders request the germplasm to
screen for a trait of interest.3 Breeders are generally willing
to support the genebank with trait information on acces-
sions; however, the main limitation is that breeders request
material, make a cross, and then characterize the progeny/
derivatives of genebank accessions with the resulting in-
formation pertaining to a new genotype which is not easily
linked to the original genebank accession requested.

Brute force

Another straight forward way to link traits to germplasm
accessions is to put the effort into phenotyping for a trait of
interest. This approach often requires considerable effort
from staff, multiple years of planning, and separate financial

support to accomplish. Funding to genebanks usually only
covers the basic maintenance of the collection and not
evaluation work, and several studies have demonstrated that
the majority of genebanks lack sufficient funds to cover
basic facilities and staff to maintain their collections.3 Thus,
evaluation of genebank collections is often only a feasible
strategy for smaller genetic resource collections containing a
few dozen to a few hundred accessions. The biggest limi-
tations, therefore, are resources and balancing the goals for
maintaining collections with the number of available staff,
financial support, number of accessions that can be evalu-
ated, and a reasonable time period to complete a project.
Further, a trait needs to be fairly easy and inexpensive to
measure without destroying a lot of the plant material,
otherwise considerable effort will also be needed to regen-
erate the accession(s).

In this approach, the evaluation needs to be mainly re-
stricted to agronomic traits showing high heritability.10 This
is because plants display phenotypic plasticity where one
genotype can produce multiple phenotypes due to the
environmental conditions such as response to shade or
light, architectural changes above ground due to nutrients or
changes to root structure in differing soil types affecting ac-
cess to water.11 This further reinforces that evaluation data
needs to be collected at multiple locations to understand the
level of plasticity for a particular trait. Because traits can be
influenced by the environment, it is critical that GxE is ad-
dressed by collecting trait data in multiple environments. While
evaluation of a trait(s) in a single environment over a single
year does provide some baseline information on the range of
variation among different genotypes, it does not provide any
information on how that accession may respond in an envi-
ronment different to the one in which it was evaluated.

One example of phenotyping an entire collection by brute
force is from the USDA castor bean germplasm collection
(1033 accessions) that was measured for total oil content and
fatty acid composition.12 Castor seeds contain a toxin and
are unsafe for consumption; however, the oil is edible, highly
viscous, and is used in various cosmetics and lubricants for
high speed engines. Total oil content was measured by nu-
clear magnetic resonance (NMR), which is a nondestructive
approach and does not require many seeds. The variation in
the collection ranged from 37.2% to 60.6% oil content. Un-
like NMR, gas chromatography (GC) is a destructive process,
but it is fairly cost efficient, can be automated, and requires
only part of a single seed up to a few seeds for analysis. The
GC analysis of the castor bean collection demonstrated sig-
nificant variability for the following fatty acids: ricinoleic
acid (C18:1-1OH), linoleic (C18:2), oleic (C18:1), and
stearic (C18:0), while the range of variability for the re-
maining fatty acids was rather small.12 The evaluation in-
formation collected in such studies is a long-term resource
for breeders and researchers to select ideal germplasm for
improving total oil or fatty acid profiles in castor bean.

Cucumber is an old crop that has been cultivated for 5000
years and grown throughout the world for the fresh or
processed vegetable market.13 The entire USDA cucumber
germplasm collection was evaluated for three years for fruit
yield and quality traits. Interestingly, the environment did
not play a significant role for any of the traits evaluated.
Accessions with the highest fruit number were identified and
some had higher yields than the checks included in the
study.13 All of the data from this study was made available

*https://data.cipotato.org
**https://cgspace.cgiar.org
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on GRIN{, making it easy for users to evaluate this data and
make selections for their breeding or research programs.

Phenotyping an entire collection is noteworthy, although
this is not always feasible due to the cost involved for large
genetic resources collections. Therefore, stratification strat-
egies can be applied to choose a manageable number of
accessions with knowledge gained on a select set by pheno-
typing a portion of the collection. One example of this is
resistance to rice blast that causes significant yield losses in
this major cereal crop.14 In rice blast, it is critical to look for
multiple forms of resistance because the causal agent (fungi)
rapidly overcomes any single form of resistance after only a
few years of agricultural use; therefore, continuous searches
are ongoing for new germplasm containing resistance. A total
of 4246 accessions were screened from the International Rice
Research Institute (IRRI) genebank and 74.8% of these ac-
cessions were found to be resistant. However, only 289 ge-
notypes (7%) showed resistance to all five rice blast isolates.14

In another study15 over half (55%) of the watermelon
genebank from the USDA, which included three different
species and material originating from 57 different countries,
were examined for tolerance to drought stress, an important
trait due to the growing threat of climate change. This screen
demonstrated that the most drought tolerant material origi-
nated from desert regions in Africa. Of these, two identified
drought tolerant accessions also had resistance to papaya
ringspot type-W and zucchini yellow mosaic virus.15–17

These accessions containing drought and virus resistance
are ideal candidates as parents in a breeding program for
stacking multiple traits.

Oil of palm is an important source of edible oil; however,
these oils can oxidize, which affects the overall quality of
the oil. If endogenous enzymes (lipase) are reduced in a
particular genotype, then the shelf life of a product is im-
proved and lengthened. Palms from the Malaysian Palm
Genebank (148 accessions) were screened for lipase activ-
ity. Low and high lipase materials were identified and found
to be correlated with geographic origin with low lipase
palms coming from countries bordering the Sahara desert
and high lipase palms derived from areas with higher rain-
fall, which was consistent with the biology in which the
enzyme needs water to hydrolyze the oil.18

Huanglongbing (HLB) is a destructive disease to the
citrus industry that has spread in the primary growing areas
of the United States since the mid 2000s. The focus in the
citrus world is to find resistant and/or tolerant cultivars.
Eighty-three accessions representing 85% of the genetic
diversity of citrus and its wild relatives were evaluated
under field conditions to determine tolerance to HLB. Of the
accessions evaluated, the best performing ones under HLB
pressure included citrons (Citrus medica), accessions with
citron pedigrees, and the wild relatives all of which had low
or no symptoms of HLB.19 These accessions can be candi-
date accessions used by the breeders to develop more tol-
erant cultivars.

Core and Mini Core Collections

The concept of core collections was originally proposed
by Brown.20 The idea is to make a subset of a germplasm

collection that consists of the majority of genetic variation
with little genetic redundancy since it is generally not pos-
sible for a researcher to screen every accession within a
genebank for a particular trait(s). Data such as geographic
origin, specific plant characteristics, trait data, and molec-
ular data are utilized to develop core subsets. Because a core
is a much smaller subset, it facilitates evaluation and char-
acterization more efficiently and effectively.6 The core col-
lection concept allows researchers to screen a smaller set of
samples, generally 10% of the total collection that approxi-
mately captures 70% of the total genetic diversity, to save
time and resources to find the trait(s) of interest. Certainly
this is not the case with crops such as maize, wheat, and rice
with extremely large holdings >25,000–120,000 accessions,
where a 10% set will still be a very large number of ac-
cessions to screen. In these cases, a core collection would
generally be too large to evaluate at multiple locations with
replication21 without extensive resources.

There are many methods available and free software
packages such as MSTRAT,22 PowerCore,23 ccChooser,24

CoreHunter,25 and GenoCore26 among others that now are
available to help construct a core or mini core collection.
Many of these programs can use molecular marker data,
genetic distances, phenotypic traits, geographic origin, or
integration of these various data types to select a core set.

A further point of consideration is that core collections
should be dynamic, not static. A periodic review and mod-
ification of the core collection may be warranted as gene-
bank holdings increase and new diversity is added or when
new information on accessions becomes available. As an
example, the core subset in yam was revised from 371 to
843 accessions because the International Institute of Tro-
pical Agriculture (IITA) genebank had increased its col-
lection over time by acquiring material from Benin and
Togo, and new information that had been collected on du-
plicates within the collection and sorting of genetic identity
issues.27 Additionally, the pearl millet core collection from
the International Crops Research Institute for Semi-Arid
Tropics (ICRISAT) was modified to add 501 accessions
from accessions that were characterized after the original
construction of the initial core set.28

Core collections have been constructed for numerous crops
from many genebank collections worldwide. For example,
core collections have been developed from the USDA chile
pepper germplasm,29 Universidad Nacional del Altiplano
(UNAP) collection of quinoa,30 IITA germplasm collection
of yam,27,31 USDA peanut collection,32 ICRISAT groundnut
collection,33 Beijing Vegetable Research Center (BVRC)
watermelon germplasm,34 ICRISAT chickpea germplasm,35

and the Worldwide Olive Germplasm bank (OWGB)36 to
name a few. One element often missing, however, is a
comparison of core collections between genebank collections
that hold the same crop. A comparison was made between the
peanut mini core from China and the ICRISAT mini core,
which were both evaluated using simple sequence repeat
(SSR) markers. The genetic distance between the two subsets
was larger than the distance within a single mini core, sug-
gesting that the material was fairly unique. Overall, the di-
versity was higher in the Chinese mini core than the
ICRISAT mini core.37

Evaluations of these core collections from genetic resource
collections has led to comprehensive cataloging of germplasm,
and, important discoveries of traits that breeders can use to{www.ars-grin.gov

VALUE OF LINKING TRAITS TO GENEBANK ACCESSIONS 341

www.ars-grin.gov


make selections for improving crops of interest. A core col-
lection for the common bean was evaluated for trace miner-
als,38 and genetic variability of iron and zinc concentrations
ranged from 34 to 89 and 21 to 54 mg/kg, respectively. Tannins
were also evaluated in this study because high levels of tannins
tend to reduce the availability of iron levels in food preparation
or digestion. Colored seeds are often associated with higher
tannin levels, but this study demonstrated that colored seeds
had a large range of variation, suggesting it is possible to reduce
tannin levels even for the darker colored seeds.38

In wheat, a core collection of 372 accessions from the
Clermont-Ferrand Genetic Resources Center, France, was
chosen based on passport and microsatellite data. Various
agronomic and quality traits in the core were evaluated and
compared to modern varieties to assess the diversity within
the core subset.39 The wheat core from this collection had a
large range in protein content (10.9%–19.2%), which is im-
portant for determining the nutritional value. Preharvest
sprouting ranged from 0% to 61.3% and the quality of the
wheat for bread making ranged from tough, inelastic dough to
high quality dough for bread. Bordes et al.39 found that the
modern varieties (1960–2000) in the core collection typically
had a smaller range of variation than the landrace or older
varieties for several of the traits evaluated in the core. This
comprehensive evaluation of wheat allows breeders to select
accessions for breeding programs with the traits they desire.

While core collections can often lead to the identification
of accessions with specific traits needed by breeders for crop
improvement, sometimes this strategy does not work to
identify a trait of interest. Food allergens are a significant
problem around the world. In soybeans, the seeds are a
major source of human allergens (i.e-P34-cysteine pro-
tease). Soy is used in processed foods making those with
food allergies vigilant in checking all the ingredients from
any of the products they consume. The soybean core col-
lection and a group of wild relatives were evaluated for P34
and other seed allergens.40 All of the core lines and other
accessions assayed showed the presence of P34, indicating
that this protein is highly conserved in soybean, which
suggests breeding to eliminate this major allergen will be
difficult.40 These results further suggest that without genetic
modification to knock out the gene(s) involved in P34
synthesis, there likely will be no solution to obtaining a
nonallergenic soybean.

The mini core concept was proposed in the early 2000s41

because for screening of certain traits, a core collection is
still too large. A mini core is *1% of the entire germplasm
collection and derived from accessions within a core col-
lection and is thus a subsample of the core collection. The
advantage of the core and mini core strategy is that once
accessions are found with a particular trait of interest, a user
can back track to the clusters these accessions originally
were grouped in and screen more accessions from that
particular cluster to find additional individuals with a trait of
interest. Because accessions are grouped together based on
some commonality, in general the accessions in the germ-
plasm collection that were not selected for inclusion in the
core, but reside in the same cluster as the accession identified
with a unique trait, often may contain the trait of interest. This
particular method has been successful in identifying addi-
tional accessions from a collection with the desired trait(s).

Diseases are one of the main limitations to yield potential
in all crop plants, thus, identifying new sources of resistance

that can be used in breeding programs is always needed.
Mini cores have been an effective tool to mine germplasm
for needed resistant accessions. Grain mold and downy
mildew are diseases that affect the yield of sorghum, an
important cereal crop worldwide. A mini core collection
was screened for resistance to these diseases and a total of
50 accessions were identified as resistant to grain mold and
six accessions were resistant to downy mildew from the
ICRISAT genebank collection. One accession was identified
that was resistant both to downy mildew and grain mold.42

In chickpea, fungal diseases hamper yield potential of this
important pulse crop. To find resistant material for breeding
programs, the mini core collection (211 accessions) was
screened for resistance to several fungal diseases under
controlled conditions. None of the accessions were found to
be resistant to the multiple diseases screened. However, 25
accessions were resistant to Fusarium wilt, three moderately
resistant to Ascochyta blight, 55 moderately resistant to
Botrytis gray mold, and six accessions to dry root rot.43

Fusarium wilt and sterility mosaic disease affect pigeonpea
production. The pigeonpea mini core subset (146 acces-
sions) was found to contain six accessions with resistance to
Fusarium wilt and 24 accessions with resistance to sterility
mosaic disease.44

Focused Identification of Germplasm Strategy:
Predicting Traits via Machine Learning

The Focused Identification of Germplasm Strategy (FIGS)
has been developed jointly by the International Center for
Agricultural Research in the Dry Areas (ICARDA) with the
Vavilov Institute (Russia) and the Australian Winter Cereals
Collection as an approach to address utilization of genetic
resources. The premise behind the FIGS approach is that the
environment under which wild and landrace material grows
will drive the evolution and selection of adaptive traits that
could be of use to plant breeders. The method seeks to de-
termine a potential relationship between collection site (agro-
climatic conditions) and the presence of specific traits, such
as resistance to biotic stresses and tolerance to abiotic stres-
ses. The process identifies candidate collection sites that are
likely to have imposed selection pressure for the trait of in-
terest, which in turn allows the germplasm curator to identify
a best-bet set of germplasm for evaluation.45 This approach is
supposed to provide a better alternative to random sampling
and use of core collections since it is specific to each trait and
is selecting manageable size subsets with higher probability of
finding the desired traits. FIGS has demonstrated its relevance
and efficiency in identifying specific traits for breeders rapidly
and precisely. In recent years, it has allowed the identification
of new allelic variation and novel genes for traits that re-
searchers have been looking for, unsuccessfully, for a number
of years (Table 2).

During the last 10 years, ICARDA, with the financial
support of GRDC/Australia, is taking the lead to further
develop and improve the FIGS pathways through testing
different modeling processes and generating long-term lay-
ers for main climatic variables and onset layers for ICARDA
main crops (wheat, barley, chickpea, lentil, faba bean, and
grass pea). Fine-tuning the FIGS approach is a continuous
process since it is model based. ICARDA and its collabo-
rators are evaluating FIGS subsets and generating feedback
to improve the models and algorithms used for sub-setting.
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This improvement is also enriched by access to evaluation
data around the globe. Furthermore, the availability of mo-
lecular data will be an added-value for FIGS processing by
integrating marker-trait association and maximizing genetic
diversity in the selection of trait subsets. Environmental data
is a limiting factor in FIGS processing and more precision in
daily climatic data for crops is needed in order that effective
modeling can occur to evaluate traits that are influenced by
specific growing periods. Another limiting factor is the lack
of information of virulence spectra of pests.

FIGS follows two distinct pathways: filtering and mod-
eling, both of which select best-bet environments that are
likely to have imposed selection pressure for specific traits
on in situ populations over time. Developing a FIGS filtering
strategy requires deep understanding of the ecology and the
optimal conditions of the expression of the trait under study,
how these conditions affect the crop, and how this will relate
to a selection pressure on an in situ population. Filters can
be applied in the search process, such as excluding regions
where a particular disease has not been reported or re-
stricting a search to collection sites where stresses have
occurred. Since most biotic and abiotic stresses happen at a
very specific growing stage(s), daily long-term data together
with the crop onset information are required to zoom into
the crop growing stages using growing degree days.

When evaluation data is available or a user has a clear idea
about the classification of an adaptive trait based on knowledge
such as heat, drought, or frost, FIGS can explore the mathe-
matical relationship between the adaptive trait of interest and
the long-term climatic and/or soil characteristics of collection
sites. The mathematical conceptual framework of FIGS is
based on the paradigm that the trait as a response variable (Y)
depends on the environment (X), where X = (x1, . , xn) are the
covariates. The quantification process leads to the generation of
a priori information, which is used in the prediction of acces-
sions that would carry the desired trait.

The performance of the models/classifiers is measured
using the metric parameters derived from a confusion or
error matrix, an n by n (n number of classes in the trait) matrix
presenting the percentage of true positives (TP), false
positives (FP), false negatives (FN), and true negatives (TN).
Accuracy (how often the classification is right), Kappa (ac-
curacy vs. random chance), sensitivity (proportion of truly
positives cases), and specificity (proportion of truly negative
cases) are the metrics used in addition to the area under the
curve to discriminate between different models and assess
the trait/environment association. The high accuracy of the
models is an indication of the presence of the trait environ-

ment association. This information is used in predicting ac-
cessions that could carry the trait at a higher frequency than a
random selection of accessions.

FIGS uses several machine learning techniques including
nearest neighbors k-nearest neighbors (kNN),46 support vector
machine (SVM),47 and random forest (RF).48 R language49

is used as an open source platform for FIGS development
and is the most appropriate for packaging FIGS steps to
conduct research and to communicate the results to the
global plant genetics community. The first version of the R-
FIGS package will be published in GitHub and will be
available in 2018.

Case study and predictive characterization
using FIGS

The ICARDA genebank holds around 14,800 georefer-
enced durum wheat landraces, of which *9000 were eval-
uated for phenology. The grain filling period (GFP) was then
estimated as the difference between days to maturity and
days to heading. The evaluation was done at the ICARDA
station TelHadya in Syria during the 1991 growing season.
The distribution of the GFP trait shows a bimodal distribu-
tion (Fig. 1) for the ICARDA durum wheat landraces and
validates that the ICARDA durum wheat landraces can be
classified as having short (6486 accessions) or long GFPs
(2375 accessions). The first two components from the
principal component analysis using WorldClim data50,51—
explained more than 80% of the total climatic variation,
but failed at classifying the durum landraces into short or long
GFPs (Fig. 2). Climatic information together with multivariate
statistical techniques did not classify the ICARDA durum
wheat landraces regarding GFP characterization.

The data was subsequently split into two sets: train-
ing (75%) and validation (25%). Three machine learning
classification algorithms kNN, RF, and SVM were run. First

FIG. 1. Density of GFP using 8861 data points. A bio-
modal distribution was produced from the information in the
genebank. The x-asis is GFP in days and the y-axis is the
density. GFP, grain filling period.

Table 2. Confirmed Traits Identified by the Focused

Identification of Germplasm Strategy

Approach for Wheat, Barley, and Faba Bean

Trait Crop References

Resistance to Russian Wheat Aphid Wheat 74

Resistance to stem rust (UG99) Wheat 75,76

Resistance to yellow or stripe rust Wheat 77

Resistance to powdery mildew Wheat 64

Resistance to net blotch Barley 78

Resistance to Sunn pest Wheat 79

Tolerance to drought Faba bean 80

Tolerance to boron toxicity Wheat 45

Water use efficiency Faba bean 80
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the algorithms were tuned (adjustments to the model) to
choose the best parameters for each algorithm, tree numbers
and the number of predictors (mtry for RF), k number of
neighbors for kNN, and C and gamma for SVM. Finally, the
three models were trained using the training set with the
optimal tuning parameters and extraction of the metrics.
RF was the most accurate model with good Kappa, sen-
sitivity, and specificity values (Table 3). High metrics
(Table 3) validated that there is an association between
WorldClim data and GFP for the evaluated durum wheat set.
The constructed model was then used to predict the entire
ICARDA durum collection with a probability of being short
or long GFP (Figs. 3 and 4). The FIGS model can therefore
be used as a predictive characterization technique in the sense
that a probability of a trait’s presence is assigned to un-
characterized germplasm in an ex situ collection.

The focused identification of the germplasm strategy is a
powerful tool aiming to reduce the number of accessions
that breeders need to screen and maximizing the chance of

finding novel alleles for the targeted adaptive trait in a
predicted subset. Similar approaches are also being inves-
tigated for searching useful traits in situ to guide future
collecting missions. The ultimate goal is to develop a
friendly package in R that could be available to users
worldwide for efficient mining of genebank collections.

Molecular Methods

MAS has been utilized as a means to gain valuable
information in segregating populations to rapidly identify
undesirable genotypes or to classify a set of genebank ac-
cessions for a trait of interest. Utilization of markers saves a
lot of valuable time by identifying material with a particular
trait of interest at an early stage of development rather than
waiting for full maturity of a plant to be able to phenotype
for that trait. This approach is especially useful in crops with
long periods of juvenility. If a marker is tightly linked to a
trait or if it is designed to detect a functional mutation within

FIG. 2. Scatter plot (PC1 vs. PC2) of landraces resulting
from Principle Components Analysis using climatic data.
The dots symbolize the landrace’s GFP class ( plus for long
GFP and circles for short GFP).

Table 3. Performance Metrics for Three Machine Learning Classification Algorithms

Performance measures k-Nearest neighbors (kNN) Random forest (RF) Support vector machine (SVM)

Accuracy 0.834 0.838 0.817
95% CI 0.799–0.865 0.804–0.868 0.781–0.849
No information rate 0.762 0.762 0.762
p-Value (Acc>NIR) 3.58E-05 1.37E-05 0.001423371
Kappa 0.563 0.557 0.467
Sensitivity 0.722 0.675 0.54
Specificity 0.869 0.889 0.903

Accuracy is the fraction of predictions our model got right, 95% CI: confidence interval for accuracy, Kappa compares an observed
accuracy with an expected accuracy (random chance), sensitivity—the proportion of truly positives cases that were classified as positive,
specificity is the proportion of truly negative cases that were classified as negative, and NIR is the proportion of the data with the majority
class and a p-value to test that accuracy is better than NIR.

CI, confidence interval; NIR, no information rate.

FIG. 3. Predictive probability for the entire ICARDA du-
rum wheat landrace collection based on machine learning
model. Dark and light gray are the probabilities of being
classified as long or short GFP, respectively. ICARDA, In-
ternational Center for Agricultural Research in the Dry Areas.
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a gene, accessions can be interrogated with the marker(s)
and the trait can be inferred and/or validated by phenotyping.
The main limitation to MAS is it is only an effective tool
when the trait is controlled by one or two genes or if the trait
is under the control of few quantitative trait loci (QTLs) with
large contributions to phenotypic variation.52 Further, MAS
is only effective with major QTLs that have limited envi-
ronmental or epistatic interactions.53 Lastly, the markers need
to be highly reliable and reproducible among various labs and
populations for this approach to be consistently successful.

The high oleic trait in peanut is an important seed quality
trait. This trait gives peanut seed longer shelf stability (pre-
vention of the oils going rancid) that is desired by manufac-
turers and provides the consumer with the health benefit
of more monounsaturated fat in their diet with a fatty acid
profile similar in composition to olive oil. Previous work has
shown that two functional mutations G448A in ahFAD2A
and 442insA in ahFAD2B were necessary to produce a high
oleic peanut. Both of these mutations are required in the
homozygous recessive state to significantly affect the function
of the enzymes that convert oleic acid (18:1 monounsaturated
fatty acid) to linoleic acid (18:2 polyunsaturated acid).54–57

Markers were developed to track these important mutations
and the underlying trait58,59 in germplasm. Ninety-four ac-
cessions from the USDA mini core peanut collection were
evaluated with these markers60 showing that the ahFAD2A
mutation naturally existed in a homozygous state in 41% of
the population whereas the ahFAD2B functional mutation
was not detected.61 The alleles were also screened in 39 wild
peanut species from the genebank to track the ancestry of
these mutations; however, no functional mutations were de-
tected in the wild accessions.62 Further, a study tracking the
genotypes (ahFAD2) and the resulting phenotypes (fatty acid
profiles) in segregating populations demonstrated that this
trait was not controlled by dominant gene action as previ-
ously determined, but was quantitative in nature with much of
the variability for three fatty acids (palmitic, oleic, and li-

noleic) being controlled by the two key genes (ahFAD2A
and ahFAD2B), even though segregation patterns were
typical of Mendelian inheritance from the two homoeologs.
Another line of evidence of their quantitative nature was
that several of the fatty acids were significantly positively
and negatively correlated with one another.63

Where molecular markers can really expedite trait dis-
covery is in crops with long periods of juvenility where
years are required to produce the first fruits and/or signifi-
cant land is needed for growing the crop. For instance, table
grapes can take two to four years to produce fruit and then
phenotyping would be required for several seasons after
fruit production to evaluate a particular trait. Microsatellite
markers linked to the seedlessness trait in grapes were em-
ployed to evaluate material in the Vitis germplasm bank
from IMIDRA, Spain.53 Although the authors discuss the
value of genotypic selection being superior over phenotypic
selection, there were a few cases of false positives and
negatives that were assumed to be caused by recombination
between the marker and the gene, phenotypic misclassification,
or a minor effect QTL. However, in most cases the markers
were effective in the detection of the desired trait greatly
speeding up the identification of seedlessness for breeders.

Another useful molecular approach in linking traits to
genebank accessions is to sequence known functional genes
from different individuals to identify the effect of different
allelic variants. The most effective strategy for determining
allelic richness is to sequence a collection of individuals to
find the variants.10 FIGS was employed to define a subset of
landrace accessions that were manageable for a molecular
screening study in wheat.64 FIGS selected 1320 accessions
from 323 different geographic origins that showed high
selection pressure for powdery mildew resistance. These
accessions were tested with isolates of powdery mildew and
a total of 211 accessions showed complete or intermediate
resistance to at least one race. The resistant accessions (56)
were screened for the Pm3 gene that is a known resistance

FIG. 4. Predictive GFP class for the entire ICARDA durum wheat landrace collection, white and black circles are long
and short GFP landraces, respectively.
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gene and new allelic variants were identified by cloning and
sequencing the gene from wheat accessions. Sequence data
demonstrated 16 new allelic variants for the Pm3 resistance
gene. Bhullar et al.64 found that some of the resistant ac-
cessions had Pm3 gene sequences identical to the suscepti-
ble alleles suggesting that there are more resistant genes in
the genome to be discovered. Some of the new allelic var-
iants identified were from accessions largely derived from
Eastern Turkey. To verify whether these new allelic variants
were linked to powdery mildew resistance, virus induced
gene silencing VIGS was employed. This technique dem-
onstrated that some of the new variants were indeed con-
ferring the observed resistance and other variants either had
another gene conferring resistance or the resistance was
from a combination of Pm3 and other genes. Overall, seven
new Pm3 alleles were described that represents a large al-
lelic series of resistance genes with 14 allelic variants now
described. Clearly, as demonstrated here, the diversity in
genebank accessions can be utilized to identify important
alleles from known resistance genes.64

Genome Wide Association Studies

GWAS have emerged in the last 10 years as a powerful
tool to link genetic markers to phenotypic variables in
populations and further to discover genes and alleles for
agricultural traits. It provides a connection between a trait
and its underlying genetics. GWAS either identifies causa-
tive/predictive factors for a particular trait or it can provide
information on the genetic architecture such as the number
of loci and their contribution to the phenotype.65 This tech-
nique relies on linkage disequilibrium, which is nonrandom
association of alleles in a population. The phenotypes col-
lected for GWAS can be quantitative or qualitative. The po-
tential for success in GWAS depends on the number of loci
affecting the trait that are segregating in the population, allele
frequency at these loci (genetic architecture), sample size,
panel of markers used, and the heterogeneity of the trait.66

Further, finding an association between a genetic marker and
a trait of interest is dependent on the variance of the pheno-
type in the population explained by that marker.65

GWAS and candidate gene sequencing-based association
approaches were both utilized to evaluate marker trait as-
sociations in a chickpea reference set of 300 accessions
derived from the ICRISAT genebank.67 Phenotyping was
performed for 34 different traits under drought and heat stress
over multiple years because drought can severely affect crop
production. A combined approach of SSRs, diversity arrays
technology, and single nucleotide polymorphisms (SNPs)
were evaluated on the reference set along with sequence
characterization of 10 drought related candidate genes, pro-
ducing a total of 1872 markers. In total, 312 marker trait
associations were found and 18 of the SNPs located in genes
were significantly associated to the traits measured.67

In another study, GWAS was employed to locate SNP
markers that are associated with variation in curd traits
(edible inflorescence) in cauliflower, which is an important
trait for yield.68 A total of 174 genebank accessions were
evaluated for curd traits using over 120,000 SNP markers. A
total of 24 SNPs were significantly associated with the curd
traits.68 GWAS was also utilized to evaluate genotyping
data produced from the ‘‘iCore’’ or informative core of 1860
barley accessions using three phenotypes deposited in the

GRIN dbase.69 Significant SNPs were detected for the hull
cover that were associated with the NUD locus and major
genes determining spike row number.69

Soybean is an important source of oil and protein.
However, salinization of land can affect soybean yields and
phenotyping for salt tolerant lines in the greenhouse is ex-
pensive and time consuming whereas field selections can
vary since salt concentration can range vastly in a particular
field. Therefore, GWAS was employed using 33K SNP
markers on a set of 283 accessions from the USDA Soybean
germplasm collection. Soybeans from 29 different countries
were utilized to avoid spurious associations from population
structure and relatedness. Plants were treated with salt in
the greenhouse. Chlorophyll concentrations were measured
and chloride was extracted from the harvested dried leaves.
This study demonstrated 45 SNPs from nine regions of the
chromosomes associated with leaf chloride and leaf chlo-
rophyll concentrations. Additionally, major QTLs associ-
ated with salt tolerance were also identified.70

Even though GWAS has brought about advancements in
linking markers to traits for rapid selection, there are still
some potential pitfalls. Complex traits are typically poly-
genic, and thus, have many loci contributing to the genetic
variation observed; therefore, polymorphism in many genes
play a part in the genetic variation observed in the popula-
tion, so that the proportion of variance at the individual level
is small.66 This means that individuals carry different alleles
at multiple loci can increase and decrease the frequency or
occurrence of the trait. In a population, there are many
combinations of these alleles so that each individual can
have a unique combination. Traits are often associated with
variants at hundreds to thousands of loci and there is evi-
dence of widespread pleiotropy for complex traits, implying
that some variants affect more than one trait.66 Hence, large
population sizes are needed for GWAS studies to determine
the effect of each allelic combination on the particular trait
being studied. Further, spurious signals can occur due to
population structure or relatedness within the population.
Signals determined from GWAS are often markers of puta-
tive risk and not the underlying functional genetic variant
culprits, so caution should be taken before claiming variants
have been identified.71 GWAS also does not provide infor-
mation on the mechanism of how the genetic variant is as-
sociated with phenotypic differences or the target gene that
controls the trait; however, new technologies are providing
opportunities to bridge this knowledge gap.66 Another key
point of all GWA studies is that after associations are iden-
tified, they need to be validated because there have been
problems confirming the results.72 These associations also
need to be generalized to other populations. Because a large
amount of marker data is collected, a GWA study can identify
numerous associations that are likely to be overestimates and
unbiased effects can only be made in a data set not used in the
discovery process.73 In summary, validation of GWAS results
is an important factor to ensure linkage between a marker and
a trait of interest.

Conclusions

There are several ways in which important agronomic
and quality traits can be linked to accessions. From pre-
dictive machine learning, molecular techniques such as MAS/
GWAS, to brute force phenotyping, all of which can lead to
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uncovering the range of diversity in a set of accessions and
reveal critical traits of interest for crop improvement. Once
accessions with traits of interest are identified and made
available, breeders can use this information to select par-
ents for crossing and move forward on releasing new varieties
to meet current needs. Overall, comprehensive characteriza-
tion of genetic resources is critical to add value to accessions
and to further help guide users on selection of appropriate
germplasm for their specific needs.
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