
A case study in porting a production scientific supercomputing
application to a reconfigurable computer

Volodymyr Kindratenko, David Pointer
National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign

kindr@ncsa.uiuc.edu, pointer@ncsa.uiuc.edu

Abstract

This case study presents the results of porting a
production scientific code, called NAMD, to the SRC-6
high-performance reconfigurable computing platform
based on Field Programmable Gate Array (FPGA)
technology. NAMD is a molecular dynamics code
designed to run on large supercomputing systems and
used extensively by the computational biophysics
community. NAMD’s computational kernel is highly
optimized to run on conventional von Neumann
processors; this presents numerous challenges to its
reimplementation on FPGA architecture. This paper
presents an overview of the SRC-6 architecture and the
NAMD application and then discusses the challenges,
solutions, and results of the porting effort. The
rationale in choosing the development path taken and
the general framework for porting an existing
scientific code, such as NAMD, to the SRC-6 platform
are presented and discussed in detail. The results and
methods presented in this paper are applicable to the
large class of problems in scientific computing.

1. Introduction

Computational scientists aggressively seek floating
point application performance improvements beyond
those implied by Moore’s Law. Reconfigurable
computing (RC) [1] based on the Field Programmable
Gate Array (FPGA) technology is one of the
technologies that have the potential to yield
performance improvements for many demanding
computational tasks. Until recently, however, its
potential has been largely locked from the scientific
computing community due to limited FPGA resources
(e.g., lack of support for floating point arithmetic),
general unavailability of the tightly coupled RC/CPU
systems, and a lack of high-level programming
languages suitable for a rapid FPGA code
development. This changed with the recent

introduction of several high-performance RC (HPRC)
platforms, such as Cray XD1 [2], SGI RASC [3], and,
most relevant to this paper, SRC-6 MAP™ [4] and
accompanying Carte™ development tools [5]. These
synergetic systems provide a tight coupling between
the code executed on the host microprocessor and the
FPGA and exploit coarse-grain functional parallelism
through conventional parallel processing as well as
fine-grain parallelism through direct hardware
execution on FPGAs.

Even though commercially available high-level
languages, such as MAP C [5] and Mitrion-C [6],
greatly reduce the complexity of code development
efforts for RC platforms, porting an existing scientific
code to an RC platform using one of these languages is
not as simple as just recompiling the code with a
different compiler to run on a different microprocessor
system. It requires adaptation of the code to the
available FPGA resources – something scientific code
application developers are not familiar with. The
software developers need to be hardware-savvy in
order to produce an efficient code, but even then it is
not always possible to gain the maximum performance
without writing low-level routines in hardware
languages, such as VHDL or Verilog.

The goal of this paper is to demonstrate the process
of porting an existing scientific code to a modern RC
platform and to show the difficulties that must be
surmounted in order to produce a workable solution.
More specifically, this paper reports on the efforts to
port a production-grade molecular dynamics (MD)
code, NAMD [7], to a modern production RC
platform, the SRC-6 MAP [4], using a high-level
language, MAP C [5]. While a number of papers [8-
12] have been published in the past few years about
implementing a textbook MD code on an RC platform,
to our knowledge this is the first attempt to port an
existing production-grade MD code that is extensively
optimized to run on large parallels systems and is
routinely used by the scientific community. To our

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006

knowledge, this is also the first attempt to port an MD
code to a mainstream production HPRC system using a
high-level programming language rather than to an
experimental RC platform using VHDL or Verilog, as
in [10-12], or even a hardware system specifically
designed to run MD simulation [8, 9].

NAMD [7] is a parallel molecular dynamics code
designed for high-performance simulation of large
biomolecular systems. It currently accounts for the
largest number of compute cycles on NCSA’s
production supercomputing systems and, as such, has a
continuous demand for performance improvements.
Therefore it was natural to select this code to port to an
RC platform in this test-case study.

SRC-6 MAP [4] was selected as the target platform
because it is one the most readily available production
RC systems on the market. The development toolset,
called Carte [5], supplied by the vendor was another
reason, as it provided a clear path for code partitioning
and code porting to the FPGA as well as a convenient
debugging and simulation environment.

This paper is intended to serve as a collection of the
RC code development recipes that one might refer to
when considering porting a scientific code to an RC
platform. As we go through the code examples, we
demonstrate why even a 3x speedup of the code ported
to an RC platform (compared to the code executed on
the host CPU platform) requires some significant
software development efforts. We also demonstrate
how the code performance on an RC platform can be
estimated even before it is written. This allows a
programmer to evaluate the suitability of the given RC
system for the given problem.

2. Related work

A number of related efforts to develop an MD code
on various hardware platforms have been reported in
the literature. They range from developing
Application Specific Integrated Circuit (ASIC) chips
[8-9] to FPGA-based systems [10-12]. We will review
the work by N. Azizi et al. [11] and R. Scrofano and
V. Prasanna [12] as it is the most relevant to our effort.

In [11], the authors used the Transmogrifier 3
(TM3) FPGA platform and implemented the code in
VHDL. A complete simulation cycle, including
particle pair interaction calculations and position
updates, is implemented on TM3 platform. Location
of each particle in the simulation is stored in the
SRAM banks on the TM3. For each time step of the
simulation, the pair generator module calculates the
distances between pairs of particles, the Lennard-Jones
(L-J) force calculator module uses this distance to

compute force between them, and the acceleration
update module sums up the computed force to obtain
the total acceleration for each particle. Finally, the
Vertel update module updates the position and velocity
of each particle based on the computed acceleration.
These steps are repeated until all particle pairs have
been examined. The L-J force calculator stores the L-J
potential function in a lookup table and uses this table
to interpolate a more accurate value. Varying
precision, typically between 22 and 76 bits, was used
to represent various data fields. The system was able
to simulate an 8,192 particle model at a rate of 37
seconds per one time step while running at 26 MHz.
The CPU-based benchmark code runs in 10.8 seconds
on a 2.4 GHz P4 platform. The authors extrapolate
that with better FPGA memory organization and faster
FPGAs, a speedup of 40x to 100x over a
microprocessor implementation can be achieved.

In [12], a fully pipelined VHDL implementation of
L-J potential and force equations on a Xilinx Virtex-II
Pro XC2VP125 FPGA is presented. The 119-stage
pipeline – consisting of several adders, multipliers,
divides, and a square root operation and running at 122
MHz – is set up to accept one squared particle-particle
distance as input and computes two 64-bits wide
results (potential and force) as output using IEEE 754
double precision floating point arithmetic. The authors
compare their design with similar code executed on
several microprocessor platforms and find their design
to achieve 3.9 GFLOPS throughput compared to 1.5
GFLOPS throughput obtained on an Itanium2 900
MHz system.

Both [11] and [12] are concerned with the
implementation of L-J force calculator, although [11]
goes a step further by implementing the complete
simulation cycle. It is not clear from [12] how the
interface between the host system and the design
executed on the FPGA is set up and how the developed
system can be integrated with a complete MD
simulation. None of the related efforts to implement
an FPGA-based MD simulation design are concerned
with the problem of accelerating existing MD
simulation software and none of the FPGA-based MD
codes that we have read about have been tested with
more than just a few thousand particles.

3. SRC-6 and Carte

The SRC-6 MAPstation [4] used in the course of
this study consists of a commodity dual CPU Xeon
motherboard, a MAP Series C processor, and an 8 GB
common memory module, all interconnected with a 1.4
GB/s low latency switch. The SNAP™ Series B

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006

interface board is used to connect the CPU board to the
Hi-Bar switch. The SNAP plugs directly into a CPU
board’s DIMM memory slot.

The MAP Series C processor module contains two
user FPGAs, one control FPGA, and memory. There
are six banks (A-F) of on-board memory (OBM); each
bank is 64 bits wide and 4 MB deep for a total of 24
MB. The programmer is responsible for application
data transfer to and from these memory banks via the
use of SRC programming macros invoked from the
FPGA application. There is an additional 4 MB of
dual-ported memory dedicated solely to data transfer
between the two FPGAs.

The two user FPGAs in the MAP Series C are
Xilinx Virtex-II XC2V6000 FPGAs. They each
contain 67,584 4-input lookup tables, 67,584 flip flops,
144 dedicated 18x18 integer multipliers, and 324 KB
of internal dual-ported block RAM (BRAM). The
144 hardware multipliers are sufficient to have up to
36 single precision floating point multiplication
operators in the design. These FPGA elements are not
directly visible to the programmer but are
interconnected appropriately as determined by the
programmer’s MAP C algorithm code, the SRC Carte
programming environment [5] tools, and the Xilinx
FPGA place and route tools. The FPGA clock rate of
100 MHz is set by the SRC programming environment.

The MAP Series E processor module, also used in
the course of this study, is identical to the Series C
module with the exception of the user FPGAs. The
two user FPGAs in the MAP Series E are Xilinx
Virtex-II Pro XC2VP100 FPGAs. They each contain
88,192 4-input lookup tables, 88,192 flip flops, 444
dedicated 18x18 integer multipliers, and 999 KB of
internal dual-ported block RAM. The 444 hardware
multipliers are sufficient to have up to 111 single
precision floating point multiplication operators in the
design.

The Carte programming environment [5] for the
SRC MAPstation is highly integrated, and all
compilation targets are generated via a single makefile.
The two main targets of the makefile are a debug
version of the entire program and the combined
microprocessor code and FPGA hardware
programming files. The debug version is useful for
code testing before the final time-intensive hardware
place and route step. The Intel icc compiler is used to
generate both the CPU-only debug executable and the
CPU-side of the combined CPU/MAP executable. The
SRC MAP compiler is invoked by the makefile to
produce the hardware description of the FPGA design
for final combined CPU/MAP target executable. This
intermediate hardware description of the FPGA design
is passed to the Xilinx ISE place and route tools, which

produce the FPGA bit file. Lastly, the linker is
invoked to combine the CPU code and the FPGA
hardware bit file(s) into a unified executable.

4. NAMD

A detailed description of the underlying physical
model used in NAMD can be found in [7]. Here we
are mostly concerned with the problem of porting the
existing NAMD code written in C++ to FPGA using
MAP C language, therefore we provide analysis of the
source code instead.

The core of NAMD simulation is a function that
computes force exerted on each atom (a simplified
version of which is given in Code Listing 1 of the
Appendix, calc_both subroutinge). This force later is
applied to move the atoms according to the Newtonian
equation of motion. In the current implementation, we
only focus on the van der Waal’s forces (approximated
by the L-J 6-12 potential) and electrostatic interactions
between the nonbonded atom pairs. Several
optimization techniques have been employed in
NAMD to reduce the time needed to compute the
forces. Thus, the entire simulation space is divided
into 3D cells, called patches, whose size is related to
the cutoff radius beyond which no interaction
calculations are performed. The atoms from each
patch are run against themselves and against the atoms
from the 13 neighbor patches (Newton’s third law of
motion is applied here to eliminate redundant
calculations) and the corresponding interaction
calculations are performed on these patches. Cutoff
radius is applied to limit the calculations to only those
atoms that are close to each other. The smooth
particle-mesh Ewald (SPME) method is used for full
electrostatic computations with the direct component
of PME sum substituting the Coulomb equation.
Interpolation tables are used for both L-J potential and
Coulomb: All of the fast_ terms are Coulomb (or PME
direct sum), and all of the vdw terms belong to L-J
potential. The use of these tables eliminates the need
for floating point division and square root operations.

Thus, as one can see, NAMD works very differently
from a textbook MD code. Its algorithmic structure
and code optimization strategies are well tailored to the
microprocessor architecture. The textbook code, on
the other hand, typically implements a set of full-
blown calculations and has none of the optimizations
applied, which makes it easier to speed up the basic
force computations on FPGAs.

The code snapshots shown in the Appendix are
taken from an earlier version of the benchmark kernel
extracted from NAMD version 2.4 with a few

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006

additional modifications made per our request: The
exclusion or modification of nonbonded interactions
between pairs of atoms connected by three or fewer
bonds is eliminated, bonded force calculations are
omitted, and the code is modified to use a reduced
numerical resolution (single precision floating point
instead of the double precision as in the production
code). These ‘minor’ code alterations of course make
it impossible to perform a direct performance
comparison of our code with the production NAMD
code, but they are necessary to make the problem of
porting the code to the FPGA tractable. Nevertheless,
even with these modifications, the code is still valid for
properly formulated problems.

The computational complexity of a molecular
dynamics code, such as NAMD, is well understood
[7]. It is the nonbonded particle-particle interaction
that is responsible for the vast majority of the
computational time: In a brute force approach, there
would be N2 particle-particle interactions. NAMD
avoids the O(N2) computational complexity by
applying the numerous optimization techniques
mentioned above, yet the nonbonded particle-particle
interaction kernel is still the most computationally
expensive portion of the code, and it is responsible for
over 80% of the overall time spent by the simulation.
This is an important observation as it will be
instrumental in helping us to decide what portion of
the NAMD code should be ported to MAP.

A typical NAMD simulation consists of 100,000
atoms, with 300,000 atoms being occasionally used at
the high-end, simulated for the duration of several
nanoseconds on a 64+ microprocessor system [7]. As
an example, for a representative system of 92,224
atoms simulated for a 1 ns simulation (one million time
steps of 1 femtosecond each), a typical simulation time
on the NCSA’s 128 CPU SGI Itanium platform is 5.1
hours, with the simulation of a single 1 femtosecond
step taking about 0.018 seconds. The same system of
atoms simulated on a 64 CPU Xeon cluster requires
over 16 hours.

5. Porting NAMD to SRC-6 MAP

How does one approach the problem of porting an
existing scientific code to an HPRC platform? First,
the programmer needs to look into what sort of
computational operations need to be accelerated. This
is typically accomplished with the help of a code
profiling tool, such as gprof. Second, one needs to
identify what portion of the code embedding these
operations should be ported. There is an important
difference between the code that needs to be

accelerated and the code that should be ported to
FPGA. For example, looking at Code Listing 1, it is
obvious that the inner loop calculations in calc_both
subroutine are responsible for all the execution time.
Yet if we only port the inner loop calculations to
FPGA, we risk wasting too much time due to the
frequent data transfer between the MAP and the host
system and MAP function call overhead associated
with invoking the SRC-6 MAP subroutine. Therefore,
we should consider porting code that includes the outer
loop instead.

But how about just one level above, that is, the
runComputes subroutine? This would eliminate the
need to call the MAP subroutine multiple times, right?
It turns out that the amount of data that the
runComputes subroutine operates on, in general, is
unbounded, and there is a risk that for some
simulations we may not have enough memory
available on MAP. On the other hand, the calc_both
subroutine operates on small data patches, typically
from a few hundred to a thousand data points.
Therefore, by porting the calc_both subroutine instead
of the runComputes subroutine, we make a
compromise between the number of MAP function
calls and the amount of data that needs to be available
on MAP at once. By porting the outer loop inclusively
rather than porting only the inner loop calculations, we
make a compromise between the number of MAP
function calls and the complexity of the code to be
implemented on MAP.

Now that we know what code segment should be
ported to MAP, how can we be sure that there are
enough FPGA resources for the code to fit? Resource
needs for hardware multipliers and memory can be
estimated based on the number of the multiplications
and memory allocations in the original code.
However, FPGA space needs are much harder to
gauge. There are over 30 multiplication operations in
the original NAMD code shown in Code Listing 1.
Not all of them, however, operate on the floating point
numbers, and some of them are used to compute
pointer offsets. Therefore, as we port the code, we will
likely reduce the number of multiplications. However,
even with 30 multiplication operations present, there
are just enough hardware multipliers to accommodate
all of them while using SRC’s multiply macros. We
also estimate that the calc_both subroutine requires
access to less than 100 KB of memory, which is
certainly not a problem for XC2V6000 FPGA.
However, we will have to postpone finding out about
space requirements for the design until we actually
map it to the FPGA.

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006

5.1. Host CPU code

Now that we decided what code segment to port to
MAP, what is the next step? Even though MAP C is
very much an ANSI C-like language, a significant
effort is required to port NAMD to MAP C. There are
two main difficulties: absence of the high-level data
structures present in ANSI C and memory usage
considerations on the SRC-6 MAP. The first issue can
be addressed by converting C/C++ data structures to
one-dimensional arrays; the second issue requires a
detailed analysis of the execution structure of the code
in order to develop a fully pipelined FPGA
implementation. There are other considerations that
will become obvious as we attempt to port the code.

What data are involved with the nonbonded force
calculations? First, atom data stored in the CompAtom
class: atom displacement, charge, and type. Second,
three force values stored in the Force class. And
finally, two lookup tables accessible through ljTable
and table_four pointers. Note that the lookup tables
remain constant between the calls to the calc_both
subroutine, therefore they can be loaded to the MAP
memory only once, whereas atom and force data
change between the function calls.

How do we send C++ data structures and classes to
the MAP memory? In order to do this, we need to
copy the data from these structures to 1D arrays whose
characteristics are set according to the memory
structure supported by SRC-6 MAP. The basic
memory transfer unit on this system is a 64 bits wide
word that can be split on the FPGA into 4, 8, 16, or 32
bits wide data types, including a 32 bits wide integer
and a 32 bits wide floating point number [5].
Therefore, we have to pack our data into arrays of 64
bits wide words that later can be unpacked on the
FPGA into appropriate data types. This is trivial for
the lookup tables as they both consist of double
precision (64 bits wide) floating point numbers that we
further reduce to the single (32 bits wide) precision.
Code Listing 2 shows how these lookup tables are
copied to the fpga_table_four and fpga_lj_pars linear
arrays.

Data translation for the CompAtom and Force
classes is not as trivial as it is not all of the same type
(e.g., displacement and charge are stored as 32 bits
wide floating point numbers whereas force values and
atom type are stored as integers). First, we declare two
data structures, fpga_I_D and fpga_O_D, that will hold
all the required input and output data for each atom
(see Code Listing 2). We need to make sure that the
size of these data structures is a multiple of 64 bits;
thus, in the case of fpga_O_D we add an extra 32 bits
wide field which will be unused, but needs to be

present (this can be optimized later). By using
continuous 1D arrays of elements of data structures
like these, we ensure that the entire dataset to be sent
to MAP will occupy a continuous memory block and
thus can be transferred to MAP at once.

Now that we have all the data translation code
written as shown in Code Listing 2, we are ready to
outsource the actual computations to MAP. Note that
we need to copy atom input data and force output data
between the MAP memory and the host memory each
time we call the MAP function.

Note that now the calc_both subroutine is
composed only with the data transfer code; the actual
calculations are hidden in the map_compute_func
subroutine, which is to be implemented on MAP. Also
note that the lookup table data translation and memory
allocation for the atom input and force output data
needs to be done only once per the entire simulation,
whereas atom input and force output data need to be
copied in and out for each data patch, that is, for each
call to the calc_both subroutine (a static variable
firsttime is used to flag this).

At this point, we can also consider the issue of
performance measurements and obtain some results for
the code executed purely on the host system. First, we
move the actual calculations code from calc_both to
the map_compute_func subroutine with the appropriate
modifications to the data structures used. Second, we
instrument the code with timers (gettimeofday library
function calls) in such a way that we can measure the
overall executing time for the calc_both subroutine
and the time spent by the map_compute_func
subroutine alone. We accumulate these time
measurements over the duration of one simulation step,
which includes multiple calls to calc_both. We run the
code with the dataset containing 92,224 atoms [7] just
for one simulation step. This results in 2,016 calls to
the calc_both subroutine (there are 144 data patches in
the dataset and each patch is used 14 times). The
original code shown in Code Listing 1 executes in 9.25
seconds (wall clock) on a 2.8 GHz Intel Xeon
processor, whereas the code shown in Code Listing 2
executes in 9.96 seconds, where the
map_compute_func routine is responsible for 9.9
seconds and the remaining 0.06 seconds are due to the
data translation overhead. So far our modifications of
the code have resulted in the overall slowdown by
approximately 0.71 seconds.

We should point out that the overall compute time
for this code heavily depends on the simulation
parameters set by the user, particularly the cutoff
radius value. In the present dataset, a vast majority of
the atoms are outside the cutoff radius from each other,
therefore the “r2 > cutoff2” test eliminates a

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006

significant number of unnecessary calculations. Just as
a thought experiment, if all the atoms in the
neighborhood patches would be within the cutoff
radius from each other (or if the cutoff radius is set to
be large enough), the overall compute time would be
just over 800 seconds instead of 9.25 seconds. We
will refer to this observation in the sections that follow.

5.2. Single chip MAP Series C design

Now that we have taken care of data translation
between the host platform and MAP, all that is left is
to translate the actual computational kernel code to
FPGA! First, one should consider porting the code as
is to obtain an executable that produces the correct
results. Only then one should consider how to
optimize the code to gain the best overall performance.
Why? First, even the simplest code translation to
MAP C will likely involve dealing with a number of
issues, such as data mapping to MAP memory,
pipelining the loops, etc. Thus, many issues will be
resolved. Second, one will have a ‘reference design’
for analysis and comparison to future results. Third,
one will be able to get a good measure of the FPGA
resources utilization to achieve just the basic
implementation. This will be handy in deciding if any
of the likely optimizations will fit on the chip; thus one
could avoid starting with a design that cannot fit on the
chip. And finally, at this stage of the development one
can estimate the overall code performance even before
the code is written and compare it with the
performance after the code is running. If the results
agree in bulk, one is likely to be on the right track as
far as understanding the code and the issues at hand.

Let us first analyze the possible performance of a
straight as is code port to SRC-6 MAP. From running
our 92,224 atoms test case consisting of 144 atom
patches, we know that: there are 144*14=2,016 calls to
the calc_both subroutine; 144 calls involve the same
patches and 1,872 calls involve pairs of the neighbor
patches; and each call on average involves checking
640 atoms from one patch against 640 atoms from
another patch. Thus, there are ~6402*1,872+((640-1)*
640/2)*144=796,216,320 interaction calculations to be
performed. If we design a fully pipelined
implementation of the inner loop of the calc_both
subroutine that will take one FPGA clock cycle to run
just one of these calculations, then it will likely take
796,216,320/1e8 7.96 seconds to run just the inner
loop calculations (MAP FPGAs operate at 1e8 Hz)
plus the pipeline depth penalty for each call to the
inner loop. It is difficult to know in advance what the
pipeline depth might be; for example, if we estimate it
to be 150 clock cycles, then the overall pipeline depth

penalty can be computed as ~(640*1,872+639*144)*
150/1e8 1.94 seconds. There are also data to be
transferred in and out: (640*2*1,872+640*144)*
12*4=119,439,360 bytes of data in total, which will
take about 119,439,360/16/1e8 0.08 seconds plus
some additional time to arm the DMA engine and
distribute the data to MAP memory, as needed. Also,
there is a MAP function call overhead on the order of
220 microseconds per call (based on our own
measurements), resulting in 220*2,016*1e-6 0.44
seconds plus about 100 milliseconds to initialize the
PFGA when it is called the first time [13] and plus
some time to load up the lookup tables. Therefore,
based on the estimated number of clock cycles needed
to perform the required operations, we would expect
our MAP code to run in over 11 seconds with the bulk
of time (7.96+1.94=9.9 seconds) spent doing actual
calculations and some time spent on data transfer and
MAP function call overhead.

Thus, such a straightforward code port will likely
result in an overall slowdown (original code runs in
just 9.25 seconds on the CPU). As we see from our
estimated performance, the vast majority of time
running the code on MAP will be spent doing
nonbonded atoms interaction calculations; therefore, in
order to gain some speedup we should consider ways
to optimize this portion of the (yet nonexistent) design.
We can get a speedup if we can have two or more atom
interactions calculated simultaneously. However,
looking at the number of floating point operations in
Code Listing 1, it may not be possible to place more
than one interaction calculation engine on the FPGA
chip due to the lack of hardware multipliers. We will
return to this issue later.

Now we provide a step-by-step implementation
sequence of the computational core. First, we declare
the MAP function as shown in Code Listing 3. Next,
looking at the code in Code Listing 1, we need to have
simultaneous access to nine values from the table_four
lookup table and two values from the ljTable lookup
table. Therefore, we need to distribute the data from
these tables in the MAP memory accordingly so that
we can access all the required data in a single clock
cycle. Since these tables are relatively small, we can
allocate them in the FPGA’s BRAM memory (see
Code Listing 3). The original table_four lookup table
actually contains 12 values per record, some of which
are needed to perform electrostatic energy calculations,
which we omitted from our code. We will ignore these
unneeded values for now. In order to achieve some
efficiency with the lookup table data transfer to
BRAM, we stripe table_four between six OBM
memory banks, thus allowing access to all 12 lookup
table values at once by splitting 64 bits wide words in

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006

half. ljTable can simply be transferred to just one
OBM bank and then split and copied to two BRAM
arrays (Code Listing 3). Note that the lookup data
transfer needs to be done only the first time the code is
called as the BRAM content does not change between
multiple calls to the MAP subroutine.

Now we are ready to transfer the actual simulation
data consisting of eight 32-bits-wide values. We do
need to have access to all eight values in a single clock
cycle in order to achieve a fully pipelined
implementation. Therefore, we distribute the input
atom data among four separate 64-bits-wide memory
banks such that they can be accessed simultaneously
(see Code Listing 3). We could just DMA in the data
and then distribute it as needed; instead, we have
chosen to stream it in and perform the data distribution
simultaneously, thus cutting the number of clock
cycles spent on these operations. Also, atom
displacement, charge, and type data are read-only,
whereas force data needs to be updated as the result of
the computations. Therefore, we put the atom force
data to BRAM (cl_bram and dl_bram BRAM arrays)
as it is dual ported and can be updated within the same
clock cycle. Fortunately, the nature of the calculations
is such that we do not have to worry about memory
clash, and therefore we can safely instruct the MAP C
compiler via #pragma loop noloop_dep macro to
pipeline the inner loop even tough there are memory
dependencies.

Now that all the necessary data have been loaded to
the MAP memory, we can port the actual inner loop
calculations. What is left at the end is to transfer the
results accumulated in cl_bram and dl_bran to the host
process. We implement this via streaming (Code
Listing 3).

When we compile the resulting code, MAP C
compiler informs us that the inner loop was
successfully pipelined with the pipeline depth of 159
clock cycles. The placing and routing report indicates
that the design occupies 59% of the hardware
multipliers, 61% of BRAM banks, and 87% of SLICEs
and the design meets timing requirement of 10 ns. We
also instrumented the code to take timing
measurements (not shown in the code provided).
When we run the resulting code, we find that the
overall execution time is 12.05 seconds (compared to
9.25 seconds of the same code running on the CPU):
10.26 seconds are spent doing the actual calculations,
which is close to our theoretical estimate of 9.9
seconds, and the remaining 1.79 seconds are spent on
the data transfer and MAP function call overhead.
Thus, the net result is 1.3x slowdown of the MAP-
based NAMD code compared to the original CPU-
based implementation. The results produced by our

MAP-based code are correct for the most part, with
some minor errors due the reduced numerical
resolution used in our MAP implementation.

A question arises: What would constitute a fair
performance comparison? Should we use the overall
execute time that includes associated function call
overheads, (that is, 12.05 seconds), or should we use
just the time spent on FPGA performing only the
relevant calculations (10.26 seconds in our case) as the
performance measure? We have chosen to use the
overall execution time that includes the compute time
and all the related function call overheads.

It is interesting to note that since we have a fully
pipelined implementation of the inner loop, we always
spend just one clock cycle to either perform the entire
set of calculations (if the atoms are within the cutoff
radius from each other) or to skip them entirely (if the
atoms are too far from each other). This is a very
different behavior from what is happening with the
microprocessor-based implementation. There, we skip
a significant number of calculations if the atoms are
too far from each other. The CPU-based code,
execution time therefore, will change when we change
the cutoff radius whereas the FPGA-based model
execution time will remain constant. Thus, if the
cutoff radius was set large enough to include all the
atoms in the neighbor patches, the overall compute
time of the CPU-only design would be just over 800
seconds as shown in Section 5.1, whereas the FPGA-
based design would still execute in just 12.05 seconds,
which would constitute a 66x speedup.

5.3. Dual chip MAP Series C design

Since our initial design already occupies 87% of
available SLICEs, we are unable to utilize the data-
level parallelism on the same chip; that is, we cannot
place two compute engines on the same FPGA.
However, we should be able to utilize the secondary
FPGA chip available in the SRC-6 MAP. Thus, in our
next design, we spread the calculations between two
FPGA chips in such a way that the primary chip
performs half of the calculations and the secondary
chip performs another half of the calculations and the
results are merged at the end as they are streamed out.
We still keep inner loops on both chips pipelined with
the same pipeline depth as in the single chip design.
The primary chip is responsible for bringing in the data
and distributing it between two chips, merging the
results from both chips, and streaming them out.

The place and route report indicates that the same
59% of the hardware multipliers are used on the
primary chip; however, only 50% of the BRAM blocks
are required since now the data are distributed between

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006

two chips. Also, about 92% of SLICEs are now in use
on the primary chip as there is more logic required to
implement the inter-chip communication. On the
secondary chip, we use 61% of the hardware
multipliers, 50% of BRAM, and 78% of SLICEs. The
overall execution time now is 6.92 seconds--5.13
seconds are due to the calculations (about half of the
previous design) and 1.79 seconds are due to other
expenses, as before. Comparing 6.92 seconds to the
original 9.25 seconds of the same code running on the
CPU, we have achieved a 1.3x speedup. (It would be
over 100x for a larger cutoff radius, as we discussed in
the previous section.)

5.4. Dual chip MAP Series E design

The first dual chip design simply takes advantage of
the trivial parallelism; that is, we cut the overall
compute time in half by dividing the work between
two equivalent compute engines. Unfortunately, this
all we can do on the SRC-6 MAP Series C that uses
XC2V6000 FPGAs; there is simply not enough space
on the chip to place any more compute pipelines.
SCR-6’s XC2VP100-based MAP Series E system
offers more space, hardware multipliers, and BRAM
memory blocks to place one additional compute engine
on each chip. Thus, our next step is to port the code to
the MAP Series E (XC2VP100 FPGA)-based system.

It is a simple recompile to get our original code
developed for the MAP Series C system to run on the
MAP Series E system. However, we want to extend
the code to divide the work between four compute
engines, two per FPGA. This requires distributing
lookup tables and input data between twice as many
memory banks so that we can have independent access
to all the required data in a single clock cycle. This
also requires designing a more elaborate result
assembling engine since the forces for each input atom
are now partially computed by each of four compute
engines. The primary chip is responsible for bringing
in the input data and distributing it between the
compute engines and also assembling the final results
and streaming them out, as before. Perhaps the only
other significant difference on this design is that we do
not use OBM memory banks anymore to store the
input data; instead we use the BRAM memory blocks
as there is more BRAM memory available in
XC2VP100 FPGAs. OBM memory is still used to
store the results obtained on the secondary chip.

When we compile this design, we observe that the
pipeline depth for the inner loops of each of the
compute engines is now 150 clock cycles due to the
elimination of the OBM memory access and other
minor optimizations that we have implemented in the

process of modifying the FPGA design. The place and
route report indicates that the SLICEs utilization on the
primary chip is 97%, but we use only 28% of the
available hardware multipliers and 40% of BRAM
blocks. SLICEs utilization of the secondary chip is
87%, and the hardware multipliers and BRAM
memory usage are the same as on the primary chip.
The design meets timing specifications and executes in
just 3.57 seconds, of which 2.58 seconds are due to the
calculations and the remaining 0.99 seconds are due to
the usual function call overhead and data transfer
overhead. Note that on the XC2VP100-based SRC-6
MAP system this extra overhead is somewhat smaller
than on the XC2V6000-based system. Thus, we
achieved a 2.5x speedup as compared to the CPU-
based code. (Note that it would be over 200x for a
larger cutoff radius.)

Perhaps we can still gain some performance if we
merge the inner and outer loops in a fully pipelined
manner and therefore eliminate the pipeline depth
penalty mentioned in Section 5.2. This, of course,
requires a significant code revision as we cannot reuse
the same memory banks for the inner and outer loop.
When we made all the necessary changes, the overall
compute time became 3.07 seconds: 2.08 seconds due
to the calculations (thus, we saved about 0.5 seconds)
and 0.99 seconds due to various overheads This
resulted in a 3x overall speedup.

5.5. An alternative design

We cannot continue adding more compute engines
as we have reached the limits of available space on the
MAP Series E FPGAs. However, we may be able to
achieve a better performance if we restructure our code
to take advantage of the fact that force calculations are
not required for the vast majority of atom pairs. We
currently check the distance between all atom pairs,
and then perform the force calculations on atom pairs
that pass the distance check. This wastes a clock cycle
for each pair of atoms that fails the distance check.
Calculating the distance between a pair of atoms does
not require much of the FPGA’s resources, therefore it
might be possible to implement several distance
compute engines in parallel so that we can search
through all the input data much faster and call the
interaction calculations section of the code only as
many times as there are force values to compute.
Ideally, we would like to start the interaction
calculations as soon as one of the distance compute
engines identifies a pair of suitable atoms.
Unfortunately, this is difficult to implement with the
current MAP C version as all the streaming primitives
supplied by SRC can only have a single source and

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006

there is no multiple input/single output FIFO
primitives available. Perhaps a suitable data buffering
mechanism can be implemented in a low-level
language, but this is beyond the scope of our present
work. Instead, our parallel distance compute engines
store found atom pairs in separate arrays that are later
merged into a single array, which is then used by the
interaction calculations engine – not an optimal
solution.

The performance of this approach is difficult to
predict as it is wholly data-dependent. If we introduce
N simultaneous distance compute engines, then we can
sort through the input data in 1/N of the time that
would be required using the implementation discussed
in Section 5.2. But we cannot know in advance how
many atom pairs are within the cutoff radius, and
therefore we cannot tell how many clock cycles it will
take to run the force calculations. The worst case
would be if all the atoms are within the cutoff radius
and therefore we add M/N clock cycles in addition to
our usual M clock cycles to the calculations where M
is the total number of atom pairs. The best case
scenario would be when none of the atoms are within
the cutoff radius and thus we discover this in just M/N
clock cycles instead of our usual M clock cycles. The
reality, of course, is somewhere in-between.

We have implemented this approach on the
XC2VP100-based SRC-6 MAP Series E system with
six distance compute engines and one force compute
engine per FPGA. The design complexity, as
compared to all our previous implementations, has
increased significantly, yet the code executes in just
3.02 seconds as compared to 3.08 seconds for our
previous design.

6. Discussion and conclusions

In the previous section, we outlined a path that one
may find useful in order to port a scientific code, such
as NAMD, to SRC-6 and other RC platforms. To
summarize, we began with the run-time analysis of
NAMD computational core and identified what part of
the code should be ported in order to accelerate the
overall code performance and what compromises are to
be made if we decide to port one or another section of
the code. We then isolated the code to be ported to
FPGA into a separate standalone function and took
care of data translation between the C++ classes and
1D arrays suitable for FPGA. With this code we
conducted performance measurements, estimated
FPGA resource requirements, and predicted the
execution time of the MAP-based code to gain an idea
of what to expect when we first port the code to MAM.

We then proceeded to port the code inside the
outsourced function with the goal of obtaining a MAP
implementation that worked and produced the correct
numerical results. We outfitted this design with time
measurement macros to verify that our theoretical
performance estimates were inline with the actual
code. Our initial estimation of the compute time on the
FPGA was mostly correct; however, our estimation of
the performance penalty due to the MAP function call
overhead was not as precise. We then proceeded to
perform several design iterations of the code based on
our observation of the FPGA resource utilization and
design performance.

Our experience with this and other codes shows that
a sensible approach is to run over several iterations,
starting with the simplest, most straightforward
implementation and gradually adding to it until we
either find the best solution or run out of FPGA
resources. We started with just over 100 lines of code
that runs on a CPU in just 9.25 seconds for one
simulation step and ended with over 1,000 lines of
code that requires both the CPU and MAP
involvement, although the actual calculations are done
on MAP, and executes in just 3.07 seconds. Our
MAP-based implementation is three times faster then
the original code. These results, of course, are data-
dependent, as we have seen that for a larger cutoff
radius the original CPU code executes in over 800
seconds, which would constitute a 260x speedup. Our
3x speedup perhaps is not worth the effort; however,
the 260x speedup would well be worth the
development effort undertaken.

As one can see, a noticeable effort in our work was
due to the need to translate data between the C++ data
storage mechanisms and the system defined
MAP/FPGA data storage architecture. When starting
to develop a code from scratch to run on an FPGA
architecture, one would implement from the beginning
the data storage mechanisms compatible between the
CPU and FPGA. This, however, is rarely the case for
an existing code, and it adds to the amount of work to
be done in porting the code.

Our final design described in Section 5.4 occupies
almost all available SLICEs, yet utilization of memory
banks and hardware multipliers is low. Thus, we have
reached the SLICEs limit before any other resource
limits. This perhaps indicates that we should consider
ways to restructure the code to make greater use of
other available resources. One way may be to overlap
calculations with data transfer for the next dataset and
thus use more of the available on-chip memory.

One might ask why have we achieved such a
modest speedup while numerous other papers and
reports claim 10x-100x speedup for many codes.

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006

Consider the fact that until now most FPGA code
development has begun with writing code that
implements a textbook algorithm, with no or little
optimization. When such an unoptimized code is
ported to an RC platform and care is taken to optimize
the FPGA design, a 10x-100x speedup is easily
achievable. In contrast, we began with code that has
been in existence for the past decade and that has been
thoughtfully optimized to run on the CPU-based
platform. Such code successfully competes with its
FPGA-ported counterpart.

The difference between the production-grade,
highly optimized molecular dynamics code and a
textbook MD example perhaps can be best
demonstrated as follows. Both [10] and [11] use the
same textbook MD code and report comparable results
for running the reference code with 8,192 particles.
Thus, in [10] a single simulation step runs in 9.5
seconds on a 2.4 GHz Xeon platform. For comparison
[7], NAMD runs one simulation step involving 92,224
atoms in just over 2 seconds on a 1.6 GHz Itanium 2
platform!

In light of this, a 3x performance increase of this
heavily optimized code is significant in that it
illustrates the potential of reconfigurable system
technology. Remember that it is a 100 MHz FPGA
achieving a 3x application performance improvement
over a 2.8 GHz CPU, and FPGAs are on a faster
technology growth curve than CPUs [14].

8. Acknowledgements

This work was funded by the National Science
Foundation grant SCI 05-25308. NAMD was
developed by the Theoretical and Computational
Biophysics Group in the Beckman Institute for
Advanced Science and Technology at the University of
Illinois at Urbana-Champaign. We are especially
grateful to Dr. James Phillips from the Theoretical and
Computational Biophysics Group for his help with
NAMD. Access to SRC-6 MAP Series C and E
MAPstations was provided by SRC Computers Inc.
We also would like to thank David Caliga, Dan
Poznanovic, and Jeff Hammes, all from SRC
Computers Inc., for their help and support with the
SRC-6 system. Our special thanks are for Dr. Craig
Steffen and David Raila from the NCSA’s Innovative
Systems Laboratory for their contribution to the work
and Trish Barker form NCSA’s Office of Public
Affairs for the help in preparing this publication.

9. References

[1] M.B. Gokhale, and P.S. Graham, Reconfigurable
Computing : Accelerating Computation with Field-
Programmable Gate Arrays, Springer, Dordrecht, 2005
[2] Cray Inc., Seattle, WA, Cray XD1 Datasheet, 2004.
[3] Silicon Graphics Inc., Mountain View, CA, SGI RASC
Technology Datasheet, 2005.
[4] SRC Computers Inc., Colorado Springs, CO, SRC
Systems and Servers Datasheet, 2005.
[5] SRC Computers Inc., Colorado Springs, CO, SRC C
Programming Environment v 1.9 Guide, 2005.
[6] Mitrionics Inc., Lund, Sweden, The Mitrion-C
Programming Language, 2005.
[7] J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E.
Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, and K.
Schulten, “Scalable molecular dynamics with NAMD”,
Journal of Computational Chemistry, 26:1781-1802, 2005.
[8] S. Toyoda, H. Miyagawa, K. Kitamura, T. Amisaki, E.
Hasimoto, H. Ikeda, A. Kusumi, and N. Miyakawa,
“Development of MD engine: High-speed acceleration with
parallel processor design for molecular dynamics
simulations”, Journal of Computational Chemistry,
20(2):185–199, 1999.
[9] T. Fukushige, M. Taiji, J. Makino, T. Ebisuzaki, and D.
Sugimoto, :A highly parallelized special-purpose computer
for many-body simulations with an arbitrary central force:
Md-grape”, The Astrophysical Journal, 468:51–61, 1996.
[10] Y. Gu, T. Van Court, D. DiSabello, M.C. Herbordt,
“Preliminarly report: FPGA acceleration of molecular
dynamics computations”, in Proc. 13th Annual IEEE
Symposium on Field-Programmable Custom Computing
Machines (FCCM'05), pp. 269-270, Nappa, CA, 2005.
[11] N. Azizi, I. Kuon, A. Egier, A. Darabiha, and P. Chow,
“Reconfigurable Molecular Dynamics Simulator”, in Proc.
12th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM'04), pp. 197-206,
Nappa, CA, 2004.
[12] R. Scrofano, and V.K. Prasanna, “Computing Lennard-
Jones Potentials and Forces with Reconfigurable Hardware”,
In Proc. International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA'04), pp. 284-
292, Las Vegas, NV, 2004.
[13] O. Fidanci1, D. Poznanovic, K. Gaj, T. El-Ghazawi, N.
Alexandridis, “Performance and Overhead in a Hybrid
Reconfigurable Computer”, In Proc. 10th Reconfigurable
Architectures Workshop (RAW'2003), p. 176b, Nice, France,
2003.
[14] K. Underwood, “FPGAs vs. CPUs: Trends in Peak
Floating Point Performance,” In Proc. 12th ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, Monterey, CA, 2004, pp 171-180.

10. Appendix

http://www.ncsa.uiuc.edu/~kindr/papers/FCCM06-
appendix.pdf

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006

