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Abstract

This case study presents the results of porting a 
production scientific code, called NAMD, to the SRC-6 
high-performance reconfigurable computing platform 
based on Field Programmable Gate Array (FPGA) 
technology.  NAMD is a molecular dynamics code 
designed to run on large supercomputing systems and 
used extensively by the computational biophysics 
community.  NAMD’s computational kernel is highly 
optimized to run on conventional von Neumann 
processors; this presents numerous challenges to its 
reimplementation on FPGA architecture.  This paper 
presents an overview of the SRC-6 architecture and the 
NAMD application and then discusses the challenges, 
solutions, and results of the porting effort.  The 
rationale in choosing the development path taken and 
the general framework for porting an existing 
scientific code, such as NAMD, to the SRC-6 platform 
are presented and discussed in detail.  The results and 
methods presented in this paper are applicable to the 
large class of problems in scientific computing. 

1. Introduction 

Computational scientists aggressively seek floating 
point application performance improvements beyond 
those implied by Moore’s Law.  Reconfigurable 
computing (RC) [1] based on the Field Programmable 
Gate Array (FPGA) technology is one of the 
technologies that have the potential to yield 
performance improvements for many demanding 
computational tasks.  Until recently, however, its 
potential has been largely locked from the scientific 
computing community due to limited FPGA resources 
(e.g., lack of support for floating point arithmetic), 
general unavailability of the tightly coupled RC/CPU 
systems, and a lack of high-level programming 
languages suitable for a rapid FPGA code 
development.  This changed with the recent 

introduction of several high-performance RC (HPRC) 
platforms, such as Cray XD1 [2], SGI RASC [3], and, 
most relevant to this paper, SRC-6 MAP™ [4] and 
accompanying Carte™ development tools [5].  These 
synergetic systems provide a tight coupling between 
the code executed on the host microprocessor and the 
FPGA and exploit coarse-grain functional parallelism 
through conventional parallel processing as well as 
fine-grain parallelism through direct hardware 
execution on FPGAs. 

Even though commercially available high-level 
languages, such as MAP C [5] and Mitrion-C [6], 
greatly reduce the complexity of code development 
efforts for RC platforms, porting an existing scientific 
code to an RC platform using one of these languages is 
not as simple as just recompiling the code with a 
different compiler to run on a different microprocessor 
system.  It requires adaptation of the code to the 
available FPGA resources – something scientific code 
application developers are not familiar with.  The 
software developers need to be hardware-savvy in 
order to produce an efficient code, but even then it is 
not always possible to gain the maximum performance 
without writing low-level routines in hardware 
languages, such as VHDL or Verilog. 

The goal of this paper is to demonstrate the process 
of porting an existing scientific code to a modern RC 
platform and to show the difficulties that must be 
surmounted in order to produce a workable solution.  
More specifically, this paper reports on the efforts to 
port a production-grade molecular dynamics (MD) 
code, NAMD [7], to a modern production RC 
platform, the SRC-6 MAP [4], using a high-level 
language, MAP C [5].  While a number of papers [8-
12] have been published in the past few years about 
implementing a textbook MD code on an RC platform, 
to our knowledge this is the first attempt to port an 
existing production-grade MD code that is extensively 
optimized to run on large parallels systems and is 
routinely used by the scientific community.  To our 
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knowledge, this is also the first attempt to port an MD 
code to a mainstream production HPRC system using a 
high-level programming language rather than to an 
experimental RC platform using VHDL or Verilog, as 
in [10-12], or even a hardware system specifically 
designed to run MD simulation [8, 9]. 

NAMD [7] is a parallel molecular dynamics code 
designed for high-performance simulation of large 
biomolecular systems.  It currently accounts for the 
largest number of compute cycles on NCSA’s 
production supercomputing systems and, as such, has a 
continuous demand for performance improvements.  
Therefore it was natural to select this code to port to an 
RC platform in this test-case study. 

SRC-6 MAP [4] was selected as the target platform 
because it is one the most readily available production 
RC systems on the market.  The development toolset, 
called Carte [5], supplied by the vendor was another 
reason, as it provided a clear path for code partitioning 
and code porting to the FPGA as well as a convenient 
debugging and simulation environment. 

This paper is intended to serve as a collection of the 
RC code development recipes that one might refer to 
when considering porting a scientific code to an RC 
platform.  As we go through the code examples, we 
demonstrate why even a 3x speedup of the code ported 
to an RC platform (compared to the code executed on 
the host CPU platform) requires some significant 
software development efforts.  We also demonstrate 
how the code performance on an RC platform can be 
estimated even before it is written.  This allows a 
programmer to evaluate the suitability of the given RC 
system for the given problem. 

2. Related work 

A number of related efforts to develop an MD code 
on various hardware platforms have been reported in 
the literature.  They range from developing 
Application Specific Integrated Circuit (ASIC) chips 
[8-9] to FPGA-based systems [10-12].  We will review 
the work by N. Azizi et al. [11] and R. Scrofano and 
V. Prasanna [12] as it is the most relevant to our effort. 

In [11], the authors used the Transmogrifier 3 
(TM3) FPGA platform and implemented the code in 
VHDL.  A complete simulation cycle, including 
particle pair interaction calculations and position 
updates, is implemented on TM3 platform.  Location 
of each particle in the simulation is stored in the 
SRAM banks on the TM3.  For each time step of the 
simulation, the pair generator module calculates the 
distances between pairs of particles, the Lennard-Jones 
(L-J) force calculator module uses this distance to 

compute force between them, and the acceleration 
update module sums up the computed force to obtain 
the total acceleration for each particle.  Finally, the 
Vertel update module updates the position and velocity 
of each particle based on the computed acceleration.  
These steps are repeated until all particle pairs have 
been examined.  The L-J force calculator stores the L-J 
potential function in a lookup table and uses this table 
to interpolate a more accurate value.  Varying 
precision, typically between 22 and 76 bits, was used 
to represent various data fields.  The system was able 
to simulate an 8,192 particle model at a rate of 37 
seconds per one time step while running at 26 MHz.  
The CPU-based benchmark code runs in 10.8 seconds 
on a 2.4 GHz P4 platform.  The authors extrapolate 
that with better FPGA memory organization and faster 
FPGAs, a speedup of 40x to 100x over a 
microprocessor implementation can be achieved. 

In [12], a fully pipelined VHDL implementation of 
L-J potential and force equations on a Xilinx Virtex-II 
Pro XC2VP125 FPGA is presented.  The 119-stage 
pipeline – consisting of several adders, multipliers, 
divides, and a square root operation and running at 122 
MHz – is set up to accept one squared particle-particle 
distance as input and computes two 64-bits wide 
results (potential and force) as output using IEEE 754 
double precision floating point arithmetic.  The authors 
compare their design with similar code executed on 
several microprocessor platforms and find their design 
to achieve 3.9 GFLOPS throughput compared to 1.5 
GFLOPS throughput obtained on an Itanium2 900 
MHz system. 

Both [11] and [12] are concerned with the 
implementation of L-J force calculator, although [11] 
goes a step further by implementing the complete 
simulation cycle.  It is not clear from [12] how the 
interface between the host system and the design 
executed on the FPGA is set up and how the developed 
system can be integrated with a complete MD 
simulation.  None of the related efforts to implement 
an FPGA-based MD simulation design are concerned 
with the problem of accelerating existing MD 
simulation software and none of the FPGA-based MD 
codes that we have read about have been tested with 
more than just a few thousand particles. 

3. SRC-6 and Carte 

The SRC-6 MAPstation [4] used in the course of 
this study consists of a commodity dual CPU Xeon 
motherboard, a MAP Series C processor, and an 8 GB 
common memory module, all interconnected with a 1.4 
GB/s low latency switch.  The SNAP™ Series B 
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interface board is used to connect the CPU board to the 
Hi-Bar switch.  The SNAP plugs directly into a CPU 
board’s DIMM memory slot. 

The MAP Series C processor module contains two 
user FPGAs, one control FPGA, and memory.  There 
are six banks (A-F) of on-board memory (OBM); each 
bank is 64 bits wide and 4 MB deep for a total of 24 
MB.  The programmer is responsible for application 
data transfer to and from these memory banks via the 
use of SRC programming macros invoked from the 
FPGA application.  There is an additional 4 MB of 
dual-ported memory dedicated solely to data transfer 
between the two FPGAs. 

The two user FPGAs in the MAP Series C are 
Xilinx Virtex-II XC2V6000 FPGAs.  They each 
contain 67,584 4-input lookup tables, 67,584 flip flops, 
144 dedicated 18x18 integer multipliers, and 324 KB 
of internal dual-ported block RAM (BRAM).   The 
144 hardware multipliers are sufficient to have up to 
36 single precision floating point multiplication 
operators in the design.  These FPGA elements are not 
directly visible to the programmer but are 
interconnected appropriately as determined by the 
programmer’s MAP C algorithm code, the SRC Carte 
programming environment [5] tools, and the Xilinx 
FPGA place and route tools.  The FPGA clock rate of 
100 MHz is set by the SRC programming environment. 

The MAP Series E processor module, also used in 
the course of this study, is identical to the Series C 
module with the exception of the user FPGAs.  The 
two user FPGAs in the MAP Series E are Xilinx 
Virtex-II Pro XC2VP100 FPGAs.  They each contain 
88,192 4-input lookup tables, 88,192 flip flops, 444 
dedicated 18x18 integer multipliers, and 999 KB of 
internal dual-ported block RAM.  The 444 hardware 
multipliers are sufficient to have up to 111 single 
precision floating point multiplication operators in the 
design. 

The Carte programming environment [5] for the 
SRC MAPstation is highly integrated, and all 
compilation targets are generated via a single makefile.  
The two main targets of the makefile are a debug 
version of the entire program and the combined 
microprocessor code and FPGA hardware 
programming files.  The debug version is useful for 
code testing before the final time-intensive hardware 
place and route step.  The Intel icc compiler is used to 
generate both the CPU-only debug executable and the 
CPU-side of the combined CPU/MAP executable.  The 
SRC MAP compiler is invoked by the makefile to 
produce the hardware description of the FPGA design 
for final combined CPU/MAP target executable.  This 
intermediate hardware description of the FPGA design 
is passed to the Xilinx ISE place and route tools, which 

produce the FPGA bit file.  Lastly, the linker is 
invoked to combine the CPU code and the FPGA 
hardware bit file(s) into a unified executable. 

4. NAMD 

A detailed description of the underlying physical 
model used in NAMD can be found in [7].  Here we 
are mostly concerned with the problem of porting the 
existing NAMD code written in C++ to FPGA using 
MAP C language, therefore we provide analysis of the 
source code instead. 

The core of NAMD simulation is a function that 
computes force exerted on each atom (a simplified 
version of which is given in Code Listing 1 of the 
Appendix, calc_both subroutinge).  This force later  is 
applied to move the atoms according to the Newtonian 
equation of motion.  In the current implementation, we 
only focus on the van der Waal’s forces (approximated 
by the L-J 6-12 potential) and electrostatic interactions 
between the nonbonded atom pairs.  Several 
optimization techniques have been employed in 
NAMD to reduce the time needed to compute the 
forces.  Thus, the entire simulation space is divided 
into 3D cells, called patches, whose size is related to 
the cutoff radius beyond which no interaction 
calculations are performed.  The atoms from each 
patch are run against themselves and against the atoms 
from the 13 neighbor patches (Newton’s third law of 
motion is applied here to eliminate redundant 
calculations) and the corresponding interaction 
calculations are performed on these patches.  Cutoff 
radius is applied to limit the calculations to only those 
atoms that are close to each other.  The smooth 
particle-mesh Ewald (SPME) method is used for full 
electrostatic computations with the direct component 
of PME sum substituting the Coulomb equation.  
Interpolation tables are used for both L-J potential and 
Coulomb: All of the fast_ terms are Coulomb (or PME 
direct sum), and all of the vdw terms belong to L-J 
potential.  The use of these tables eliminates the need 
for floating point division and square root operations. 

Thus, as one can see, NAMD works very differently 
from a textbook MD code.  Its algorithmic structure 
and code optimization strategies are well tailored to the 
microprocessor architecture.  The textbook code, on 
the other hand, typically implements a set of full-
blown calculations and has none of the optimizations 
applied, which makes it easier to speed up the basic 
force computations on FPGAs. 

The code snapshots shown in the Appendix are 
taken from an earlier version of the benchmark kernel 
extracted from NAMD version 2.4 with a few 
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additional modifications made per our request: The 
exclusion or modification of nonbonded interactions 
between pairs of atoms connected by three or fewer 
bonds is eliminated, bonded force calculations are 
omitted, and the code is modified to use a reduced 
numerical resolution (single precision floating point 
instead of the double precision as in the production 
code).  These ‘minor’ code alterations of course make 
it impossible to perform a direct performance 
comparison of our code with the production NAMD 
code, but they are necessary to make the problem of 
porting the code to the FPGA tractable.  Nevertheless, 
even with these modifications, the code is still valid for 
properly formulated problems. 

The computational complexity of a molecular 
dynamics code, such as NAMD, is well understood 
[7].  It is the nonbonded particle-particle interaction 
that is responsible for the vast majority of the 
computational time: In a brute force approach, there 
would be N2 particle-particle interactions.  NAMD 
avoids the O(N2) computational complexity by 
applying the numerous optimization techniques 
mentioned above, yet the nonbonded particle-particle 
interaction kernel is still the most computationally 
expensive portion of the code, and it is responsible for 
over 80% of the overall time spent by the simulation.  
This is an important observation as it will be 
instrumental in helping us to decide what portion of 
the NAMD code should be ported to MAP. 

A typical NAMD simulation consists of 100,000 
atoms, with 300,000 atoms being occasionally used at 
the high-end, simulated for the duration of several 
nanoseconds on a 64+ microprocessor system [7].  As 
an example, for a representative system of 92,224 
atoms simulated for a 1 ns simulation (one million time 
steps of 1 femtosecond each), a typical simulation time 
on the NCSA’s 128 CPU SGI Itanium platform is 5.1 
hours, with the simulation of a single 1 femtosecond 
step taking about 0.018 seconds.  The same system of 
atoms simulated on a 64 CPU Xeon cluster requires 
over 16 hours. 

5. Porting NAMD to SRC-6 MAP 

How does one approach the problem of porting an 
existing scientific code to an HPRC platform?  First, 
the programmer needs to look into what sort of 
computational operations need to be accelerated.  This 
is typically accomplished with the help of a code 
profiling tool, such as gprof.  Second, one needs to 
identify what portion of the code embedding these 
operations should be ported.  There is an important 
difference between the code that needs to be 

accelerated and the code that should be ported to 
FPGA.  For example, looking at Code Listing 1, it is 
obvious that the inner loop calculations in calc_both
subroutine are responsible for all the execution time.  
Yet if we only port the inner loop calculations to 
FPGA, we risk wasting too much time due to the 
frequent data transfer between the MAP and the host 
system and MAP function call overhead associated 
with invoking the SRC-6 MAP subroutine.  Therefore, 
we should consider porting code that includes the outer 
loop instead. 

But how about just one level above, that is, the 
runComputes subroutine?  This would eliminate the 
need to call the MAP subroutine multiple times, right?  
It turns out that the amount of data that the 
runComputes subroutine operates on, in general, is 
unbounded, and there is a risk that for some 
simulations we may not have enough memory 
available on MAP.  On the other hand, the calc_both
subroutine operates on small data patches, typically 
from a few hundred to a thousand data points.  
Therefore, by porting the calc_both subroutine instead 
of the runComputes subroutine, we make a 
compromise between the number of MAP function 
calls and the amount of data that needs to be available 
on MAP at once.  By porting the outer loop inclusively 
rather than porting only the inner loop calculations, we 
make a compromise between the number of MAP 
function calls and the complexity of the code to be 
implemented on MAP. 

Now that we know what code segment should be 
ported to MAP, how can we be sure that there are 
enough FPGA resources for the code to fit?  Resource 
needs for hardware multipliers and memory can be 
estimated based on the number of the multiplications 
and memory allocations in the original code.  
However, FPGA space needs are much harder to 
gauge.  There are over 30 multiplication operations in 
the original NAMD code shown in Code Listing 1.  
Not all of them, however, operate on the floating point 
numbers, and some of them are used to compute 
pointer offsets.  Therefore, as we port the code, we will 
likely reduce the number of multiplications.  However, 
even with 30 multiplication operations present, there 
are just enough hardware multipliers to accommodate 
all of them while using SRC’s multiply macros.  We 
also estimate that the calc_both subroutine requires 
access to less than 100 KB of memory, which is 
certainly not a problem for XC2V6000 FPGA.  
However, we will have to postpone finding out about 
space requirements for the design until we actually 
map it to the FPGA. 

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00  © 2006



5.1. Host CPU code 

Now that we decided what code segment to port to 
MAP, what is the next step?  Even though MAP C is 
very much an ANSI C-like language, a significant 
effort is required to port NAMD to MAP C.  There are 
two main difficulties: absence of the high-level data 
structures present in ANSI C and memory usage 
considerations on the SRC-6 MAP.  The first issue can 
be addressed by converting C/C++ data structures to 
one-dimensional arrays; the second issue requires a 
detailed analysis of the execution structure of the code 
in order to develop a fully pipelined FPGA 
implementation.  There are other considerations that 
will become obvious as we attempt to port the code. 

What data are involved with the nonbonded force 
calculations?  First, atom data stored in the CompAtom
class: atom displacement, charge, and type.  Second, 
three force values stored in the Force class.  And 
finally, two lookup tables accessible through ljTable
and table_four pointers.  Note that the lookup tables 
remain constant between the calls to the calc_both
subroutine, therefore they can be loaded to the MAP 
memory only once, whereas atom and force data 
change between the function calls. 

How do we send C++ data structures and classes to 
the MAP memory?  In order to do this, we need to 
copy the data from these structures to 1D arrays whose 
characteristics are set according to the memory 
structure supported by SRC-6 MAP.  The basic 
memory transfer unit on this system is a 64 bits wide 
word that can be split on the FPGA into 4, 8, 16, or 32 
bits wide data types, including a 32 bits wide integer 
and a 32 bits wide floating point number [5].  
Therefore, we have to pack our data into arrays of 64 
bits wide words that later can be unpacked on the 
FPGA into appropriate data types.  This is trivial for 
the lookup tables as they both consist of double 
precision (64 bits wide) floating point numbers that we 
further reduce to the single (32 bits wide) precision.  
Code Listing 2 shows how these lookup tables are 
copied to the fpga_table_four and fpga_lj_pars linear 
arrays. 

Data translation for the CompAtom and Force
classes is not as trivial as it is not all of the same type 
(e.g., displacement and charge are stored as 32 bits 
wide floating point numbers whereas force values and 
atom type are stored as integers).  First, we declare two 
data structures, fpga_I_D and fpga_O_D, that will hold 
all the required input and output data for each atom 
(see Code Listing 2).  We need to make sure that the 
size of these data structures is a multiple of 64 bits; 
thus, in the case of fpga_O_D we add an extra 32 bits 
wide field which will be unused, but needs to be 

present (this can be optimized later).  By using 
continuous 1D arrays of elements of data structures 
like these, we ensure that the entire dataset to be sent 
to MAP will occupy a continuous memory block and 
thus can be transferred to MAP at once. 

Now that we have all the data translation code 
written as shown in Code Listing 2, we are ready to 
outsource the actual computations to MAP.  Note that 
we need to copy atom input data and force output data 
between the MAP memory and the host memory each 
time we call the MAP function. 

Note that now the calc_both subroutine is 
composed only with the data transfer code; the actual 
calculations are hidden in the map_compute_func
subroutine, which is to be implemented on MAP.  Also 
note that the lookup table data translation and memory 
allocation for the atom input and force output data 
needs to be done only once per the entire simulation, 
whereas atom input and force output data need to be 
copied in and out for each data patch, that is, for each 
call to the calc_both subroutine (a static variable 
firsttime is used to flag this). 

At this point, we can also consider the issue of 
performance measurements and obtain some results for 
the code executed purely on the host system.  First, we 
move the actual calculations code from calc_both to 
the map_compute_func subroutine with the appropriate 
modifications to the data structures used.  Second, we 
instrument the code with timers (gettimeofday library 
function calls) in such a way that we can measure the 
overall executing time for the calc_both subroutine 
and the time spent by the map_compute_func
subroutine alone.  We accumulate these time 
measurements over the duration of one simulation step, 
which includes multiple calls to calc_both.  We run the 
code with the dataset containing 92,224 atoms [7] just 
for one simulation step.  This results in 2,016 calls to 
the calc_both subroutine (there are 144 data patches in 
the dataset and each patch is used 14 times).  The 
original code shown in Code Listing 1 executes in 9.25 
seconds (wall clock) on a 2.8 GHz Intel Xeon 
processor, whereas the code shown in Code Listing 2 
executes in 9.96 seconds, where the 
map_compute_func routine is responsible for 9.9 
seconds and the remaining 0.06 seconds are due to the 
data translation overhead.  So far our modifications of 
the code have resulted in the overall slowdown by 
approximately 0.71 seconds. 

We should point out that the overall compute time 
for this code heavily depends on the simulation 
parameters set by the user, particularly the cutoff 
radius value.  In the present dataset, a vast majority of 
the atoms are outside the cutoff radius from each other, 
therefore the “r2 > cutoff2” test eliminates a 
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significant number of unnecessary calculations.  Just as 
a thought experiment, if all the atoms in the 
neighborhood patches would be within the cutoff 
radius from each other (or if the cutoff radius is set to 
be large enough), the overall compute time would be 
just over 800 seconds instead of 9.25 seconds.  We 
will refer to this observation in the sections that follow. 

5.2. Single chip MAP Series C design 

Now that we have taken care of data translation 
between the host platform and MAP, all that is left is 
to translate the actual computational kernel code to 
FPGA!  First, one should consider porting the code as
is to obtain an executable that produces the correct 
results.  Only then one should consider how to 
optimize the code to gain the best overall performance.  
Why?  First, even the simplest code translation to 
MAP C will likely involve dealing with a number of 
issues, such as data mapping to MAP memory, 
pipelining the loops, etc.  Thus, many issues will be 
resolved.  Second, one will have a ‘reference design’ 
for analysis and comparison to future results.  Third, 
one will be able to get a good measure of the FPGA 
resources utilization to achieve just the basic 
implementation.  This will be handy in deciding if any 
of the likely optimizations will fit on the chip; thus one 
could avoid starting with a design that cannot fit on the 
chip.  And finally, at this stage of the development one 
can estimate the overall code performance even before 
the code is written and compare it with the 
performance after the code is running.  If the results 
agree in bulk, one is likely to be on the right track as 
far as understanding the code and the issues at hand. 

Let us first analyze the possible performance of a 
straight as is code port to SRC-6 MAP.  From running 
our 92,224 atoms test case consisting of 144 atom 
patches, we know that: there are 144*14=2,016 calls to 
the calc_both subroutine; 144 calls involve the same 
patches and 1,872 calls involve pairs of the neighbor 
patches; and each call on average involves checking 
640 atoms from one patch against 640 atoms from 
another patch.  Thus, there are ~6402*1,872+((640-1)*
640/2)*144=796,216,320 interaction calculations to be 
performed.  If we design a fully pipelined 
implementation of the inner loop of the calc_both
subroutine that will take one FPGA clock cycle to run 
just one of these calculations, then it will likely take 
796,216,320/1e8 7.96 seconds to run just the inner 
loop calculations (MAP FPGAs operate at 1e8 Hz) 
plus the pipeline depth penalty for each call to the 
inner loop.  It is difficult to know in advance what the 
pipeline depth might be; for example, if we estimate it 
to be 150 clock cycles, then the overall pipeline depth 

penalty can be computed as ~(640*1,872+639*144)* 
150/1e8 1.94 seconds.  There are also data to be 
transferred in and out: (640*2*1,872+640*144)* 
12*4=119,439,360 bytes of data in total, which will 
take about 119,439,360/16/1e8 0.08 seconds plus 
some additional time to arm the DMA engine and 
distribute the data to MAP memory, as needed.  Also, 
there is a MAP function call overhead on the order of 
220 microseconds per call (based on our own 
measurements), resulting in 220*2,016*1e-6 0.44
seconds plus about 100 milliseconds to initialize the 
PFGA when it is called the first time [13] and plus 
some time to load up the lookup tables.  Therefore, 
based on the estimated number of clock cycles needed 
to perform the required operations, we would expect 
our MAP code to run in over 11 seconds with the bulk 
of time (7.96+1.94=9.9 seconds) spent doing actual 
calculations and some time spent on data transfer and 
MAP function call overhead. 

Thus, such a straightforward code port will likely 
result in an overall slowdown (original code runs in 
just 9.25 seconds on the CPU).  As we see from our 
estimated performance, the vast majority of time 
running the code on MAP will be spent doing 
nonbonded atoms interaction calculations; therefore, in 
order to gain some speedup we should consider ways 
to optimize this portion of the (yet nonexistent) design.  
We can get a speedup if we can have two or more atom 
interactions calculated simultaneously.  However, 
looking at the number of floating point operations in 
Code Listing 1, it may not be possible to place more 
than one interaction calculation engine on the FPGA 
chip due to the lack of hardware multipliers.  We will 
return to this issue later. 

Now we provide a step-by-step implementation 
sequence of the computational core.  First, we declare 
the MAP function as shown in Code Listing 3.  Next, 
looking at the code in Code Listing 1, we need to have 
simultaneous access to nine values from the table_four
lookup table and two values from the ljTable lookup 
table.  Therefore, we need to distribute the data from 
these tables in the MAP memory accordingly so that 
we can access all the required data in a single clock 
cycle.  Since these tables are relatively small, we can 
allocate them in the FPGA’s BRAM memory (see 
Code Listing 3).  The original table_four lookup table 
actually contains 12 values per record, some of which 
are needed to perform electrostatic energy calculations, 
which we omitted from our code.  We will ignore these 
unneeded values for now.  In order to achieve some 
efficiency with the lookup table data transfer to 
BRAM, we stripe table_four between six OBM 
memory banks, thus allowing access to all 12 lookup 
table values at once by splitting 64 bits wide words in 
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half.  ljTable can simply be transferred to just one 
OBM bank and then split and copied to two BRAM 
arrays (Code Listing 3).  Note that the lookup data 
transfer needs to be done only the first time the code is 
called as the BRAM content does not change between 
multiple calls to the MAP subroutine. 

Now we are ready to transfer the actual simulation 
data consisting of eight 32-bits-wide values.  We do 
need to have access to all eight values in a single clock 
cycle in order to achieve a fully pipelined 
implementation.  Therefore, we distribute the input 
atom data among four separate 64-bits-wide memory 
banks such that they can be accessed simultaneously 
(see Code Listing 3).  We could just DMA in the data 
and then distribute it as needed; instead, we have 
chosen to stream it in and perform the data distribution 
simultaneously, thus cutting the number of clock 
cycles spent on these operations.  Also, atom 
displacement, charge, and type data are read-only, 
whereas force data needs to be updated as the result of 
the computations.  Therefore, we put the atom force 
data to BRAM (cl_bram and dl_bram BRAM arrays) 
as it is dual ported and can be updated within the same 
clock cycle.  Fortunately, the nature of the calculations 
is such that we do not have to worry about memory 
clash, and therefore we can safely instruct the MAP C 
compiler via #pragma loop noloop_dep macro to 
pipeline the inner loop even tough there are memory 
dependencies. 

Now that all the necessary data have been loaded to 
the MAP memory, we can port the actual inner loop 
calculations.  What is left at the end is to transfer the 
results accumulated in cl_bram and dl_bran to the host 
process.  We implement this via streaming (Code 
Listing 3). 

When we compile the resulting code, MAP C 
compiler informs us that the inner loop was 
successfully pipelined with the pipeline depth of 159 
clock cycles.  The placing and routing report indicates 
that the design occupies 59% of the hardware 
multipliers, 61% of BRAM banks, and 87% of SLICEs 
and the design meets timing requirement of 10 ns.  We 
also instrumented the code to take timing 
measurements (not shown in the code provided).  
When we run the resulting code, we find that the 
overall execution time is 12.05 seconds (compared to 
9.25 seconds of the same code running on the CPU): 
10.26 seconds are spent doing the actual calculations, 
which is close to our theoretical estimate of 9.9 
seconds, and the remaining 1.79 seconds are spent on 
the data transfer and MAP function call overhead.  
Thus, the net result is 1.3x slowdown of the MAP-
based NAMD code compared to the original CPU-
based implementation.  The results produced by our 

MAP-based code are correct for the most part, with 
some minor errors due the reduced numerical 
resolution used in our MAP implementation. 

A question arises: What would constitute a fair 
performance comparison?  Should we use the overall 
execute time that includes associated function call 
overheads, (that is, 12.05 seconds), or should we use 
just the time spent on FPGA performing only the 
relevant calculations (10.26 seconds in our case) as the 
performance measure?  We have chosen to use the 
overall execution time that includes the compute time 
and all the related function call overheads.   

It is interesting to note that since we have a fully 
pipelined implementation of the inner loop, we always 
spend just one clock cycle to either perform the entire 
set of calculations (if the atoms are within the cutoff 
radius from each other) or to skip them entirely (if the 
atoms are too far from each other).  This is a very 
different behavior from what is happening with the 
microprocessor-based implementation.  There, we skip 
a significant number of calculations if the atoms are 
too far from each other.  The CPU-based code, 
execution time therefore, will change when we change 
the cutoff radius whereas the FPGA-based model 
execution time will remain constant.  Thus, if the 
cutoff radius was set large enough to include all the 
atoms in the neighbor patches, the overall compute 
time of the CPU-only design would be just over 800 
seconds as shown in Section 5.1, whereas the FPGA-
based design would still execute in just 12.05 seconds, 
which would constitute a 66x speedup. 

5.3. Dual chip MAP Series C design 

Since our initial design already occupies 87% of 
available SLICEs, we are unable to utilize the data-
level parallelism on the same chip; that is, we cannot 
place two compute engines on the same FPGA.  
However, we should be able to utilize the secondary 
FPGA chip available in the SRC-6 MAP.  Thus, in our 
next design, we spread the calculations between two 
FPGA chips in such a way that the primary chip 
performs half of the calculations and the secondary 
chip performs another half of the calculations and the 
results are merged at the end as they are streamed out.  
We still keep inner loops on both chips pipelined with 
the same pipeline depth as in the single chip design.  
The primary chip is responsible for bringing in the data 
and distributing it between two chips, merging the 
results from both chips, and streaming them out. 

The place and route report indicates that the same 
59% of the hardware multipliers are used on the 
primary chip; however, only 50% of the BRAM blocks 
are required since now the data are distributed between 
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two chips.  Also, about 92% of SLICEs are now in use 
on the primary chip as there is more logic required to 
implement the inter-chip communication.  On the 
secondary chip, we use 61% of the hardware 
multipliers, 50% of BRAM, and 78% of SLICEs.  The 
overall execution time now is 6.92 seconds--5.13 
seconds are due to the calculations (about half of the 
previous design) and 1.79 seconds are due to other 
expenses, as before.  Comparing 6.92 seconds to the 
original 9.25 seconds of the same code running on the 
CPU, we have achieved a 1.3x speedup.  (It would be 
over 100x for a larger cutoff radius, as we discussed in 
the previous section.) 

5.4. Dual chip MAP Series E design 

The first dual chip design simply takes advantage of 
the trivial parallelism; that is, we cut the overall 
compute time in half by dividing the work between 
two equivalent compute engines.  Unfortunately, this 
all we can do on the SRC-6 MAP Series C that uses 
XC2V6000 FPGAs; there is simply not enough space 
on the chip to place any more compute pipelines.  
SCR-6’s XC2VP100-based MAP Series E system 
offers more space, hardware multipliers, and BRAM 
memory blocks to place one additional compute engine 
on each chip.  Thus, our next step is to port the code to 
the MAP Series E (XC2VP100 FPGA)-based system.   

It is a simple recompile to get our original code 
developed for the MAP Series C system to run on the 
MAP Series E system.  However, we want to extend 
the code to divide the work between four compute 
engines, two per FPGA.  This requires distributing 
lookup tables and input data between twice as many 
memory banks so that we can have independent access 
to all the required data in a single clock cycle.  This 
also requires designing a more elaborate result 
assembling engine since the forces for each input atom 
are now partially computed by each of four compute 
engines.  The primary chip is responsible for bringing 
in the input data and distributing it between the 
compute engines and also assembling the final results 
and streaming them out, as before.  Perhaps the only 
other significant difference on this design is that we do 
not use OBM memory banks anymore to store the 
input data; instead we use the BRAM memory blocks 
as there is more BRAM memory available in 
XC2VP100 FPGAs.  OBM memory is still used to 
store the results obtained on the secondary chip. 

When we compile this design, we observe that the 
pipeline depth for the inner loops of each of the 
compute engines is now 150 clock cycles due to the 
elimination of the OBM memory access and other 
minor optimizations that we have implemented in the 

process of modifying the FPGA design.  The place and 
route report indicates that the SLICEs utilization on the 
primary chip is 97%, but we use only 28% of the 
available hardware multipliers and 40% of BRAM 
blocks.  SLICEs utilization of the secondary chip is 
87%, and the hardware multipliers and BRAM 
memory usage are the same as on the primary chip.  
The design meets timing specifications and executes in 
just 3.57 seconds, of which 2.58 seconds are due to the 
calculations and the remaining 0.99 seconds are due to 
the usual function call overhead and data transfer 
overhead.  Note that on the XC2VP100-based SRC-6 
MAP system this extra overhead is somewhat smaller 
than on the XC2V6000-based system.  Thus, we 
achieved a 2.5x speedup as compared to the CPU-
based code.  (Note that it would be over 200x for a 
larger cutoff radius.) 

Perhaps we can still gain some performance if we 
merge the inner and outer loops in a fully pipelined 
manner and therefore eliminate the pipeline depth 
penalty mentioned in Section 5.2.  This, of course, 
requires a significant code revision as we cannot reuse 
the same memory banks for the inner and outer loop.  
When we made all the necessary changes, the overall 
compute time became 3.07 seconds: 2.08 seconds due 
to the calculations (thus, we saved about 0.5 seconds) 
and 0.99 seconds due to various overheads  This 
resulted in a 3x overall speedup. 

5.5. An alternative design 

We cannot continue adding more compute engines 
as we have reached the limits of available space on the 
MAP Series E FPGAs.  However, we may be able to 
achieve a better performance if we restructure our code 
to take advantage of the fact that force calculations are 
not required for the vast majority of atom pairs.  We 
currently check the distance between all atom pairs, 
and then perform the force calculations on atom pairs 
that pass the distance check.  This wastes a clock cycle 
for each pair of atoms that fails the distance check. 
Calculating the distance between a pair of atoms does 
not require much of the FPGA’s resources, therefore it 
might be possible to implement several distance 
compute engines in parallel so that we can search 
through all the input data much faster and call the 
interaction calculations section of the code only as 
many times as there are force values to compute.  
Ideally, we would like to start the interaction 
calculations as soon as one of the distance compute 
engines identifies a pair of suitable atoms.  
Unfortunately, this is difficult to implement with the 
current MAP C version as all the streaming primitives 
supplied by SRC can only have a single source and 
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there is no multiple input/single output FIFO 
primitives available.  Perhaps a suitable data buffering 
mechanism can be implemented in a low-level 
language, but this is beyond the scope of our present 
work.  Instead, our parallel distance compute engines 
store found atom pairs in separate arrays that are later 
merged into a single array, which is then used by the 
interaction calculations engine – not an optimal 
solution. 

The performance of this approach is difficult to 
predict as it is wholly data-dependent.  If we introduce 
N simultaneous distance compute engines, then we can 
sort through the input data in 1/N of the time that 
would be required using the implementation discussed 
in Section 5.2.  But we cannot know in advance how 
many atom pairs are within the cutoff radius, and 
therefore we cannot tell how many clock cycles it will 
take to run the force calculations.  The worst case 
would be if all the atoms are within the cutoff radius 
and therefore we add M/N clock cycles in addition to 
our usual M clock cycles to the calculations where M 
is the total number of atom pairs.  The best case 
scenario would be when none of the atoms are within 
the cutoff radius and thus we discover this in just M/N 
clock cycles instead of our usual M clock cycles.  The 
reality, of course, is somewhere in-between. 

We have implemented this approach on the 
XC2VP100-based SRC-6 MAP Series E system with 
six distance compute engines and one force compute 
engine per FPGA.  The design complexity, as 
compared to all our previous implementations, has 
increased significantly, yet the code executes in just 
3.02 seconds as compared to 3.08 seconds for our 
previous design. 

6. Discussion and conclusions 

In the previous section, we outlined a path that one 
may find useful in order to port a scientific code, such 
as NAMD, to SRC-6 and other RC platforms.  To 
summarize, we began with the run-time analysis of 
NAMD computational core and identified what part of 
the code should be ported in order to accelerate the 
overall code performance and what compromises are to 
be made if we decide to port one or another section of 
the code.  We then isolated the code to be ported to 
FPGA into a separate standalone function and took 
care of data translation between the C++ classes and 
1D arrays suitable for FPGA.  With this code we 
conducted performance measurements, estimated 
FPGA resource requirements, and predicted the 
execution time of the MAP-based code to gain an idea 
of what to expect when we first port the code to MAM.  

We then proceeded to port the code inside the 
outsourced function with the goal of obtaining a MAP 
implementation that worked and produced the correct 
numerical results.  We outfitted this design with time 
measurement macros to verify that our theoretical 
performance estimates were inline with the actual 
code.  Our initial estimation of the compute time on the 
FPGA was mostly correct; however, our estimation of 
the performance penalty due to the MAP function call 
overhead was not as precise.  We then proceeded to 
perform several design iterations of the code based on 
our observation of the FPGA resource utilization and 
design performance. 

Our experience with this and other codes shows that 
a sensible approach is to run over several iterations, 
starting with the simplest, most straightforward 
implementation and gradually adding to it until we 
either find the best solution or run out of FPGA 
resources.  We started with just over 100 lines of code 
that runs on a CPU in just 9.25 seconds for one 
simulation step and ended with over 1,000 lines of 
code that requires both the CPU and MAP 
involvement, although the actual calculations are done 
on MAP, and executes in just 3.07 seconds.  Our 
MAP-based implementation is three times faster then 
the original code.  These results, of course, are data-
dependent, as we have seen that for a larger cutoff 
radius the original CPU code executes in over 800 
seconds, which would constitute a 260x speedup.  Our 
3x speedup perhaps is not worth the effort; however, 
the 260x speedup would well be worth the 
development effort undertaken. 

As one can see, a noticeable effort in our work was 
due to the need to translate data between the C++ data 
storage mechanisms and the system defined 
MAP/FPGA data storage architecture.  When starting 
to develop a code from scratch to run on an FPGA 
architecture, one would implement from the beginning 
the data storage mechanisms compatible between the 
CPU and FPGA.  This, however, is rarely the case for 
an existing code, and it adds to the amount of work to 
be done in porting the code. 

Our final design described in Section 5.4 occupies 
almost all available SLICEs, yet utilization of memory 
banks and hardware multipliers is low.  Thus, we have 
reached the SLICEs limit before any other resource 
limits.  This perhaps indicates that we should consider 
ways to restructure the code to make greater use of 
other available resources.  One way may be to overlap 
calculations with data transfer for the next dataset and 
thus use more of the available on-chip memory. 

One might ask why have we achieved such a 
modest speedup while numerous other papers and 
reports claim 10x-100x speedup for many codes.  
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Consider the fact that until now most FPGA code 
development has begun with writing code that 
implements a textbook algorithm, with no or little 
optimization.  When such an unoptimized code is 
ported to an RC platform and care is taken to optimize 
the FPGA design, a 10x-100x speedup is easily 
achievable.  In contrast, we began with code that has 
been in existence for the past decade and that has been 
thoughtfully optimized to run on the CPU-based 
platform.  Such code successfully competes with its 
FPGA-ported counterpart. 

The difference between the production-grade, 
highly optimized molecular dynamics code and a 
textbook MD example perhaps can be best 
demonstrated as follows.  Both [10] and [11] use the 
same textbook MD code and report comparable results 
for running the reference code with 8,192 particles.  
Thus, in [10] a single simulation step runs in 9.5 
seconds on a 2.4 GHz Xeon platform.  For comparison 
[7], NAMD runs one simulation step involving 92,224 
atoms in just over 2 seconds on a 1.6 GHz Itanium 2 
platform! 

In light of this, a 3x performance increase of this 
heavily optimized code is significant in that it 
illustrates the potential of reconfigurable system 
technology.  Remember that it is a 100 MHz FPGA 
achieving a 3x application performance improvement 
over a 2.8 GHz CPU, and FPGAs are on a faster 
technology growth curve than CPUs [14]. 
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