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Abstract

A controller for a non-deterministic hybrid plant must
ensure that the closed-loop system meets some re-
quirement, regardless of what the plant does. When
the plant is viewed as an adversary, controller syn-
thesis becomes the task of solving a two-person game
to find the system configurations from which the con-
troller wins. For hybrid systems, the moves of each
player can be either discrete or continuous. Thus win-
ning strategies can involve a non-trivial mix of con-
tinuous and discrete actions, and are in general not
easy to find. Fortunately, there is a systematic pro-
cedure to find all winning strategies in the case of
safety properties (Tomlin, Lygeros, & Sastry 1998;
Lygeros, Tomlin, & Sastry 1999).
To assess the applicability of the procedure, we study
a hybrid model of a heating system. The system incor-
porates both discrete controls and disturbances, and
continuous controls and disturbances. For this system,
we detail how to compute the set of winning config-
urations, using a combination of case analysis in the
discrete domain and solving min-max problems in the
continuous domain. The steps of the synthesis pro-
cedure for our case study have been implemented in
MATLAB, enabling us to experiment with different pa-
rameter settings. We also discuss preliminary lessons
learned from this case study, and suggest areas for fu-
ture research that will enable the synthesis procedure
to be more applicable in practice.

Introduction

The task of synthesizing a controller can be viewed as
solving a two-person game between a plant and its con-
troller. In this paper, we restrict attention to safety
games, where the closed-loop system meets its specifi-
cation if the system configuration remains within some
predetermined set of safe configurations. Each player
has at its disposal two kinds of moves: discrete and
continuous. It continuously monitors the full configu-
ration of the system. At every point in time, it chooses
either to make a discrete action, or to make no dis-
crete action, but instead allow time to pass subject to
its continuous action. If either player chooses a dis-
crete action, then the discrete action takes place in-
stantaneously. If both players choose a discrete ac-
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tion, then both actions take place simultaneously. If
both players agree to let time pass, the system evolves
according to its continuous dynamics, which are de-
pendent on the continuous moves of both players, up
until one player next chooses a discrete action. The
controller wins the game if it can guarantee that the
system configuration is always safe, regardless of what
the adversarial plant does. Here, we study the system-
atic procedure for controller synthesis of hybrid sys-
tems presented in (Tomlin, Lygeros, & Sastry 1998;
Lygeros, Tomlin, & Sastry 1998; 1999). It iteratively
determines the configurations from which the controller
will lose the game within a finite number of discrete ac-
tions. If the procedure terminates, the remaining con-
figurations are precisely those from which the controller
has a winning strategy. It is not however guaranteed to
terminate, and the individual steps within the proce-
dure may be impractical or even impossible to perform.

Here, we study the hybrid control of a mixed discrete-
continuous heating system in order to assess the appli-
cability of the synthesis techniques outlined above. We
show how to apply the procedure for the heater exam-
ple using min-max problems. The reported experiments
were performed by implementing the synthesis proce-
dure for our system in MATLAB. The maximal safe sets
obtained vary depending on the settings of the param-
eters of the system. Finally we extract the maximal
control strategy from the maximal safe set and ana-
lyze sample trajectories to highlight the operation of the
controller. Our main conclusion is that the calculations
involved in finding the sets of continuous-uncontrollable
predecessors are prohibitive. One must reason about
non-trivial shaped sets, and solve optimal control prob-
lems over them, taking into consideration that contin-
uous trajectories must steer clear of sets where the op-
ponent can escape to other parts of the state space via
discrete jumps. In dimensions even as low as three,
these calculations can become infeasible.

Background. In the discrete domain, Church’s clas-
sical synthesis problem was first solved by reduction to a
zero-sum, two-person game over infinite strings (Biichi
& Landweber 1969). Numerous researchers have stud-
ied solutions to the synthesis problem via transla-
tions to tree automata; a tree is accepted iff it cor-
responds to a winning strategy, e.g., (Rabin 1972;
Pnueli & Rosner 1989). For safety games, the game
admits a particularly simple solution that consists
of a fixpoint algorithm that successively eliminates
states that lead to losing states within one discrete
move, until the controller can always keep the state
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within those that remain (Ramadge & Wonham 1989;
Maler, Pnueli, & Sifakis 1995).

In the continuous domain, there has been study of
differential games between players who choose contin-
uous values that affect a system’s continuous evolu-
tion (Isaacs 1967). Casting controller synthesis for hy-
brid systems as differential games appears in (Nerode
& Yakhnis 1992; Lygeros, Godbole, & Sastry 1996).

The discrete synthesis procedure has been extended
to automata modeling timed systems (Maler, Pnueli,
& Sifakis 1995), and restricted forms of hybrid sys-
tems (Heymann, Lin, & Meyer 1997; Wong-Toi 1997),
where the discrete moves are used to define target sets
for the different opponents. The continuous dynamics
of these works is simple, lacking even continuous con-
troller input. The synthesis procedure assessed here
is more general, and uses differential games to han-
dle the continuous activity between potential discrete
moves (Tomlin, Lygeros, & Sastry 1998).

Description of the Model
Our heating system has discrete and continuous compo-
nents in its state, its control input, and its disturbance.
The control objective is to maintain the temperature
T~ of the air in a room within the range [Tm~’~,T~aX],
whatever the disturbances happen to be. The controller
has at its disposal a boiler and a stove. It operates un-
der full state feedback. The boiler can be viewed as
a heating element that admits continuous settings: it
receives a continuous input control variable Ub E [0, Ub]
and outputs this power value instantaneously. The
stove has only discrete settings. It is switched on or
off by a two-valued input control variable us E (0, 1}.
When switched on, the stove delivers heat ws-- wm~s ",
when switched off, it delivers heat ws -- 0.

The room is subject to non-deterministic distur-
bances that affect the temperature. First, the room
contains electrical appliances whose operation gener-
ates heat as a side effect--modeled by a continuous
input disturbance variable de E [0, Def. Second, the
room has a door that may be either closed or open. Its
state is set by a two-valued input disturbance variable
dd E {0, 1}. When the door is opened the air temper-
ature of the room suddenly decreases. Its difference
from the external temperature Te is multiplied by a ra-
tio r < 1, i.e., Ta is updated to T~ + r(T~ - Te). For
physical reasons, we rule out the possibility of the door
opening and closing infinitely often in zero time by as-
suming that at least A time passes between changes in
the status of the door.

The continuous dynamics of the system are cap-
tured by two first-order differential equations whose un-
knowns are the room air temperature Ta(t), and the
door timer td(t), with td(t) = 1. For convenience, we
translate the temperature variable to Tae = T~ - Te.
We derive the following equation for T~:

~’~(t) = -~(#~ + #d(dd))T~(t) 
~(ub(t) + de(t) + ws(us)) (1)

ENVIRONMENT

d-E D ~ PLANT aEQ
dynamics ~.Ex

continuous: ]
discrete: 5

u6U
CONTROLLER

Figure 1: Generic control diagram

where #d(dd) = #do if dd= 1 and #d(dd) = #de if
dd= O, and ws(us) = max i f u s =1 and ws(us) = 
if us = O, for the thermic conductance parameters #ae,
(resp. #de, #do) for the walls between the room and the
environment (resp. the closed door, the open door), and
ca the air thermic capacitance.

Hybrid Automata

Syntax

A generic control diagram depicting the interaction
between the controller and the environment appears
in Figure 1. We model our system as a hybrid au-
tomaton. Intuitively, the hybrid automaton models
the game board. This modeling formalism merges the
game features (explicitly-defined independent moves)
of (Asarin et al. 1998) into the hybrid automata model
(input structure and hybrid dynamics) found in (Tom-
lin, Lygeros, & Sastry 1998; Lygeros, Tomlin, & Sastry
1998).

A hybrid automaton is a tuple H = ((Q,X),
(U, E~), (MC~ts, Mdisc), (D, E~), (MC~ts, Mdisc), if, 5)).
Elements of C = Q × X are called configurations, where
Q is the finite set of modes and X = R~ is the set of
(continuous) states. The controller input comes from
the domain U × E~, where U C_ Rm is a set of contin-
uous control values, E~ is a finite set of discrete control
events and Ec = Ee U {~} is the set of discrete control
moves, with the special e move being the silent move.
The discrete (resp. continuous) controller move func-
tion Mdisc : C -4 22: \ {} (resp. M3tS : C -+ 2v \ {})
defines a subset of allowable discrete (resp. continuous)
input values for every configuration. The environment
input (or disturbance) comes from the domain D × E~,
where D C_ ~P is a set of continuous environment (or
disturbance) values, Ee is a finite set of discrete envi-
ronment events and E~ = Ee t_/{~} is the set of discrete
environment moves. The discrete and continuous en-
vironment move functions Md~sc : ¢ -+ 2~ \ {} and
Mcts : C --+ 2D \ {} are analogous to the controller
move functions. The continuous dynamics are modeled
by the mode-dependent function ] : C x U x D --4 IR’~;
the discrete dynamics, modeled by the transition func-
tion 5 : C x E~ × E~ -4 2c \ {}, are subject to the
restriction that for all (q, x) E C, 5(q, x, c, c) = {(q, x)}.
As usual we assume existence and uniqueness of solu-
tions for f etc.



Intuitive semantics

Both players have perfect information, and make their
moves simultaneously. Thus the controller is a full-
state feedback controller. At the configuration (q,x),
the controller chooses a pair (ac,U) MdiSc(q,x) ×
MCf;S ~ M~c.. (u, ~;, and the environment chooses a pair (ae, d) 
Ma’Scl-e ~(1, ~) ×M~tS(q, x)If e ither of the players chooses
a non-silent discrete move, then a non-trivial discrete
step takes place, with label (ae, ae), to any configura-
tion in 5(q,x, ae,ae). As long as both players choose
e as their discrete move, then a continuous step takes
place as time progresses. In this case, the discrete mode
remains fixed, and the continuous variables evolve ac-
cording to the continuous control u chosen by the con-
troller, the continuous disturbance d chosen by the en-
vironment, and the continuous dynamics specified by
the function f for the discrete mode. One may think
of the interaction between the players as a continuous
game with occasional discrete interruptions.

A safety property asserts that nothing bad happens
along system trajectories. It can be characterized by
the set Good of configurations that do not violate the
property. The hybrid automaton with initial configura-
tions go _C g satisfies the safety property Good if all its
trajectories that start in go remain within Good.

Heating system
To avoid nonZeno controllers (which enforce safety
properties only by causing time to stop), we introduce
a timer te to enforce that no discrete control move can
occur until at least A time has passed in a mode. How-
ever, to reduce complexity we replace the two timers te
and td with only one, i.e., te, weakening the expressive-
ness of the model.

The hybrid automaton for the heating system is de-
picted in Figure 2, and sketched below. For modes, we
have Q = {ql = (off, closed),q2 = (on, closed),q3 
(on, open),q4 = (off, open)}. The first component
of each tuple refers to the status of the stove, and
the second to the door. We set X = {(te,Tae) 
(to, T~e) ̄  2 }. Thecontinuous controller inpu t set is
U = {ub I ub ̄  [0, Ub]}, and its discrete input events
are Ee = {stove_on, stove_off}. The event stove_off
appears in the discrete controller move function when-
ever the mode is (on, open) or (on, closed), and te > 0.
In addition, stove_on is allowed whenever the mode is
(off, open) or (off, closed), and te > 0. For all (q, x),
MCtS(q, x) = U. For the environment, we have contin-
uous disturbance input D = {de ] de ¯ [0, De]}, and
discrete input Ee = {door_close, door_open}. We have
e ¯ MdiSc(q, x) and e ¯ Md’Sc(q,x) for all (q, x), i.e.,
neither the controller nor the environment is ever forced
to make a discrete action.

The first derivative for Toe associated with each mode
qi is determined according to Equation 1 (e.g., for q2 
(on, closed), 7"ae(t) is -~(#ae + #dc)Tae(t) + ~(ub(t) 
de(t) + wy~X)). In all modes, the dynamics of the door
timer are specified as re(t) = 

q4 =
(off, open)

Figure 2: Hybrid model of the room.

Synthesis of Hybrid Controllers

We review the synthesis methodology introduced
in (Tomlin, Lygeros, & Sastry 1998).

Controllers

At configuration (q, x), a controller decides whether 
(1) take some discrete control action in Ee, or to (2) 
time pass under a continuous input u. Formally, a con-
troller for a hybrid automaton is a pair (Tdise,Tets),
where Tdisc : ~ ~ 2~’: \ {} and Tet8 : g ~ 2v \ {}
model the values allowed by the controller. The con-
troller can only offer values permitted by the move
functions, and hence for all (q,x) ¯ C, we require
Td~S~(q,x) C_ Mdi’e(q,x) and TCtS(q,x) C_ Mgt~(q,x).
The coupling of the hybrid automaton H with the con-
troller (T~ts, Tdisc) is the hybrid automaton by replac-
ing the controller move functions Mff~sc with Td~se and
M~t~ with Tets. A set of configurations is a safe set if
all its configurations satisfy the specification, and from
all its configurations there exists a controller strategy
to remain in the set.

Synthesis procedure

The procedure to synthesize the maximal controller first
computes the maximal safe set. This maximal set is
obtained by first overapproximating it with all the safe
configurations. Then one eliminates all configurations
from which the environment can drive the system into
an unsafe configuration via either one discrete jump, or
one continuous flow. The controller must avoid these
configurations, since from them the environment can
win within one "step". By iteration, one eliminates the
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configurations from which the environment wins within
i steps. If the procedure terminates, we have deter-
mined the maximal safe set.

For discrete steps, we define the discrete uncon-
trollable predecessors operator Prer : 2c --+ 2c that
characterizes the configurations where the environ-
ment wins (enters the complement of its argument set)
within one discrete step (Maler, Pnueli, & Sifakis 1995;
Tomlin, Lygeros, & Sastry 1998). It is defined by
Fret(K) {( q,x) E C : Vac E MdiSc(q,x).3ar E
Mdi’c(q, x).(ac, at) # (e, e) A 5((q, (ae,at)) ¢- K}.

For continuous steps, we define the operator
Unavoid_Pre, which captures the configurations for
which no matter what continuous input function u the
controller chooses there is a continuous disturbance
function such that the resulting continuous flow reaches
a bad state, avoiding along the way all configurations
where the controller could "escape" by causing a jump
to a good state. The escaping configurations (Wong-
Toi 1997; Lygeros, Tomlin, & Sastry 1998) are charac-
terized by the discrete controllable predecessors oper-
ator Pree : 2c ~ 2c defined by Prec(K) {( q,x) E
C : 3ac E M~ci’r(q,x).Vae E MdiSr(q,x).(ac,ar)
(e, e) A 5((q, x), (at, C K}.The set Prer(K) is
the set of configurations where the controller can guar-
antee that the system enters K in one discrete step,
regardless of the environment’s action.

The Unavoid_Pre operator takes two arguments. The
first is the environment’s target set, and the second the
set it must avoid. The set Unavoid_Pre(B, E) contains
all configurations (q, x) such that for all legal controller
input functions u(.), there exists a disturbance function
d(.) for which the trajectory x : let>0 --~ X reaches the
set B at some time [ with (q,x(t)) E M E for all
t E [0, t-). The set Inv denotes the set of configurations
{(q, x) [ e MdiSC(q, x)ande E MdeisC(q, x)} in whic
both players may choose not to play a discrete move,
but instead wait for time to pass.

Given an overapproximation Wi of the win-
ning states, the procedure prunes away the los-
ing configurations Pree(Wi) (for discrete steps) and

( Unavoid_Pre(Pree(Wi) U Wi, Prec(Wi)) (for the con-
tinuous steps) (Tomlin, Lygeros, & Sastry 1998). It 
not guaranteed to stop in a finite number of steps.

Extracting the maximal control strategy from the
maximal safe set W amounts to determining for every
configuration in W, which control choices (discrete and
continuous) will keep the system in W.

Synthesis for the heating system

We show how to compute the Prec, Prer, and
Unavoid_Pre operators at each iteration for the hybrid
automaton shown in Fig. 2.

The ensuing computations are largely independent of
the specific parameters chosen. However, for illustrative
purposes, we use particular parameter values in order
to demonstrate the procedure in practice.

The temperature must be maintained within values

Tmi~ = 18 and T~a~ = 20. The reset ratio is r = 0.95.
We normalize Ca = 1. The continuous input domains
are U = [0, Ub = 0.5] for control and D = [0, De = 0.01]
for disturbance. The maximum power of the stove is
wma~ = 0.2. The conductances are such that #ae +
#dr = 0.001 and #at + #do ~-- 0.002.

The iterations of the synthesis procedure for these
parameters appear in Figure 3. When the controller
input is restricted to [0, 0.2] instead of [0, 0.5], there is
no valid controller.

Discrete predecessor operators

We first define three useful auxiliary operators. Let
W _C C be a set of configurations, and q E Q be a mode.
Let WIq -~- {X E X I (q, x) E W) denote the projection
of elements of W onto the continuous state only. Let
WIqA = ((tc,Tae) (- A,Tae) E Wiq) denote th e set
of points for which resetting tc to -A results in a point
in WIq. Let WiqAr = {(tr,Tar) (- A,r Tar) e Wi}
denote the set of points for which resetting t~ to -A
and multiplying Tar by r results in a point in W[q. We
also define the set %0 = ((to,Tar) I to E [0, c~)).

We show how to compute Pre~(W) mode by mode.
Consider ql. The controller has two choices of discrete
actions (stove_on and ¢) to force the system into the
set W. Consider first the stove_on action. It is only
enabled when tc >_ O. If the environment simulta-
neously chooses ar -- e, there will be a jump to q2.
Since the timer is reset to tc = -A and the temper-
ature unchanged, the states (tr, Tae) land in Wiq2 iff
(-A,Tae) E Wiq2 andtc> 0 iff (tc, Tar) E wI~AMT>0.
If the environment chooses ar = door_open, thereis
a jump to q3. Since the timer is reset to tc = -A
and the temperature Tar is reset to rTar, the states
(to,Tar) land in WIq3 iff (-A,r Tae) ¯ WIq3 and
t~ _> 0 iff (t~,Tar) Wiq-s~r MT_>o. Thus the di s-
crete action stove_on witnesses the inclusion of (ql, x)
in Prer(W) iff x = (tr,Tar) meets both the condi-
tions above for the choice of environment action iff
(tc,Tae) ¯ W[q-~zx M W[~~r n %0.

Consider next the case of the e action. The action
is always enabled in the controller. Since e is always
enabled in the environment, the condition (at,at)
(e, e) A 5((q, x), (at, at)) C_ W inside the quantifications
in the definition of Prec is FALSE because of the first
conjunct. Therefore ac = e cannot be an existential
witness for any (q, x).

Thus we conclude that Prec(W)iq~ = WI~A 
W]~Ar M T>o. Analogous reasoning yields similar for-
mulae for the other modes.

Computation of the discrete uncontrollable predeces-
sors is similar.

Continuous uncontrollable predecessors

The set Unavoid_Pre(Prer(Wi) U Wi, Prec(Wi)) is
also computed mode by mode, i.e., by computing for
each mode q, the set Unavoid_Pre(B,E)l q for B =

Prec(Wi) U Wi and E = Prec(Wi). We restrict the
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analysis to X = [-A, co) × ~, since tc is always reset to
-A and ic = 1 > 0. For a fixed q, the continuous-time
dynamics are

tc = 1 (2)

The = aTae + b(ub + de) + (3)

Since the objective of the game is to find the con-
figurations not already in Wilq that can be steered to
BIq without passing through EIq, we restrict attention
to the set RIq = Wiiq \ (EIq U BIq). The boundary
ORiq of RIq is made by arcs of OE]q and arcs of OBiq,
boundaries of EIq and B]q respectively, and segments
that lie on tc = -A. Since ic = 1, trajectories starting
inside Riq cannot exit RIq through the boundary of Riq
that lies on tc = -A. That is, for any & E Riq, under
any ub E//b and de G :De, the trajectory from & either
remains in Riq for all t > 0 or intersects, at some time
t = t, either OEIq CI ORIq or OBIq M ORlq.

The set Unavoid_Pre(B,E)l q corresponds to the
playable set for the disturbance de in a two-player dif-
ferential game defined as follows (see (Isaacs 1967)).
Given an initial state x0 E Rlq, the disturbance de
wants to steer x0 to OBlq M ORlq, while the control Ub
opposes it (Ub wants to steer x0 to OEIq M ORlq). The
playable set for de in the two-player differential game is
the subset of Rlq from which the player de can guarantee
to drive the initial state to the target set OBlq A ORlq,
regardless of the adversarial control actions of Ub.

One can show that a family of curves sufficient for
the description of the boundary of the playable set for
de can be derived from the solution of a min-max prob-
lem (see (Vincent & Grantham 1997)). Introduce 
adjoint variables At, A2 and the Hamiltonian associated
to the dynamics (2),(3)

H(t ,Tao,A1,A2,de, b) = A io + AS ae (4
A1 + As(aTae + b(ub + de) + bo) 

If de*(t),u;(t) generate a trajectory [t*(t),T*e(t)] T on
the boundary of the playable set, then there exists a
nonzero continuous trajectory [A1 (t), A2 (t)] T, satisfying

~1 - OH
OH

Otc- 0 and ~2- --- aA2, (5)0Toe
such that [AI(t),As(t)] T is an outward normal to the
boundary of the playable set and

min max U(t*,T*ae, At, As,de,Ub) = (6)
deE2~e UbEZ~[b

9¢ * ~: *H(tc,Tae, A1,A2,de,Ub) = 

By (4), the signals d*(t), u;(t) that satisfy (6) are

/ 0, if bA2(t) > 
d*(t)

De, if bA2(t) < 
(7)

Ub, ifbA2(t)>Ou;(t) = 0, if bAs(t) < 0 (8)

Since by (5) A2(t) = e-a’A20 where A20 = A2(0), 
A20 ~ 0, then de and Ub are constant along the bound-
ary of the playable set, because hA2 (t) never changes 
sign. Moreover, by (5),)q is also constant.

If As0 = 0 then A2(t) = 0 for all t and a singular
control may occur. However, singular controls cannot
take place; in fact, by (6),(4))q(t) has to be 
As(t) = 0, which is against the request of [A1 (t), A2(t)]T

being nonzero.
Then, a trajectory [to(t) The(t)]T =

[ t (o)+t ]eatTa~(O) (1- eat) [-a -lb (Ub+ de) - a- lb
(9)

solution to (2),(3) with constant inputs Ub = u~ and
de = de* chosen according to (7),(8) satisfies the 
max necessary condition to belong to the boundary of
the playable set.

It is clear that along a trajectory of type (9), The
is monotonic with respect to to. Hence, if an arc of
trajectory (9) lies on the boundary of the playable set
then the playable set is either below or above it, and
an outward normal [Al(t), ~2(t)] T of the playable set
has either A2 > 0 in the former case (the arc is an
upper boundary) or A2 < 0 in the latter case. According
to (8), if such trajectory defines an upper boundary,
then (since As > 0) necessarily de = 0 and Ub "~-- Vb;

else if it defines a lower boundary, then (since As < 0)
upper

de = De and Ub = O. So, a family of curves ~(~o,~, 
(~f)lower
~(~o,~,o), are found whose arcs belong respectively 

the upper (lower) boundary of the playable set for the
disturbance de in the game. The set Unavoid_Pre is
bounded by curves of these families.

Conclusions
The synthesis procedure of (Lygeros, Tomlin, & Sastry
1998) provided a consistent framework for synthesizing
controllers for our heater system. On reflection, we re-
mark that the modeling formalism helps us provide a
careful and precise model of the discrete and continu-
ous interaction between the controller and the heater
system. The iterative procedure offers a structure with
well-defined steps to perform, guaranteeing that we do
not overlook any potential winning strategies.

However, in the course of this case study, we en-
countered very practical obstacles in performing the
steps required for the continuous aspects of the pro-
cedure. It was our original goal to analyze a system
with two continuous temperatures (the air temperature
and the temperature of the boiler) and two timers in
the state vector. However, the continuous calculations
for this model required complex geometric reasoning
that quickly became extremely difficult, even for early
iterations. The effort was temporarily abandoned. At-
tempts to handle the system with one temperature but
two timers--one each for the controller and the plant--
met with the same difficulty. The implementation in
MATLAB required careful off-line analysis of the prob-
lem. It appears that automating such a procedure, even
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Figure 3: The procedure converges in three steps and returns the maximal safe set. The sets wfl , (Prec (W~) N W~) [~
and (Pree(W~) n Wi)Ig are represented respectively in light gray, dark gray, and black.

for low-dimensional systems will involve a fair amount
of manual reasoning to encode the necessary computa-
tions in MATLAB.

We conclude that the usefulness of the procedure
is severely hampered by the computations of the
Unavoid_Pre operator, even for our simple continuous
dynamics. One approach is to attempt to develop ef-
ficient computational methods for finding Unavoid_Pre
sets (Lygeros, Tomlin, & Sastry 1998). A second possi-
bility is to simplify the computations by recasting the
Unavoid_Pre operator in lower dimensions. Our initial
efforts in this direction have met with some success.

Alternatively, one could forsake exact calculation of
Unavoid_Pre as being too inefficient. The original
model could be approximated using a specialized sub-
class for which the computations are feasible. Since
automated computation for piecewise-constant differ-
ential inclusions without even continuous input con-
trol (Wong-Toi 1997) is already challenging, likely the
abstraction needs to be an entirely discrete system, or
perhaps a timed system. Perhaps a more promising op-
tion is to develop a suitable method for finding dynamic
approximations of the Unavoid_Pre operator that are
accurate, conservative, and efficient to compute.
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