
 

 

 

1

A Case Study of Parallel I/O for Biological Sequence Search on Linux Clusters 
 

Yifeng Zhu, Hong Jiang, Xiao Qin and David Swanson 
Department of Computer Science and Engineering 

University of Nebraska - Lincoln 
Lincoln, NE 68588-0115 

{yzhu, jiang, xqin, dswanson}@cse.unl.edu 
 
 

Abstract 
 

In this paper we analyze the I/O access patterns of a 
widely-used biological sequence search tool and 
implement two variations that employ parallel-I/O for 
data access based on PVFS (Parallel Virtual File System) 
and CEFT-PVFS (Cost-Effective Fault-Tolerant PVFS). 
Experiments show that the two variations outperform the 
original tool when equal or even fewer storage devices 
are used in the former. It is also found that although the 
performance of the two variations improves consistently 
when initially increasing the number of servers, this 
performance gain from parallel I/O becomes insignificant 
with further increase in server number.  

We examine the effectiveness of two read performance 
optimization techniques in CEFT-PVFS by using this tool 
as a benchmark. Performance results indicate: (1) 
Doubling the degree of parallelism boosts the read 
performance to approach that of PVFS; (2) Skipping hot-
spots can substantially improve the I/O performance 
when the load on data servers is highly imbalanced. The 
I/O resource contention due to the sharing of server 
nodes by multiple applications in a cluster has been 
shown to degrade the performance of the original tool 
and the variation based on PVFS by up to 10 and 21 folds, 
respectively; whereas, the variation based on CEFT-
PVFS only suffered a two-fold performance degradation.  
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1. Introduction 
 

Linux clusters have quickly gained popularity in the 
bioinformatics community as a cost-effective, high-
performance computing platform in the past few years. 
The development in molecular biology has led to an 
unprecedented explosion in the volumes of generated 
biological data. For example, among the dozens of 
publicly accessible database centers, the European 
Bioinformatics Institute (EBI) holds more than 120 
biological databases [1] and the National Center for 
Biotechnology Information (NCBI) stores approximately 

31×109 base pairs in 24 million sequences [2]. In such 
cases, Linux clusters usually need to input and output 
large amounts of data from the storage subsystems. 
Unfortunately, the performance of storage subsystems has 
increasingly lagged behind the performance of 
computation and communication subsystems. This 
increasing performance disparity frequently prevents the 
effective utilization of the teraflop-scale computing 
capability that a modern cluster can offer. 

To exploit the collective storage capacity existing 
among the local storage devices on cluster nodes, a wide 
variety of parallel I/O systems have been proposed and 
developed.  One notable example of such systems is 
PVFS [3][4], which is a RAID-0 style high performance 
file system providing parallel data access with cluster-
wide shared name space. While it addresses I/O issues for 
the low-cost Linux clusters by aggregating the bandwidth 
of the existing disks on cluster nodes, PVFS has two main 
disadvantages. It does not provide any fault tolerance in 
its current version and thus the failure of any single 
cluster node renders the entire file system service 
unavailable. In addition, the system resource contention 
on data servers can significantly degrade the overall I/O 
performance. A Cost-Effective, Fault-Tolerant Parallel 
Virtual File System (CEFT-PVFS) [5][6][7], extends 
PVFS from a RAID-0 to a RAID-10 style parallel file 
system to meet the critical demands on reliability and to 
minimize the performance degradation due to resource 
contention by taking advantages of the data and device 
redundancy.  

In this work, we investigate the I/O access patterns of 
the MPI-based implementation of a well-known 
biological sequence search tool, called Basic Local 
Alignment Search Tool  (BLAST) [8][9].  This parallel 
BLAST uses conventional I/O interfaces to access local 
disks. We implemented two new variations that run on the 
PVFS and CEFT-PVFS through their parallel I/O 
interfaces. The performance of the original and the two 
new implementations is measured and compared, based 
on the results and measurements of executing the three 
programs within the same environments. Through this 
real application, we examine the relationship between the 
degree of parallelism and the I/O performance. In addition, 
we study the impact of the system resource utilization on 
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the I/O performance and point out some important issues 
that must be addressed in parallel I/O designs.  

Our experimental results indicate that the I/O 
performance experienced by the parallel BLAST stops 
increasing after the degree of parallelism in parallel I/O 
accesses increases to a certain level, due in part to the 
diminishing gains of I/O parallelism as computations (as 
opposed to I/O accesses) on the worker nodes become 
dominant.  In addition, the parallel I/O performance is 
heavily influenced by the system resource utilization on 
all the data servers. When data server nodes are severely 
unevenly utilized (e.g., with one node much more heavily 
loaded than others), due to the sharing of resources by 
multiple applications running simultaneously on server 
nodes, our experiments showed that both the original 
parallel BLAST and the PVFS-based parallel BLAST 
suffered drastic performance degradations, by a factor of 
10 and 21, respectively, because of their inabilities to 
avoid any hot-spot node. On the other hand, it is found by 
our experiments that the performance degradation caused 
by such severe load imbalance can be minimized in 
CEFT-PVFS by its ability to skip one or more hot-spot 
nodes. We believe that these findings not only benefit the 
bioinformatics research community, but also provide 
useful insights into the parallel I/O research in modern 
clusters. 

The rest of this paper is organized as follows. Section 2 
overviews some biological sequence search tools. Section 
3 presents two parallel I/O implementations in a parallel 
sequence search application. In Section 4, the 
experimental performance results are discussed, along 
with an evaluation and comparison of the three parallel 
implementations of BLAST. Studies in the literature 
related to the current work are briefly discussed in Section 
5. Finally, Section 6 concludes the paper with comments 
on current and future work. 
 
2. Application Overview 
 

The development of modern biological research has 
created the need for intensive biological sequence 
comparisons. When new biological sequences are 
discovered, biomedical researchers would search the 
existing databases of genes or proteins for similar or 
related sequences. Such analyses have great scientific 
value since the structure and function of new sequences 
may be implied from the known characteristics of similar 
or related sequences. The following introduces several 
powerful software tools for similarity searches.  
 
2.1 BLAST 
 

BLAST [2] has been continuously developed and 
refined since its initial release by NCBI in 1990 and is 
now the mostly widely used tool for a sequence similarity 

search. Given a query sequence and a sequence database 
as inputs, BLAST searches all entities in the database for 
those with high-scoring gapped alignment to the query, 
where the deletion, insertion and substitution are allowed 
in sequence comparison and the alignment scores are 
determined statistically and heuristically based on expert-
specified scoring matrix.  

The BLAST search tool contains a set of five programs: 
blastn, blastp, blastx, tblastn and tblastx. blastn and 
blastp perform a nucleotide or peptide sequence search in 
a sequence database of the same type respectively. In 
contrast, the blastx and tblastn can perform a sequence 
search of one type with a database of the other type by 
taking advantage of the fact that nucleotide and peptide 
sequences can be translated into each other in living cells. 
Specifically a nucleotide sequence can be translated into a 
peptide sequence and then compared with a database of 
peptide sequences, and vice versa. Finally, the tblastx 
differs from all four programs above in that it conducts 
six-frame translations on both the query and the database 
entities before comparing them. NCBI provides blastall as 
a single interface allowing the access to the five different 
comparison programs. 
 
2.2 Parallel BLAST 
 

Much work has been done to parallelize the BLAST 
programs in two approaches: query segmentation and 
database segmentation. In the first approach, the entire 
database is replicated to all worker nodes but the query 
sequence is split into several pieces. Each worker searches 
the entire database using one query piece. In the latter 
approach, the whole query sequence is copied to all 
workers while the database is divided into multiple 
segments. Each worker searches one database fragment 
using the entire query.  

With the explosion of the database size, the first 
approach becomes less attractive due to large I/O 
overhead. Nowadays the size of sequence databases is 
exploding and can easily exceed the available memory 
capacity. If the sequence databases cannot fit into the 
physical memory, BLAST is forced to page into disks, 
forcing the CPU to sit idle while waiting for the memory 
page in and page out [10][11].  

WU-BLAST [12] implemented both parallel 
approaches, but it runs on its own libraries. This causes a 
difficulty to keep up with new versions of BLAST 
distributed by NCBI. TurboBLAST [11] and mpiBLAST 
[10] implemented the second approach. They both 
directly deploy NCBI BLAST library without any 
modification. Since TurboBLAST is a commercial 
program and its source code is not publicly accessible, we 
choose the open-source mpiBLAST for our study.  

The mpiBLAST algorithm involves a master and a 
number of workers. The master is responsible for 
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assigning the search tasks to the idle workers and for 
merging the results from all workers according to their 
alignment scores. Each worker copies the assigned 
database fragments to its local storage device and then 
executes the NCBI blastall to search through the database 
fragments.  
 
3. Parallel I/O Implementations  
 

The mpiBLAST does not employ any parallel I/O 
facilities and each worker accesses its own local disk. We 
implemented two parallel I/O variations over PVFS and 
CEFT-PVFS. Figure 1 shows the software stack of our 
implementation, with the mpiBLAST being a parallel 
wrapper around the BLAST library. While the original 
BLAST uses the conventional memory mapped I/O access, 
we intrusively modified the I/O subcomponent of BLAST 
and replaced its conventional I/O system calls with the 
PVFS and CEFT-PVFS native interfaces. As a result, the 
databases are striped on all data servers in a round robin 
fashion and each worker accesses the data servers in 
parallel. In our implementation, the stripe size is set at 
64KB. 

 

mpiBLAST

BLAST library

Parallel I/O library
 

Figure 1. Software stack of mpiBLAST utilizing 
parallel I/O 

To fairly compare the performance of the original 
mpiBLAST and the two new implementations with 
parallel I/O, we designed our experiment under the 
condition that they use equal amounts of hardware 
resources whenever possible. To achieve this, we 
artificially place the mpiBLAST master node and the 
metadata server of PVFS or CEFT-PVFS on the same 
node, and all mpiBLAST workers and the data servers on 
the same nodes if they are equal, as shown in Figure 2. If 
the data server number is not equal to the worker number, 
we make them overlap to the maximum degree.  
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Figure 2. mpiBLAST over PVFS or CEFT-PVFS 
 
CEFT-PVFS is a RAID-10 style parallel file system, 

which combines striping with mirroring by first striping 
among the primary group of server nodes and then 
duplicating all the data in the primary group to the mirror 
group to provide fault tolerance. The read operations in 
CEFT-PVFS have been designed to double the degree of 
parallelism: reading the first half of a file from one 
storage group and the second half from the other group in 
parallel if the desired data has already taken residence on 
both groups. In this way, for a single read operation, all 
data servers are involved.  In addition, the metadata server 
is not only responsible for providing the striping 
information to the client nodes for parallel accesses; it 
also periodically collects the system resource utilization 
information from all data servers and determines the I/O 
service schemes. Figure 3 shows an example where the 
disk of one data server has already been extremely loaded 
by other applications running on the cluster. The metadata 
server detects the hot spot and informs the clients to skip 
that server node and read the whole data from its mirror 
node. Section 4 will further explain this in detail. 
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Figure 3. mpiBLAST over CEFT-PVFS with one 

hot spot disk skipped. 
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4. Performance Measurement and 
Evaluation 

 
4.1 System Environments 
 

In this work, we run the original mpiBLAST and its 
two new parallel-I/O based implementations on the 
PrairieFire cluster [14] at the University of Nebraska-
Lincoln. At the time of our experiment, each cluster node 
was equipped with two AMD Athlon MP 2200+ 
processors, 2 GByte of RAM, a 2 gigabits/s full-duplex 
Myrinet [15] card, and a 20GB IDE (ATA100) hard drive. 
The Netperf [16] benchmark reports a TCP bandwidth 
over Myrinet of 126.51 MBytes/s with 47% CPU 
utilization. The disk write and read bandwidth is 32 and 
26 MBytes/s respectively, as measured by Bonnie [17]. 

We used the sequence database nt, a nucleotide 
sequence database in non-redundant form, freely available 
for download at NCBI web site. Currently the nt database 
is the largest database available at NCBI and it has 1.76 
million sequences, with a total file size of 2.7 GB. Our 
experiments are designed to model and measure the 
typical I/O behaviors of BLAST. Previous research has 
shown that the length of 90% of the query sequences used 
by biologists is within the range of 300-600 characters 
[13]. Thus in this work, a nucleotide sequence with a 
length of 568 characters, extracted from ecoli.nt database, 
is chosen as the query sequence.  

We only performed the blastn search in our 
experiments, which compares a nucleotide sequence 
against a nucleotide database, although the experiments 
can also be carried out with other BLAST programs 
without any modification. 

 
4.2 I/O Access Patterns 

 
We instrumented the source code of NCBI BLAST 

library and collected the I/O traces at the application level. 
To eliminate the influence of the trace collection facilities 
on the completion time, this trace collection function is 
turned off during other measurements.   

While the I/O access pattern of mpiBLAST constitutes 
both small and large reads with small writes, it is 
dominated by large reads with large variations in the 
temporal and spatial accesses. Figure 4 shows an example 
of the traces of the original mpiBLAST when 8 workers 
searched against 8 nt database fragments simultaneously. 
Among 144 I/O operations, 89% were reads ranging in 
data size from 13 bytes to 220 MB, with a mean of 31.29 
MB. The remaining I/O operations were 16 small write 
operations for recording temporary results and 
synchronizing the multithreads on the same nodes. The 
data size for write operations has a minimum of 50 bytes 
and a maximum of 778 bytes, with a mean of 690 bytes. 
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Figure 4. The overall I/O access pattern of 

mpiBLAST with 8 workers at the application level 
(master not included). A query sequence of 568 
bytes from ecoli.nt is searched against the nt 
database with 8 fragments by using blastn. 
 
4.3 Parallel I/O Comparisons 
 

Recall that mpiBLAST utilizes the distributed storage 
devices and it needs to take two steps. Each worker first 
copies the database fragments to its local disks and then 
performs similarity searching independently. Since PVFS 
and CEFT-PVFS provide cluster-wide shared name space 
and mpiBLAST runs directly on them through parallel I/O 
interfaces, the worker does not need the copying 
procedure in the parallel I/O implementations. To fairly 
evaluate the parallel I/O performance, we measured the 
times for the database copying and subtracted the average 
copying time from the total execution time of the original 
mpiBLAST in each measurement.  

The performance of the original mpiBLAST and 
mpiBLAST-over-PVFS is compared under the condition 
that they use the same number of cluster nodes. Since 
cluster nodes serve both as workers and as data servers in 
the mpiBLAST-over-PVFS, the amount of resources that 
the original and new mpiBLAST programs used is exactly 
identical. As Figure 5 shows, when the number of worker 
nodes is 1, mpiBLAST-over-PVFS performs worse than 
the original approach. This is not surprising since all the 
BLAST workers carry the overhead of an additional layer, 
the TCP/IP stack, that all data has to go through, and of 
the need for the workers (or clients in PVFS) to access the 
metadata server. When the number of cluster nodes 
increases to 2, PVFS starts to show advantage over the 
original mpiBLAST. Its advantage persists as the number 
of cluster nodes increases to 4 and 8. However, the 
amount of gains of PVFS over the original mpiBLAST 
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tends to be smaller as the number of cluster nodes 
becomes larger. 
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Figure 5. Performance comparison between 
original mpiBLAST and mpiBLAST-over-PVFS 
under the same amount resources. In 
mpiBLAST-over-PVFS, nodes are both data 
servers and mpiBLAST workers. 
 

The performance of mpiBLAST-over-PVFS is also 
compared with that of the original mpiBLAST when 
allowing the number of data servers to vary. Figure 6 
shows execution time with different number of workers (1, 
2, 4, 8) and different number of PVFS data servers (1, 2, 4, 
6, 8, 12, 16). Noticeably, PVFS does not perform as well 
as mpiBLAST under any of the four worker group sizes 
when it has only one data server. When the number of 
PVFS servers increases to 2, it outperforms the original 
mpiBLAST when the worker group size is 1, 2, and 4. 
The performance of PVFS improves further as the number 
of data servers becomes 4 and starts to show advantage 
over that of the original mpiBLAST under all four sizes of 
worker group. This advantage, while persistent, does not 
increase any further as the number of data servers 
continues to increase. In fact, the performance of 
mpiBLAST-over-PVFS does not consistently follow a 
continuous growth curve. When the number of data 
servers changes from 12 to 16, PVFS performance has no 
significant gain or even slight deterioration. We observed 
that the utilization of CPU on the worker node is kept 
close to 99% most of the time and the I/O time only 
occupy a very small portion of the overall execution time 
when the number of data servers is large, suggesting that 
computations (for sequence comparison), as opposed to 
I/O accesses, have become the absolute dominating factor 
in execution time.  For example, when the number of 
worker nodes was 2, the time spent on I/O operations was 
measured to be around 11% of the total execution time on 
one worker node when running the original mpiBLAST. 

This, according to Amdahl’s Law, implies that improving 
the I/O performance will have little influence on the 
overall execution time. Although we used the largest 
database available at NCBI during our experiments, its 
size is only serveral GBs, only twice or three times larger 
than the size of the RAM on any server node of the cluster 
used for the experiments. With the rapid increase of the 
biological database, it is highly likely that when the size 
of the database is in the order of hundreds of GBs or 
several TBs, the performance gain due to the increase of 
the number of data servers will be much more significant.  
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Figure 6. Performance comparisons between 
the original mpiBLAST and the mpiBLAST-over-
PVFS under different number of workers with 
multiple server configurations. 

 
 
4.4 Comparisons between PVFS and CEFT-

PVFS 
 
In the previous section, the experimental 

measurements of mpiBLAST-over-PVFS clearly showed 
the efficiency of parallel I/O.  In this section, we compare 
the performances of PVFS and CEFT-PVFS.  Recall that 
mpiBLAST is a read-dominated application, thus the 
performance can be significantly influenced by read 
performance of the I/O subsystem. In CEFT-PVFS, the 
read operations are designed to read the partitioned data 
both from the primary group and mirror group 
simultaneously. Thus when using the same number of 
cluster nodes as data servers, CEFT-PVFS and PVFS 
have the same degree of parallelism for read operations. 
In Figure 7, the PVFS is configured with 8 data servers 
while CEFT-PVFS is configured with 4 mirroring 4 data 
servers. In these measurements, all these cluster nodes are 
dedicated and there is no other application running on 
them. The performance of mpiBLAST-over-CEFT-PVFS 
is slightly worse than the mpiBLAST-over-PVFS. This 
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Figure 8. Program to stress the disks 

1. M = allocate(1 MBytes); 
2. Create a file named F; 
3. While(1) 
4.      If(size(F) > 2 GB) 
5.         Truncate F to zero byte; 
6.      Else 
7.         Synchronously append the  
8.         data in M to the end of F; 
9.      End of if 
10.End of while 

performance degradation is acceptable since CEFT-PVFS 
needs to manage slightly larger amount of metadata. 
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Figure 7. Performance comparisons between the 
mpiBLAST over CEFT-PVFS and the mpiBLAST 
over PVFS when the total number of data servers 
is 8 and the number of mpiBLAST workers varies. 

 
4.5 Avoiding Hot Spot in CEFT-PVFS 
 
As an integral part of a cluster, all the server nodes 

usually serve as computational nodes, too. The system 
resources of these nodes, such as CPU, memory, disk and 
network, can be heavily stressed by different scientific 
applications running on these nodes, thus potentially 
degrading the overall I/O performance of the parallel file 
system. This degradation cannot be avoided in the original 
PVFS since there is only one copy of any data stored in 
the system. However, in the CEFT-PVFS, where each 
piece of desired data is eventually stored on two different 
nodes, the redundancy provides an opportunity for the 
clients to skip the hot-spot node that is heavily loaded and 
read the target data from its mirroring node. This is not 
only possible for a single-node hot spot, but also possible 
for multi-node hot spots as long as no two nodes of any 
mirroring pair become hot spots. 

In our experiments, we artificially stress the disk on 
one data server by a simple program, shown in Figure 8, 
to simulate a scenario where other I/O-intensive 
applications sharing the same node are running 
simultaneously (thus overloading the local disk). In this 
program, the synchronous write is guaranteed to always 
have a disk access. As we have measured, when only this 
program is running, both CPUs on the stressed node are 
nearly 95% idle and therefore will likely have little or no 
negative impact on the write performance. All three 
mpiBLAST implementations were executed under exactly 
the same workload, namely, the disk of one of the server 
nodes was artificially stressed using the program in Figure 

8 while the rest of the nodes were evenly loaded by the 
mpiBLAST programs. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 9 shows the performance results of the three 

implementations, with and without disk stressing, 
respectively. In CEFT-PVFS, all the clients skipped the 
hot spot node whose disk was being stressed by using our 
program and read all the desired data from its mirror node. 
While the performance of the original mpiBLAST and 
mpiBLAST-over-PVFS degraded by a factor of 10 and 21, 
respectively, under the disk stress, the mpiBLAST-over-
CEFT-PVFS degraded only by a factor of 2. 
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Figure 9. Performance comparisons between the 
original mpiBLAST, the mpiBLAST over PVFS 
and the mpiBLAST over CEFT-PVFS under 8 data 
servers and 8 mpiBLAST workers when 
stressing the disk on one node 

 
5. Related Work 

 
In the field of parallel I/O, most applications use 

micro-benchmarks to evaluate the overall performance of 
parallel I/O system [3][6][18][19][20][21][22][23]. In 
these benchmarks, multiple clients write or read 
simultaneously in a simple pattern. They aim to measure 
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the peak I/O performance. These benchmarks provide 
useful insights into the parallel I/O systems. However, in 
real scientific applications, the I/O access patterns are 
much more complicated and these applications rarely 
achieve the peak performance. 

Ross et al. [24] studied the I/O characteristics of the 
FLASH astrophysics, a parallel scientific application on 
Linux clusters and simulated its checkpoint and plotfile 
that were basically write-only operations. One important 
observation made in that study suggests that the existence 
of recursion in the interfaces of parallel file systems 
substantially degrades the overall I/O performance, 
pointing to the extreme importance of the efficiency of 
high-level I/O interfaces. 

Li et al. [25] studied the I/O behavior of an AMR 
cosmology application and compared the performance of 
MPI-IO with parallel HDF version 5. They discussed the 
advantages and disadvantages of both systems and 
concluded that there was a mismatch between the user 
access pattern and the file distribution and striping pattern. 
Some of their experiments are conducted on a cluster 
connected by a slow communication network that limited 
the scope of their observation.  

Purakayastha et al. [26] measured file system 
workloads of some scientific applications on MPPs, 
particularly on the CM-5 architecture. They observed that 
small I/O requests dominated I/O operations, that the 
write traffic was consistently higher than read traffic, and 
that files were not shared between jobs. Smirni et al. 
[27][28] showed that there were significant variations in 
temporal and spatial I/O patterns across applications. 
They optimized the I/O performance by applying 
qualitative access pattern classification based on trained 
neural networks and hidden Markov models, flexible 
policy selection using fuzzy techniques and adaptive 
storage formats based on redundant representations [29].  
Bennett et al. [30] improved the parallel I/O performance 
by using collective I/O that aggregates multiple I/O 
requests from different processors into one request. 
 
6. Conclusions  
 

In this paper, we study the I/O behavior of the parallel 
BLAST tools with three different I/O access schemes: 1. 
using conventional I/O interfaces on local disks, 2. using 
parallel I/O interfaces on PVFS, and 3. using parallel I/O 
interfaces on CEFT-PVFS. Based on our extensive 
experiments, we investigated the performance impacts of 
the degree of I/O parallelism and the contention of the I/O 
resource on parallel BLAST. 

While the incorporation of the parallel I/O interfaces 
substantially improves the performance of parallel 
BLAST, we found that a higher degree of I/O parallelism 
may not lead to better performance, depending on whether 
I/O accesses remain dominant in execution time and how 

big the data set is. The performance of the parallel 
BLAST improves consistently in the initial growth in the 
number of data servers in PVFS. However, this 
improvement becomes insignificant when this growth 
continues beyond a certain level. The seemingly counter-
intuitive result is due to the fact that the I/O time 
gradually becomes a very small portion of the overall 
execution time so that the improvement in I/O 
performance becomes very insignificant relative to the 
overall performance, a conclusion consistent with 
Amdahl’s Law. In the case of CEFT-PVFS, doubling the 
degree of I/O parallelism for read operations provides a 
comparable read performance with respect to that of 
PVFS when the same number of data servers is used for 
both systems.  

It is found that skipping the server node with a 
heavily loaded disk improves the parallel I/O performance 
in CEFT-PVFS. In a cluster, most nodes are typically time 
and space shared by multiple applications and thus the 
local disks of some nodes can be much more heavily 
loaded than those on others. The existence of the I/O 
resource contention can substantially deteriorate the 
performance of the original parallel BLAST and the one 
based on PVFS. While mirroring of disks provides data 
redundancy for fault tolerance in CEFT-PVFS, this 
redundancy can be exploited to improve the I/O 
performance by skipping one or more hot-spot server 
nodes and accessing the desired data from their mirror 
nodes. Our experiments showed that, with the existence of 
an artificially generated hot-spot data server, the parallel 
BLAST-over-CEFT-PVFS greatly outperformed the 
original parallel BLAST and the one based-on PVFS. 

In this work, we only examined the impact of I/O 
resource contention. Clearly, the load conditions of the 
memory, network and CPU can also influence the I/O 
performance. We will further study the impact of 
contention of these resources in related ongoing work. 
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