
A Case Study of Tuning MapReduce for Efficient Bioinformatics in the Cloud

Lizhen Shia, Zhong Wangb, Weikuan Yua, Xiandong Mengb

aFlorida State University, 600 W College Ave, Tallahassee, FL 32306
bGenomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Abstract

The combination of the Hadoop MapReduce programming model and cloud computing allows biological scientists
to analyze next-generation sequencing (NGS) data in a timely and cost-effective manner. Cloud computing platforms
remove the burden of IT facility procurement and management from end users and provide ease of access to Hadoop
clusters. However, biological scientists are still expected to choose appropriate Hadoop parameters for running their jobs.
More importantly, the available Hadoop tuning guidelines are either obsolete or too general to capture the particular
characteristics of bioinformatics applications. In this study, we aim to minimize the cloud computing cost spent on
bioinformatics data analysis by optimizing the extracted significant Hadoop parameters. When using MapReduce-based
bioinformatics tools in the cloud, the default settings often lead to resource underutilization and wasteful expenses. We
choose k-mer counting, a representative application used in a large number of NGS data analysis tools, as our study case.
Experimental results show that, with the fine-tuned parameters, we achieve a total of 4x speedup compared with the
original performance (using the default settings). This paper presents an exemplary case for tuning MapReduce-based
bioinformatics applications in the cloud, and documents the key parameters that could lead to significant performance
benefits.

Keywords: Hadoop, YARN, Parameter Optimization, K-mer Counting, NGS

1. Introduction

To date, next-generation sequencing (NGS) has be-
come the leading application area in the domain of bioin-
formatics. With the advent of NGS technologies, sequence
datasets are growing exponentially and an ultra large-scale
of data generation can be achieved. In current days, mod-
ern Illumina systems can generate hundreds of gigabytes of
sequences per run with 99.9% accuracy [1]. Meanwhile, ex-
tremely large-scale sequencing projects are emerging, such
as ENCODE project [2], 1000 Genomes project [3], Cow
Rumen Deep Metagenomes project [4] and Human Micro-
biome project [5]. With the advent of these large-scale
sequencing projects, traditional analysis tools have been
challenged by the need to scale commensurately with the
exponential growth of data size.

The Hadoop framework [6], Apache’s open source im-
plementation of Google’s MapReduce programming model
[7], has emeged as a viable solution to the challenge of
processing an unprecedented amount of sequence data.
The Hadoop Distributed File System (HDFS) and MapRe-
duce are two core components of the Hadoop framework.
With the assistance of HDFS, Apache Hadoop not only
enables distributed, scalable, and fault tolerance data stor-
age, but it also enables built-in data locality and dis-

Email addresses: lshi@cs.fsu.edu (Lizhen Shi ),
zhongwang@lbl.gov (Zhong Wang), yuw@cs.fsu.edu (Weikuan Yu),
xiandongmeng@lbl.gov (Xiandong Meng)

tributed data processing. MapReduce permits tasks to
run in a massively parallel manner on a large number of
nodes. With the combination of MapReduce and HDFS,
Hadoop provides a load-balanced, scalable, and reliable
framework. Biological scientists have already harnessed
the power of Hadoop in various scenarios; such as map-
ping NGS data to a reference genome, finding SNPs from
short read data, and matching strings in genotype files.
Table 1 concludes some of the available MapReduce-based
bioinformatics tools on the market.

The accelerated adoption of the Hadoop MapReduce
programming model in the domain of bioinformatics is due
not only to the exponential growth of sequence data, but
also to the popularity of cloud computing. This trend
is anticipated to continue growing in the foreseeable fu-
ture. Cloud computing removes the burden of hardware
and software setup from end users and provides ease of
access to Hadoop clusters. With the emergence of cloud
computing, companies are attracted to move their data
analytics tasks to the cloud due to its exible, on demand
resources usage and pay-as-you-go pricing model. Ama-
zon Web Services (AWS) [8] is the most popular cloud-
computing platform offered by Amazon. With the assis-
tance of customized Amazon Machine Images (AMIs), bi-
ological scientists can easily reproduce the computation
environment of a particular application and its past re-
sults.

However, one issue with efficiently leveraging Hadoop is

Preprint submitted to Journal of Elsevier April 30, 2016

© 2016. This manuscript version is made available under the Elsevier user license

http://www.elsevier.com/open-access/userlicense/1.0/

http://ees.elsevier.com/parco/viewRCResults.aspx?pdf=1&docID=4812&rev=2&fileID=147381&msid={513DB5CD-3FEE-46EC-8C31-899C133FE288}


Name Description

CloudBLAST [9] Combining MapReduce and Virtualization on Distributed Resources for Bioinformatics Applications
CloudBurst [10] Highly sensitive read mapping with MapReduce
Biodoop [11] Bioinformatics on Hadoop
Crossbow [12] Searching for SNPs with cloud computing
GATK [13] A MapReduce framework for analyzing next-generation DNA sequencing data
Myrna [14] Cloud-scale RNA-sequencing differentialexpression analysis

Galaxy [15]
A comprehensive approach for supporting accessible, reproducible, and transparent computational
research in the life sciences

SEAL [16] A Distributed Short Read Mapping and Duplicate Removal Tool
CloudAligner [17] A fast and full-featured MapReduce based tool for sequence mapping
Contrail [18] A de Bruijn Genome Assembler that uses Hadoop
FX [19] an RNA-Seq analysis tool on the cloud
BioPig [20] A Hadoop-based analytic toolkit for large-scale sequence data
SeqPig [21] Simple and scalable scripting for large sequencing data sets in Hadoop
Halvade [22] Scalable sequence analysis with MapReduce

Table 1: Available MapReduce-based Bioinformatics Tools

its large number of configuration parameters. The Hadoop
default settings often lead to cluster underutilization and
poor performance, resulting in expensive computation costs
in the cloud environment. On the other hand, tuning these
parameters requires an advanced knowledge of Hadoop,
which could prevent biological scientists from using cur-
rently available (and useful) MapReduce–based tools for
genomic analysis. Although there has been a lot of re-
search on this topic [23, 24, 25, 26, 27, 28, 29], they all fo-
cus on common Hadoop applications, which have different
characteristics from bioinformatics applications. The near-
optimal configuration of Hadoop parameters is tightly cou-
pled with application characteristics, so it is essential to
tune MapReduce-based bioinformatics tools according to
their specific characteristics.

In order to provide biological scientists a clear direc-
tion on how to minimize incurred computation costs by
optimizing Hadoop parameters, in this paper, we first ex-
tract about 20 significant parameters from the Hadoop
parameter space (including more than 200 parameters).
These extracted parameters are classified into four groups:
CPU relevant, memory relevant, disk relevant, and net-
work relevant parameters. We then use k-mer counting in
BioPig [20] as our study case to explore its characteristics
and then identify and optimize the Hadoop parameters
that are critical to its performance. K-mer counting is a
typical application in bioinformatics and is used in various
scenarios of NGS data analysis, including sequence qual-
ity assessment, read alignment, fast similarity search, short
read assembly, taxonomy classification, etc. Based on an
initial tuning configuration (in section 4), we conduct a
fine-tuning consisting of 4 steps to further improve cluster
utilization according to the k-mer counting characteristics.
With our fine-tuned parameters, we show a performance
improvement of about 50% when compared to the initial
setup, and a total of 4x speedup compared to the Hadoop’s
default settings (this is detailed in section 4 and 5). We
believe that this tuning experience can provide a valuable

reference not only for bioinformatics applicaions, but also
for applications with similar characteristics.

The paper is organized as follows. Section 2 introduces
the background of Hadoop, BioPig, and k-mer counting.
Section 3 provides the significant Hadoop parameters and
their classification. Section 4 sets up an initial tuning for
the k-mer counting, followed by the fine-tuning in Section
5. Section 6 gives a review of related work. Section 7
concludes the paper and discusses some future directions
to further optimize k-mer counting performance.

2. Background

The wild adoption of the Hadoop framework and new
types of applications push the original monolithic archi-
tecture (Hadoop 1) to the next generation of the Hadoop
computing platform (Hadoop 2), in which YARN becomes
a separate layer and acts as the resource manager of the
Hadoop cluster. Most of the previous research on Hadoop
tuning works on Hadoop 1 [23, 24, 26, 27, 28, 29]. This
paper targets the latest version, Hadoop 2. In this section,
we first give a general overview of the Hadoop framework.
We next introduce DNA sequence analysis, BioPig toolkit,
and K-mer counting.

2.1. Overview of the Hadoop Framework

Apache Hadoop as an open source implementation of
the MapReduce paradigm provides a reliable, scalable, and
distributed computing framework for data-intensive appli-
cations. Hadoop Distributed File System (HDFS) and
Hadoop MapReduce are two integral components inside
Hadoop.

2.1.1. Hadoop Distributed File System (HDFS)

Hadoop applications read data from and write data to
HDFS. HDFS includes two types of nodes: one NameN-
ode and many DataNodes. Data are broken into blocks

2



and distributed among all the DataNodes. Hardware fail-
ure is fairly common in Hadoop clusters in that Hadoop
runs on commodity hardware. To achieve high availability,
each block of data is replicated to 3 DataNodes, preventing
the failure of one node from causing the loss of valuable
data. Heavy network traffic is often one of the major bot-
tlenecks for parallel and distributed computing. Having
map task running on the node where its input data resides
efficiently addresses this issue. This technique, known as
data locality, is one of the key advantages of Hadoop over
other parallel frameworks.

Even though the NameNode does not hold any dataset,
it holds the metadata for the Hadoop cluster and monitors
the health of the DataNodes via heartbeats from DataN-
odes. As a result the NameNode is the most critical com-
ponent of the HDFS. Prior to Hadoop 2, the Hadoop clus-
ter size is limited in that only one NameNode is allowed for
the entire cluster. HDFS federation, an important feature
in Hadoop 2, is designed to overcome the limitation of the
single NameNode. Cluster storage can scale horizontally
with the assistance of HDFS federation.

2.1.2. Hadoop MapReduce

MapReduce [7] provides a programming model for data-
intensive processing in a massively parallel fashion. In
MapReduce, the workload is decomposed into a large num-
ber of small tasks and distributed to a large number of
nodes. Many real-world applications fit very well to the
MapReduce paradigm and can be executed on MapReduce-
based platforms.

The second generation of the Hadoop MapReduce, which
we call MapReduce 2 (MRv2) or YARN [30], brings some
benefits over its previous version. First, instead of dividing
resources into map and reduce slots, it provides a unified
resource unit called container, which provides a great deal
of flexibility for dynamic resource allocation. Second, it re-
lieves the single bottlenecked JobTracker through a hierar-
chical management scheme, in which a global ResourceM-
anager is responsible for the coordination between applica-
tions within a Hadoop cluster and the per-application Ap-
plicationMaster manages all tasks within a given applica-
tion. Finally, YARN, as a seperate resource management
layer, supports both MapReduce and non-MapReduce ap-
plications running on the Hadoop cluster.

2.2. DNA Sequence Analysis and BioPig Toolkit

DNA sequences consist of four unique bases labeled A,
T, C, and G (for adenine, thymine, cytosine, and guanine
respectively). Genomic analysis is the process of analyz-
ing an organism’s sequences (such as DNA) to understand
its features, functions, structure, or evolution. Method-
ologies used include sequence alignment, searches against
biological databases, etc [31, 32].

BioPig [20] is a Hadoop-based toolkit for large-scale
DNA sequence analysis in bioinformatics. It is fully open
source under the BSD license, and is implemented on top

of Apache Hadoop framework and Pig [33] data flow lan-
guage. Leveraging the advantages of the Hadoop and Pig
frameworks, BioPig has shown its scalability, programma-
bility and portability. BioPig has evolved into its second
generation built on Hadoop 2 and Pig 0.15. BioPig con-
sists of five main functional modules: Input/Output, K-
mer counting, Blast, Assembly and Similarity.

2.3. K-mer Counting

K-mer counting is the core module in BioPig toolkit
and a prerequisite step of many bioinformatics applica-
tions. K-mers refer to all the possible subsequences of
length k in a DNA/RNA sequencing. Counting the occur-
rences of every k-mer in a genome sequence is the prelim-
inary and central step of many subsequent analyses, such
as constructing de Bruijn graphs [34] in sequence assem-
bly, eliminating erroneous reads in a relatively large num-
ber of datasets and aligning multiple sequences. When
the k-mer size is large and billions of reads need to be pro-
cessed, k-mer counting becomes the most difficult problem
in Bioinformatics. Counting large k-mers of large modern
sequence datasets can easily overwhelm the memory capac-
ity of standard computers. To address this issue, BioPig
framework provides a scalable k-mer counter which scales
well with the dataset and k-mer sizes due to the linear
scalability of Hadoop framework.

3. Significant Parameters Classification

Hadoop parameters are crucial to the resource alloca-
tion and job execution behavior. Hadoop exposes over 200
parameters that have varying impact on job performance,
where we identify 20 significant ones based on our knowl-
edge of the configuration parameters and our previous ex-
perience with Hadoop tuning. It is important to note that
these parameters play a significant role in the performance
of applications in the domain of, including, but not limited
to, bioinformatics. We classify the extracted significant
ones into 4 different groups (Table 2).

CPU Relevant Parameters

CPU is a first class resource from a scheduling perspec-
tive; its use governs the job performance fundamentally.
In Hadoop, vcores, the abbreviation for virtual cores, are
used for resource and container allocation, one vcore cor-
responds to one physical processor.

There are several CPU relevant parameters in Hadoop
configuration files. To be specific, the nodemanager.resour
ce.cpu–vcores specifies the number of vcores that can be al-
located for containers on a single node. Themapreduce.map|
reduce.cpu.vcores represents the number of vcores allo-
cated for each map/reduce task. In YARN, the yarn.app.m
apreduce.am.resource.cpu–vcores stands for the number of
vcores the ApplicationMaster needs. The yarn.scheduler.m
inimum|maximum-allocation–vcores is the minimum/maxi

3



CPU yarn.nodemanager.resource.cpu-vcores
yarn.scheduler.maximum-allocation-vcores

Memory

yarn.nodemanager.resource.memory-mb
yarn.scheduler.minimum-allocation-mb
yarn.scheduler.maximum-allocation-mb
yarn.app.mapreduce.am.resource.mb
yarn.app.mapreduce.am.command-opts
mapreduce.map.memory.mb
mapreduce.reduce.memory.mb
mapreduce.map.java.opts
mapreduce.reduce.java.opts

Disk

io.sort.mb
io.sort.spill.percent
dfs.block.size
mapreduce.map.output.compress
mapreduce.map.output.compress.codec
mapreduce.output.fileoutputformat.compress
mapreduce.output.fileoutputformat.compress.codec

Network mapreduce.job.reduce.slowstart.completedmaps
mapreduce.reduce.shuffle.parallelcopies

Table 2: Significant Parameters Classification

mum allocation for each container request at the YARN
ResourceManager.

For the ApplicationMaster, map, and reduce tasks,
they typically run in a single thread and use one vcore,
which is the same as the default settings. However, the
total number of vcores available on each node varies from
cluster to cluster, we need to reconfigure the yarn.nodeman
ager.resource.cpu-vcores and yarn.scheduler.maximum-all
ocation-vcores on a given cluster. The yarn.nodemanager.r
esource.cpu-vcores should be set lower than the total num-
ber of vcores available on each node because some re-
source have to be reserved for the HDFS DataNode and
the YARN NodeManager, as well as other non-MapReduce
processes. At the same time, the yarn.scheduler.maximum
–allocation–vcores should be set greater than yarn.schedul
er.minimum-allocation-mb and no more than yarn.nodema
nager.resource.cpu–vcores. Tuning these two CPU rele-
vant parameters often suffices because most MapReduce
applications are I/O bound. What users usually look into
is to optimize memory, disk, and network usage, which will
be discussed in the next.

Memory Relevant Parameters

In Hadoop 2, container as the unified allocation unit
provides a great deal of flexibility for dynamic adaption.
YARN only allows a container to start if a node has enough
resource to meet the container’s requirement. Currently,
container encapsulates memory and CPU, most of its re-
quirements are specified using memory. More precisely,
the memory relevant parameters can be classified into two
categories.
1) YARN
YARN can allocate an upper bound of memory on a node
using the yarn.nodemanager.resource.memory-mb property
in yarn-site.xml. This value should be set lower than the
total memory available on each node because some re-
sources have to be reserved for system processes, as well

as other user processes. The minimum/maximum amount
of memory for each container request is determined by
yarn.scheduler.{minimum|maximum}-allocation-mb. Ap-
plicationMaster is the application’s first container launched
by YARN ResourceManager, its memory requirement and
JVM heap size are specified by yarn.app.mapreduce.am.
resource.mb and yarn.app.mapreduce.am.command-opts re-
spectively.
2) MapReduce
Both the map task and reduce task run in containers.
The memory size of a container for each map/reduce task
can be specified via mapreduce.{map|reduce}.memory.mb
in mapred-site.xml. The JVM heap size of the map/reduce
container is governed bymapreduce.{map|reduce}.java.opts
and should be set slightly lower than the corresponding
container size.

In addition, Hadoop is implemented in Java. Garbage
Collection (GC) allows Java programmer to focus on solv-
ing their logic specific problems without managing mem-
ory. However, it may become a significant performance
bottleneck. Analyzing GC logs may reveal unreasonable
GC settings for an application. To enable GC logs, options
of -verbose:gc, -XX:+PrintGC, -XX:+PrintGCDetails and
-XX:+PrintGC TimeStamps have to be appended to the
existing JAVA OPTS. Among the above memory relevant
parameters, JVM options can help tune GC behavior.

Disk Relevant Parameters

With Hadoop framework, not only are the input and
output stored in disk (HDFS), but so is the intermedi-
ate data. I/O is often the bottleneck that constrains the
Hadoop application performance. Data compression and
spilled records reduction are often two effective ways to
reduce I/O operations. Data compression allows the data
can be stored in more compact form. Spilling occurs fre-
quently in the map side due to its limited sorting buffer
size. To be specific, a map task first writes its output
to a circular buffer, which size is controlled by io.sort.mb
property. Whenever the buffer reaches a certain thresh-
old governed by io.sort.spill.percent parameter, the con-
tent of the buffer is sorted and spilled to local storage by
a background thread. One map task may generate mul-
tiple spills depending on the buffer size and map output
data size. Spill mechanism implies that the performance
is best when the spilled records is identical to the number
of map output records, which means that map output is
just spilled once. If more than one spills are generated,
the spilled records have to be reread and rewritten into a
single sorted file partitioned by reduce keys, incurring the
additional overhead of disk I/O. The detail of this process
is shown in figure 1.

dfs.block.size is another important disk relevant param-
eter. Because one map task is generated for each HDFS
block, decreasing the HDFS block size can reduce the data
map task need to process, meaning less output would be
generated.

4



Figure 1: The Flow of Data Processing across MapReduce Tasks

To sum up, data compression and spilled records re-
duction are two efficient ways to reduce the I/O overhead.
With regard to the spilled records reduction, there are also
two different ways: decreasing the HDFS block size to re-
duce the map output and increasing the sorting buffer size
to fit the map output.

Network Relevant Parameters

The lifetime of a MapReduce job can be divided into
two phases: map and reduce. The map phase doesn’t re-
quire high network bandwidth because the scheduling lo-
cality of map tasks helps co-locate these tasks where the
input data is stored. Map output is only written to local
disks. In contrast, the reduce phase, which gathers and
combines the output from map phase, incurs heavy net-
work traffic in that each reduce task pulls its input from
every map task accross the network and writes its output
into HDFS. As a result, improving network traffic condi-
tion and preventing traffic congestion are crucial for the
overall job performance.

More precisely, the reduce phase can be divided into 3
steps:

Shuffle: Collects input from map tasks.

Sort: Sorts and merges the records by keys.

Reduce: Runs the reduce function and writes its output
into HDFS.

Figure 2 shows the timeline of a MapReduce job execu-
tion. Shuffle may start before the end of the map phase but
finish only after all map tasks have finished. Sort and Re-
duce may only start when the shuffle completes. Since map
and shuffle phases overlap, the coordination between them
plays a significant role in determining the overall runtime.
mapreduce.job.reduce.slowstart.completedmaps in mapred-
site.xml is specified as a percentage of completed map
tasks to control the time when reduce tasks start collecting
the output of map tasks. The early shuffle incurs not only
hanging reduce tasks, but also some delay in the execu-
tion of the map phase, because the map tasks and reduce
tasks are competing for containers on the same physical
machine. The general rule of thumb is that raising the
default value (0.05) to be above 0.80 (80%) can increase
resource utilization and decrease the reduce tasks waiting
time (average shuffle time).

mapreduce.reduce.shuffle.parallelcopies is another net-
work relevant parameter, which determines the number of

Figure 2: Decomposition of Reducer Phases

parallel threads run by each reduce task during the shuf-
fle phase. There is a tradeoff in setting this property: a
low value will waste network bandwidth and CPU cores; a
high value can cause not only too many pending threads
but also network congestion. The near-optimal value is de-
pendent on the network bandwidth as well as the number
of CPU cores on each node.

4. Initial Evaluation

Hadoop provides a default value for each parameter.
However, the default configuration is normally insufficient
for most Hadoop workloads and degrades the Hadoop job
performance. For example, our data node has 32 CPU
cores and 60GB memory, but the maximum number of
CPU cores and the maximum memory that can be allo-
cated for containers on each node are only 8 and 8GB re-
spectively by default. As a result, the remaining 24 CPU
cores and 52GB memory will be idle because no work load
will be assigned to them. For this reason, we will not tune
parameters based on the default settings because it is too
low. Our first step is to pinpoint a initial tuned level as
a reference for our next fine-tuning part. The goal is to
keep the resource utilization of cluster balanced and get an
acceptable performance given our hardware resource (e.g.
CPU, memory, disk, network).

4.1. Experimental Setup and Workloads

To evaluate k-mer counting performance, we use a clus-
ter of 15 EC2 c3.8x large machines (1 master, 14 work-
ers) each with 32 cores, 60 GB memory and an 500 GB
SSD. All the machines are connected by 10Gbit/s Ether-
net. We choose cow rumen metagenomics dataset [4], the
same dataset used in the original BioPig paper [20], as our
test input. From the I250 serial, the one with the largest
size and the best quality, we generate 6 different work-
loads: 1GB, 10GB, 20GB, 40GB, 60GB and 100GB. The
k-mer size is fixed to 20 for simplicity as in the original
BioPig paper [20].

4.2. Initial Tuned Configuration and Performance

With Pig, users must specify the number of reduce
tasks. After running a bunch of jobs with various num-
ber of reducers, estimations of reducer numbers at various
workloads are found and shown in Table 3.

5



Input Size(GB) # of mappers # of reducers

1 16 60
10 156 200
20 311 400
40 622 800
60 954 1200

100 1586 2000

Table 3: Numbers of Mappers and Reducers for Different Data Size

●

●

●

●

●

●

1 10 20 40 60 100

0

50

100

150

200

250

300

350

400

C
P

U
 T

im
e
 (

m
in

it
e
s
)

Data Size (GB)

● Default

Init tuning

Figure 3: Default and Baseline Performance

Based on the general tuning guidelines provided in sec-
tion 3, values of those significant Hadoop parameters are
set as in Table 4. For succinctness, we avoid redundant
information provided in the previous section. On our EC2
cluster, we use the default block size (64MB) and allo-
cate 28 containers on each node. More precisely, for each
container, we allocate 2GB memory and 1624MB JVM
heap size. 1000MB is allocated for sorting the map output
within the JVM heap size. Reduce tasks start when 80%
of map tasks have finished.

Using the initial tuned configuration and the above set
number of reducers, k-mer counting is executed with 6 dif-
ferent data sizes. The results (figure 3) show that with
the initial tuned parameters, the job execution time is de-
creased by about 60% compared to the default settings.
Our analysis of the Hadoop counters/logs reveals that the
initial tuning configuration doesn’t fully utilized the hard-
ware resource. In the next section, we will fine-tune those
significant parameters based on the initial configuration.

5. Fine-tuning

Our tuning follows an iterative process and focuses on
the significant parameters (in section 3). In an effort to
provide a MapReduce framework that can be used by users
without an in-depth understanding of Hadoop internals,
Hadoop provides a rich web interface for managing Hadoop
clusters and MapReduce jobs. The ResourceManager (de-
fault port 8088) and JobTracker (default port 19888) web

interfaces are two most used ones for diagnosing and trou-
bleshooting performance bottlenecks, since they provide a
wealth of information (such as counters, logs, etc.) on jobs
and tasks that are running on the cluster as well as his-
torical information on completed jobs. In each iteration,
we run the job, identify a bottleneck from these web in-
terfaces and then adjust relevant parameters. This tuning
cycle starts off at our previous initial tuning configuration
and repeats until all the observed problems are addressed.
We mainly go over the following 4 steps: compressing the
output of the map and reduce tasks, reducing the cost of
data spilling, minimizing the overhead of garbage collec-
tion, and coordinating of the map and reduce phases. The
detail of these tuning steps is discussed in section 2.

5.1. K-mer Counting Characteristics
One major overhead for data-intensive applications is

the intermediate data. The pecularity of k-mer counting
lies in its exceptionally large intermediate data size relative
to input data size. Tables 5 and 6 compare the ratio of
intermediate data size to input data size between common
Hadoop applications and k-mer counting. From these re-
sults, it can be perceived that k-mer counting application
often generates more than ten-fold intermediate data rela-
tive to the input data. This distinct feature makes some of
available Hadoop tuning guidelines inapplicable for k-mer
counting. In our tuning effort, we use 40GB and 60GB
input data sizes to fully utilize the cluster resource while
allowing us to complete experiments within a reasonable
amount of time and cost.

Job Input data Int. data Int./
Name size (TB) size (TB) Input

LogProc 1.10 1.10 100%
NdayModel 3.54 3.54 100%
BehaviorModel 3.60 9.47 263%
ClickAttribution 6.80 8.20 121%
SegmentExploder 14.10 25.20 179%
LogRead 1.10 1.10 100%
LogCount 1.10 0.04 4%

Table 5: Characteristics of Intermediate Data for Common Hadoop
Applications

Input size (GB) Int. data size (GB) Int./Input

1 13.5 1350%
5 67.7 1354%

10 135.4 1354%
20 270.9 1355%
40 541.5 1354%
60 830.0 1383%

100 1381.0 1381%

Table 6: Characteristics of Intermediate Data for k-mer (k=20)
Counting

5.2. Parameters Tuning
Compressing the Output of the Map and Reduce Tasks
(Disk Relevant Parameter Tuning)

K-mer counting is considered I/O bound as it generates
large amount of intermediate data. For such I/O bound

6



Configuration parameters Default Value Initial-tuned Value

yarn.nodemanager.resource.memory-mb 8192 58296
yarn.nodemanager.resource.cpu-vcores 8 30
yarn.scheduler.minimum-allocation-mb 1024 2048
yarn.scheduler.maximum-allocation-mb 8192 58296
yarn.scheduler.maximum-allocation-vcores 32 30
yarn.app.mapreduce.am.resource.mb 1536 2048
yarn.app.mapreduce.am.command-opts -Xmx1024m -Xmx1624m
mapreduce.map.memory.mb 1024 2048
mapreduce.reduce.memory.mb 1024 2048
mapreduce.map.java.opts -Xmx200m -Xmx1624m
mapreduce.reduce.java.opts -Xmx200m -Xmx1624m
io.sort.mb 100 1000
mapreduce.reduce.shuffle.parallelcopies 5 20
dfs.block.size 64M 64M
mapreduce.map.output.compress FALSE FALSE
mapreduce.map.output.compress.codec DefaultCodec DefaultCodec
mapreduce.output.fileoutputformat.compress FALSE FALSE
mapreduce.output.fileoutputformat.compress.codec DefaultCodec DefaultCodec
mapreduce.job.reduce.slowstart.completedmaps 0.05 0.80

Table 4: Initial-tuned Configuration

applications, data compression and decompression trade
off CPU cycles for reduced I/O costs. The smaller in-
termediate data size not only reduces the number of local
disk operations each map and reduce task perform but also
reduces network transfers from map tasks to reduce tasks.

Hadoop supports multiple compression formats (zlib,
gzip, LZO, bzip2, Snappy, etc). Because of the good bal-
ance between speed and space, Snappy was chosen for
this test. As can be seen from Table 7, data compres-
sion yielded more than 50% decrease in disk I/O. For
40GB workload, the number of bytes read and written
was decreased from 604GB to 283GB and from 1200GB
to 550GB, respectively. Consequently, the overall job time
was decreased by 6 minutes for 40GB input and 8 minutes
for 60GB input. Our testbed (EC2 cluster) is equipped
with SSDs. Thus the performance gain of HDD is more
significant compared to clusters with SSD as the primary
storage.

Reducing the Cost of Data Spilling (Disk Relevant Param-
eter Tuning)

In Hadoop, data is split into blocks. These blocks are
stored on the DataNodes of the HDFS file system. One
map task is created for each block by default. Therefore,
the number of map tasks is determined by block size and
input data size. The larger the block size is, the fewer map
tasks will be spawned in the Hadoop cluster. A large block
size is supposed to be beneficial according to some stud-
ies [23, 26] because the fewer number of map tasks incurs
lower overhead of starting up and tearing down. However,
k-mer counting is an exception due to the high merging
overhead brought by its large intermediate data size. Our
analysis of the spill logs reveals that, with 64MB block size,
each map task generated 3 spills. The overhead of merg-

1
6

3
2

6
4

1
2

8
HDFS Block Size (MB)

J
o

b
 E

xe
c
u

ti
o

n
 T

im
e

 (
m

in
s
)

0

10

20

30

40

50

60

70

Figure 4: Effect of the HDFS Block Size

ing those spilled records dwarfed the benefits of having
large block sizes. We tried different block size (Figure 4)
and found that the block size of 32MB yielded best per-
formance. The overall job execution time was decreased
by 12 minutes for 40GB input and 17 minutes for 60 GB
input after reducing the block size to 32MB. However, the
Hadoop counters shows that the spilled records in the map
phase was still greater than the map output records, indi-
cating more than one spills were generated by each map
task. To avoid the penalty of merging the spilled records,
we increased the map-side buffer size to 1100MB in such
a way that all the intermediate data can be contained in
the buffer. Spill mechanism implies that the performance
is best in this scenario. Experimental results showed that
more than 50% of I/O overhead was reduced by this tun-
ing. Specifically, the total number of bytes read and writ-
ten was decreased by 567GB and 886GB for 40GB and
60GB inputs respectively.

7



Data Size Counter Group(GB) Uncompressed Compressed Diffrence
Map Reduce Total Map Reduce Total Map Reduce Total

40GB Number of bytes read 604 598 1,202 283 131 414 321 467 788
Number of bytes written 1,200 598 1,798 550 131 681 649 467 1,117

60GB
Number of bytes read 929 917 1,846 442 167 609 487 751 1,237
Number of bytes written 1,839 917 2,756 853 167 1,020 986 751 1,736

Table 7: IO Improvement from Data Compression

0
.8

0
.9

1
.0

mapreduce.job.reduce.slowstart.completedmaps

A
ve

ra
g
e
 S

ta
g
e
 E

xe
c
u
ti
o
n
 T

im
e

0

2

4

6

8

10

12

Map Shuffle Merge Reduce

Figure 5: Impact of Reducer Start Time

Minimizing the Overhead of Garbage Collection (Memory
Relevant Parameter Tuning)

In Hadoop, a JVM daemon is launched for each task.
Java Garbage Collection (GC) is an automatic mechanism
to manage the runtime memory by JVM. It is done by
copying the survival objects from Young Generation [35] to
Permanent Generation [35] when the former is full. Once
the Permanent Generation is also filled up, the whole JVM
heap is reclaimed during which all survival objects in the
heap are collected, a process referred to as full GC. Full GC
affects performance of Java applications and is a sign that
some adjustments need to be made to the GC settings.
Avoiding or minimizing full GC can prevent performance
degradation caused by the memory swap. Our log showed
that there was one full GC every 45 seconds, which, if not
adjusted properly, would incur significant overhead to the
application. By configuring the size of Permanent Genera-
tion from 20MB (default value) to 128MB, and the number
of parallel threads for garbage collection to 4, the overall
job run time was decreased by 9 minutes for 40GB input
and 11 minutes for 60GB input as displayed in table 8.

Coordinating of the Map and Reduce Phases (Network Rel-
evant Parameter Tuning)

From section 3, we know that we can configure the
time until reduce tasks begin shuffling. Let us denote the
percentage of completed map tasks when shuffling starts
as the parameter value λ, which is controlled by mapre-
duce.job.reduce.slowstart.completedmaps parameter. The
average shuffle time is a key indicator of whether the start
time of the reduce tasks need to be reconfigured. With the
initial setting (λ = 0.80), we analyzed the logs and found
that the average shuffle time was still relatively long, which
indicates that the performance suffered since the early-

launched reduce tasks occupied the available resource (e.g.
cores, memory associated with each container). After try-
ing several different values (Figure 5), we set λ to 1.00 for
the k-mer counting application, meaning that the reduce
tasks will only start when all the map tasks are complete.
Result shows the overall job execution time was decreased
by 4 minutes for 40GB input and 8 minutes for 60GB input
by this tuning. Note that our EC2 nodes are connected by
10Gigabit Ethernet, which reduces the bandwidth bottle-
neck. In this case the slowstart parameter can be set very
large (0.999 or 1.0). For the Hadoop clusters with lower-
bandwidth interconnect, e.g. 1Gb Ethernet, such a high
value can cause sudden spikes in network traffic and create
network slowdown, since all the map tasks start copying
at the same time.

5.3. Discussions

Figure 6 summerizes how each tuning step affects the
overall runtime in detail. Among them, spilled records
reduction and full GC elimination are the two most sig-
nificant steps. In addition, the performance improvement
by tuning these factors is roughly proportional to the data
size.

The performance difference before and after fine-tuning
can be seen in figure 7. More precisely, with the fine-
tuned parameters, the overall runtime is reduced by 44%
for the 40GB input, and 47% for the 60GB input compared
to the initial configuration (in section 4). In connection
with the default settings, we have achieved a total of 4x
speedup. Aside from these performance improvement, the
linear scalability is also kept during the tuning process.

On the other hand, disk I/O and network bandwidth
are usually two performance bottlenecks for Hadoop appli-
cations. SSD and 10Gigabit Ethernet for our EC2 cluster
help mitigate the impact of these constraints. We believe
that applying these tunings to Hadoop clusters with slower
network and slower storage may bring more performance
improvements.

6. Related Work

Hadoop MapReduce tuning has been studied in [23,
24, 25, 26, 28, 29]. [23, 24] and [26] provide general
guidelines to tune parameters on Hadoop 1. In contrast,
we not only provide some valid suggestions on the next
generation of the Hadoop computing platform known as
YARN, but also present a detailed step-by-step practical

8



Data Size Counter Group Before GC tuning After GC tuning Diffrence
GC Time (s) Map Reduce Total Map Reduce Total Map Reduce Total

40GB Job1 183,905 529 184,433 2,014 104 2,118 181,891 424 182,315
Job2 18,807 5,736 24,543 7,720 1,510 9,230 11,087 4,226 15,313

60GB
Job1 25,283 390 25,672 7,135 141 7,277 18,147 249 18,396
Job2 26,577 8,120 34,697 11,040 2,302 13,342 15,538 5,818 21,355

Table 8: Performance Gain from GC Tuning

In
it
. 

T
u

n
e

d

C
o

m
p

re
s
s
io

n

S
p

ill
 R

e
d

n
.

F
u

ll 
G

C
 E

lim
.

M
R

 C
o

rr
d

.

F
in

e
 T

u
n

e
d

m
in

iu
te

s

0

20

40

60

80

0

20

40

60

80

71 6

13

9

4
40

40GB

In
it
. 

T
u

n
e

d

C
o

m
p

re
s
s
io

n

S
p

ill
 R

e
d

n
.

F
u

ll 
G

C
 E

lim
.

M
R

 C
o

rr
d

.

F
in

e
 T

u
n

e
d

m
in

iu
te

s

0

20

40

60

80

100

0

20

40

60

80

100
100 8

20

11

8

53

60GB

Figure 6: Impact Factors

●

●

●

●

●

●

1 10 20 40 60 100

0

50

100

150

200

250

300

350

400

C
P

U
 T

im
e
 (

m
in

it
e
s
)

Data Size (GB)

● Default

Init tuning

Fine tuning

Figure 7: Performance Comparison

experience for tuning applications in the domain of bioin-
formatics. In addition, [23, 24] and [26] all focus on
the built-in benchmarks of the Hadoop framework, among
them TeraSort is one of the most extensively studied work-
loads. Bioinformatics applications have quite unique char-
acteristicsas (as shown in section 5), which makes some of
the available tuning guidelines inapplicable. For instance,
both [23] and [26] claim that a larger block size can bring
better performance because of the lower overhead of map
task creation and destruction . However, for our k-mer
counting tuning, big block size causes the map tasks spill
heavily to disk which seriously impairs the performance.

[25, 28] and [29] present auto-tune sytems which are
designed to tune Hadoop parameters automatically. Al-
though these solutions may at first appear to be viable
and attractive, the core problem is that they often lack ef-
ficiency and effectiveness to capture the characteristics of
all application domains. Furthermore, the large parameter
space, with its complex trade-offs and inter-dependencies,
and multi-tenant Hadoop cluster environments increase
the complexity of auto tuning, in which not only some
models are used to estimate job execution time but also
some search algorithms are designed to find the optimal
settings. Different from these studies, to simply the tun-
ing problem, we reduce the parameter dimensionality and
classify the significant parameters in this work. In prac-
tice, users can easily identify major bottlenecks by check-
ing Hadoop counters, thereafter our approach limits the
search to the significant parameters and help them quickly

9



identify the best parameters settings. The near-optimal
performance can be achieved by following the iterative
process of addressing bottlenecks. Compared to the rigid,
predefined auto-tune systems, our methodology is not only
adaptive and flexible to any particular application on a
given cluster, but also can deliver better performance.

Asides from the dimension reduction of parameter space
and significant parameters classification, this is the first
study, to our knowledge, to emphasize the importance of
the application characteristics and present a practical ref-
erence for tuning applications in the bioinformatics do-
main. In this regard, our paper not only offers a valuable
case study, but also brings a new perspective on Hadoop
tuning.

7. Conclusion and Future Work

With the growing popularity of cloud computing and
exponential data growth in bioinformatics, an increasing
number of Hadoop MapReduce applications are written
for large-scale, data-intensive analysis of bioinformatics
datasets. Hadoop configuration optimization is a chal-
lenging problem that requires user experience and deep
knowledge of the Hadoop framework. In this paper, to re-
duce the complex scope of Hadoop parameter tuning and
provide biological scientists a clear direction, we ignore the
parameters that have litter performance effect and classify
the significant parameters into 4 groups. We use k-mer
counting as our study case and focus on tuning its sig-
nificant parameters. According to k-mer counting char-
acteristics, 4 steps are conducted to further improve our
EC2 cluster utilization based on an initial tuning config-
uration. Results show that these tunings achieve a total
of 4x performance improvement compared to the default
settings.

Even though parameter tuning can bring obvious per-
formance improvement, I/O is still a major bottleneck of
Hadoop-based applications. Future experiments to reduce
I/O may include implementing a combiner to reduce the
amount of transferred data to the reducers, reimplement-
ing k-mer counting analysis on Apache Spark [36], or using
Apache Tez [37] as Pig’s execution engine.

Acknowledgments

We are very thankful to Dr. Shane Canon from Lawrence
Berkeley National Lab, Mr. Brandon Stephens from Florida
State University, and the anonymous reviewers for their
insightful comments. This work is funded in part by Na-
tional Science Foundation awards 1561041 and 1564647.
Xiandong Meng, Zhong Wang, and Lizhen Shi partially,
are supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC02-05CH11231.

References

[1] J. Zhang, R. Chiodini, A. Badr, G. Zhang, The impact of next-
generation sequencing on genomics, Journal of genetics and ge-
nomics 38 (3) (2011) 95–109.

[2] Encode Project, https://www.encodeproject.org/.
[3] 1000 Genomes Project, http://www.1000genomes.org/.
[4] M. Hess, A. Sczyrba, R. Egan, T.-W. Kim, H. Chokhawala,

G. Schroth, S. Luo, D. S. Clark, F. Chen, T. Zhang,
et al., Metagenomic discovery of biomass-degrading genes and
genomes from cow rumen, Science 331 (6016) (2011) 463–467.

[5] Human Microbiome Project, https://en.wikipedia.org/

wiki/Human_Microbiome_Project/.
[6] Hadoop, https://hadoop.apache.org/.
[7] J. Dean, S. Ghemawat, Mapreduce: simplified data processing

on large clusters, Communications of the ACM 51 (1) (2008)
107–113.

[8] AWS, http://aws.amazon.com/.
[9] A. Matsunaga, M. Tsugawa, J. Fortes, Cloudblast: Combining

mapreduce and virtualization on distributed resources for bioin-
formatics applications, in: eScience, 2008. eScience’08. IEEE
Fourth International Conference on, IEEE, 2008, pp. 222–229.

[10] M. C. Schatz, Cloudburst: highly sensitive read mapping with
mapreduce, Bioinformatics 25 (11) (2009) 1363–1369.

[11] S. Leo, F. Santoni, G. Zanetti, Biodoop: bioinformatics on
hadoop, in: Parallel Processing Workshops, 2009. ICPPW’09.
International Conference on, IEEE, 2009, pp. 415–422.

[12] B. Langmead, M. C. Schatz, J. Lin, M. Pop, S. L. Salzberg,
Searching for snps with cloud computing, Genome Biol 10 (11)
(2009) R134.

[13] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis,
A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly,
et al., The genome analysis toolkit: a mapreduce framework
for analyzing next-generation dna sequencing data, Genome re-
search 20 (9) (2010) 1297–1303.

[14] B. Langmead, K. D. Hansen, J. T. Leek, et al., Cloud-scale rna-
sequencing differential expression analysis with myrna, Genome
Biol 11 (8) (2010) R83.

[15] J. Goecks, A. Nekrutenko, J. Taylor, et al., Galaxy: a compre-
hensive approach for supporting accessible, reproducible, and
transparent computational research in the life sciences, Genome
Biol 11 (8) (2010) R86.

[16] L. Pireddu, S. Leo, G. Zanetti, Seal: a distributed short read
mapping and duplicate removal tool, Bioinformatics 27 (15)
(2011) 2159–2160.

[17] T. Nguyen, W. Shi, D. Ruden, Cloudaligner: A fast and full-
featured mapreduce based tool for sequence mapping, BMC re-
search notes 4 (1) (2011) 171.

[18] Contrail, http://www.homolog.us/blogs/blog/2011/09/08/

contrail-a-de-bruijn-genome-assembler-that-uses-hadoop/.
[19] D. Hong, A. Rhie, S.-S. Park, J. Lee, Y. S. Ju, S. Kim, S.-B. Yu,

T. Bleazard, H.-S. Park, H. Rhee, et al., Fx: an rna-seq analysis
tool on the cloud, Bioinformatics 28 (5) (2012) 721–723.

[20] H. Nordberg, K. Bhatia, K. Wang, Z. Wang, Biopig: a hadoop-
based analytic toolkit for large-scale sequence data, Bioinfor-
matics (2013) btt528.

[21] A. Schumacher, L. Pireddu, M. Niemenmaa, A. Kallio, E. Kor-
pelainen, G. Zanetti, K. Heljanko, Seqpig: simple and scalable
scripting for large sequencing data sets in hadoop, Bioinformat-
ics 30 (1) (2014) 119–120.

[22] D. Decap, J. Reumers, C. Herzeel, P. Costanza, J. Fostier, Hal-
vade: scalable sequence analysis with mapreduce, Bioinformat-
ics (2015) btv179.

[23] D. Heger, Hadoop performance tuning-a pragmatic & iterative
approach, CMG Journal 4 (2013) 97–113.

[24] S. B. Joshi, Apache hadoop performance-tuning methodologies
and best practices, in: Proceedings of the 3rd ACM/SPEC
International Conference on Performance Engineering, ACM,
2012, pp. 241–242.

[25] M. Li, L. Zeng, S. Meng, J. Tan, L. Zhang, A. R. Butt, N. Fuller,
Mronline: Mapreduce online performance tuning, in: Proceed-

10

https://www.encodeproject.org/
http://www.1000genomes.org/
https://en.wikipedia.org/wiki/Human_Microbiome_Project/
https://en.wikipedia.org/wiki/Human_Microbiome_Project/
https://hadoop.apache.org/
http://aws.amazon.com/
http://www.homolog.us/blogs/blog/2011/09/08/contrail-a-de-bruijn-genome-assembler-that-uses-hadoop/
http://www.homolog.us/blogs/blog/2011/09/08/contrail-a-de-bruijn-genome-assembler-that-uses-hadoop/


ings of the 23rd international symposium on High-performance
parallel and distributed computing, ACM, 2014, pp. 165–176.

[26] P. TUNING, Performance tuning.
[27] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin,

S. Babu, Starfish: A self-tuning system for big data analytics.,
in: CIDR, Vol. 11, 2011, pp. 261–272.

[28] G. Liao, K. Datta, T. L. Willke, Gunther: Search-based auto-
tuning of mapreduce, in: Euro-Par 2013 Parallel Processing,
Springer, 2013, pp. 406–419.

[29] P. Lama, X. Zhou, Aroma: Automated resource allocation and
configuration of mapreduce environment in the cloud, in: Pro-
ceedings of the 9th international conference on Autonomic com-
puting, ACM, 2012, pp. 63–72.

[30] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
et al., Apache hadoop yarn: Yet another resource negotiator,
in: Proceedings of the 4th annual Symposium on Cloud Com-
puting, ACM, 2013, p. 5.

[31] W. Yu, K. J. Wu, W. Ku, C. Xu, J. Gao, BMF: bitmapped
mass fingerprinting for fast protein identification, in: 2011 IEEE
International Conference on Cluster Computing (CLUSTER),
Austin, TX, USA, September 26-30, 2011, 2011, pp. 17–25.

[32] Sequence Analysis, https://en.wikipedia.org/wiki/

Sequence_analysis.
[33] C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins, Pig

latin: a not-so-foreign language for data processing, in: Pro-
ceedings of the 2008 ACM SIGMOD international conference
on Management of data, ACM, 2008, pp. 1099–1110.

[34] de Bruijn graphs, https://en.wikipedia.org/wiki/De_

Bruijn_graph.
[35] V. L. Shrinivas Joshi, Java garbage collection characteristics

and tuning guidelines for apache hadoop terasort workload.
[36] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Sto-

ica, Spark: cluster computing with working sets, in: Proceed-
ings of the 2nd USENIX conference on Hot topics in cloud com-
puting, Vol. 10, 2010, p. 10.

[37] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy,
C. Curino, Apache tez: A unifying framework for modeling and
building data processing applications, in: Proceedings of the
2015 ACM SIGMOD International Conference on Management
of Data, ACM, 2015, pp. 1357–1369.

11

https://en.wikipedia.org/wiki/Sequence_analysis
https://en.wikipedia.org/wiki/Sequence_analysis
https://en.wikipedia.org/wiki/De_Bruijn_graph
https://en.wikipedia.org/wiki/De_Bruijn_graph

