

A Case Study on Event Dissemination in an

Active Overlay Network Environment
Sérgio Duarte, J. Legatheaux Martins, Henrique J. Domingos, Nuno Preguiça

DI/FCT/UNL
Quinta da Torre, 2829-516 Caparica - Portugal

+351-212948300

{smd, jalm, hj, nmp}@di.fct.unl.pt

ABSTRACT
In this paper, we describe a case study of the design and

development of a group-conferencing tool suite, built on top of an

overlay network based event dissemination framework, which is

extensible via quality of service template plug-ins. We explain, for

each of the tools, how the framework built-in conveniences were

explored to create simple but effective distributed solutions,

backed by the appropriate quality of service templates, whose

design we also discuss.

Keywords

Case study, event dissemination, quality of service (QoS),

multicasting, overlay networks, active networks.

1. INTRODUCTION
Distributed application design is closely tied to the problem of the

quality of service offered by the support communication channels.

In general, for a given problem, a too weak quality of service

tends to put an excessive burden on the application, which has to

overcome the communication infrastructure shortfalls on its own.

On the other hand, an excessive quality of service is wasteful

because it normally comes with a matching price tag somewhere.

Ideally, one should strive for a balanced compromise between the

two, aiming at simpler applications backed by communication

support with the “right” quality of service. This has been

recognized in many fields of distributed computing and, naturally,

also in the more specific context of messaging middleware and

event systems [1][2][6].

Our work in the context of distributed event dissemination tackles

this precise challenge of designing a flexible, generic event

dissemination framework, capable of providing the means to

easily and incrementally build communication support channels

with just the “right” quality service needed in each situation. We

have addressed this problem by creating a solution based on

pluggable QoS templates that leverages its overlay-network

oriented architecture to achieve those goals. We want to show that

this may prove to be a viable alternative to the “one size fits all”

approach.

In this paper, we intend to describe the experience gained from

the development of a group-conference tool suite built on top of a

framework that advocates principles that go deliberately against

rigid, “one size fits all” approaches in the context of distributed

event dissemination.

2. CASE STUDY APPLICATION
The case study JAVA application is a barebones group-conference

tool suite, comprising videoconference, moderator and chat tools.

It allows a user to join a named group session, monitor the status

of other users and engage in chat or videoconference activities. A

moderator tool is included to help the audio coordination of

videoconference sessions involving multiple participants.

The objective of this case study is to test the claim that an

expected positive impact on application development supported

by data dissemination with the “right” quality of service (QoS) is

achievable and viable in an event dissemination framework

extensible via specific QoS template plug-ins.

In broad terms, the application developed consists of a desktop

where the individual tools are launched and manipulated. A

sample screen capture is shown in Figure 1. The desktop provides

an updated view of the status of the users enlisted in the current

session. Videoconference activities, within a session, are achieved

using complementary sender and a receiver tools and involve

encoding, multicasting and presenting RTP [3] A/V streams. An

optional moderator tool allows informal dialog coordination, by

enabling and muting the appropriate audio streams, according to

the evolving state of a global queue of enrolled participants. A

chat tool makes up the last of the desktop components.

Figure 1 - Sample screen capture of an ongoing session.

To test the aforementioned claim, the entire communication

requirements posed by this tool suite have been strictly fulfilled

by the amenities of the event dissemination framework, by

developing framework plug-ins with the appropriate QoS classes,

as required by each application component. Therefore, we must
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full cit ation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

Copyright 2003 ACM - 1-58113-843-1…$500. 1

highlight that this case study focuses on the problem of flexible

event transportation and sidelines other key aspects of event

dissemination such as filtering. In doing so, we intentionally

stressed the event transport facet of the framework by evaluating

its feasibility in dealing with a scenario with communication

needs closer to the data multicasting problem.

3. DEVELOPMENT FRAMEWORK
The tool suite is built on top of a JAVA-based event

dissemination platform named DEEDS. DEEDS has been

designed to be as flexible and adaptable as possible and aimed at a

broad range of applications and execution scenarios. The guiding

goals of the framework are the extensibility and configurability of

existing features, as a way of satisfying the requirements of large-

scale, heterogeneity and mobility in specific contexts.

DEEDS advocates a general-purpose solution in the sense that it

can be easily adapted to particular problems, or greatly eases the

creation of custom solutions using existing features as guiding

blueprints. A small set of simple and intuitive concepts have been

deliberately used to foster an incremental approach towards

problem solving that capitalizes on existing experience.

3.1 Event Dissemination Model
DEEDS implements the well-known publish/subscribe paradigm,

enhanced with a feedback operation allowing event consumers

and event sources to engage in one-to-one event exchange

dialogs. These operations are supported over active event

channels that designate named instances of particular QoS

templates. These QoS templates correspond to system-level plug-

ins that execute in the nodes of the event dissemination overlay

network and provide the routing logic needed to direct the event

stream produced by the publish and feedback operations.

The event dissemination model offered is also protocol

transparent, meaning that there are no references to specific

communication protocols at either the application level or within

the QoS templates themselves. Actual protocol bindings are

relegated to the deployment phase and subjected to the

administrative policies of each particular site.

Figure 2 – DEEDS’ Overlay network architecture, showing

the tree node types linked by various kinds of transports.

3.2 Platform Architecture
The event dissemination model summarized above is matched by

a distributed architecture designed with large-scale and

heterogeneity support in mind. A three-tier overlay network of

nodes makes up the core of the event dissemination infrastructure,

as shown in Figure 2. The first tier of this logical network is

known as the backbone and its server nodes typically handle the

more demanding routing operations. The second level is made of

a mix of secondary server nodes and client nodes (applications),

while solely client nodes compose the third tier. In every node,

regardless of type but, with different contexts, instances of the

QoS template plug-ins are executed to handle event forwarding.

Routing of events and exchange of control messages between

nodes is forwarded over transports, which are wrappers that

abstract the actual communication links connecting the involved

processes. Use of a heterogeneous mix of transports to form the

overlay network is allowed, thus it is possible to use TCP, UDP,

IP Multicast, HTTP or other protocol based transport at the same

time to accommodate different administrative policies.

The dissemination architecture also comprises a data repository,

known as the system registry, where static-persistent configuration

and dynamically collected volatile data is kept in the form of

attribute-value pairs. Portions of the registry have a local scope

and deal, essentially, with information about each node particular

configuration and runtime status. The remaining of the registry is

globally reachable (on demand) and is replicated (lazily) among

all server nodes. This is the place where DEEDS stores persistent

information that is relevant to every node, such as the event

channel directory that lists the names of known channels and their

bindings to the QoS templates.

3.2.1 Node architecture
The primary job of a DEEDS node is to provide the execution

environment for the event channel QoS template instances. Event

routing within a QoS plug-in typically involves accepting

incoming events and control messages, updating the state of the

node, and sending event and control messages to other nodes over

the appropriate transports. A node, depending on its type, also

runs a number of background services. These services exchange

information with their counterparts on other nodes to perform

housekeeping functions and provide a monitored view of the

status of the dissemination network. One of these services, for

instance, is responsible for maintaining the node’s system registry

replica. An explanation of the most relevant services comes next.

3.2.1.1 Backbone Monitoring Services
These services are two intertwined, complementary processes that

only run on the first tier, backbone nodes. Their purpose is to

monitor the overlay network and assemble a structured view of

the overlay network backbone.

One of the two is the Hello service, which continuously probes

the list of currently known (backbone) nodes, one by one, to

determine which are active and to obtain an estimate of their

distance. A scheduler within the service assigns higher priorities

to nearby or “critical” nodes, so that the allotted bandwidth is not

wasted on probing irrelevant nodes that are too distant in terms of

latency or spanning tree hops. The Linkstate service completes the

pair; its task is to efficiently deliver the data gathered by the Hello

service to the other backbone nodes and collect theirs, so that a

global perception of state of the backbone is achieved. To attain

this, each node periodically publishes its “hello data” in a

dedicated special broadcast event channel. The data is encoded in

such a way that, with a modest increase in size, also carries the

node’s current assessment of the “best” backbone spanning tree.

Embedding a spanning tree in each of these messages allows the

broadcasting to be achieved by source routing the message to next

nodes in the tree path. This scheme is advantageous because no

special coordination among the nodes is required to avoid cycles

or to detect duplicates; it permits the Linkstate service to rely on

1 st t ier (backbone)

2 nd t ier

primary server nodes

secondary server nodes

client application nodes

unicast transports

multicast transports

3 rd t ier

2

itself to improve recursively its own routing information. As a

result, the global view of the backbone these services provide

makes it possible to obtain good spanning trees directly with

graph theory algorithms. The minimum spanning tree (MST)

algorithm is one of them but, although simple and lightweight, it

tends to produce deep, meandering trees, which is not desirable.

Instead, we prefer to use a spanning tree derived from a spanner

graph algorithm, which adds shortcuts to the MST so that the

distance between any two nodes in the spanner does not exceed by

a given factor their direct distance. The depth of the resulting

spanning trees can be finely controlled using the spanner factor,

while keeping the tree cost effective.

The information received through this service is also used to

gather knowledge about fresh backbone nodes. Finally, the

spanning tree advertised by the node with the lowest identifier is

taken as the official one and used to produce multicast and unicast

routing tables that, in turn, can be employed to drive the event

routing in other QoS templates plug-ins, such as the one used by

the system registry management service summarized next.

3.2.1.2 Registry Management Service
This node service manages the global, replicated portion of the

system registry. The service runs on every node but, since client

nodes only keep a volatile cache of the system registry, the

operation of the service in these nodes is somewhat restricted.

The service updates the registry in two different ways. There is a

low bandwidth proactive replication process that periodically

multicasts registry items in a dedicated event channel. But, more

often, updates to the registry are the result of lookups that cannot

be resolved locally and are sent to other nodes in the form of

queries. Both processes rely on a tailored event channel QoS

template to send and receive information. This event channel can

both multicast registry items and queries away from a source or

unicast replies towards a destination, one single hop at a time in

both cases, querying and feeding system registries along the way.

3.3 Programming Model
DEEDS programming model is expressed in the JAVA

programming language and assumes execution in a standard

JAVA environment. The programming library consists of a set of

user-level programming interfaces intended for the development

of applications. And, a set of system-level classes for system

enhancement, which allow the creation of additional node support

services, novel QoS template plug-ins and transport classes.

A flexible concept of event is used, representing a reasonably

small, self-contained notification, composed by a pair of items: a

main payload, in the form of an arbitrary “serializable” JAVA

object; and an envelope object, whose particular class may be

specific to each event channel type (represented by its supporting

QoS template). Both event components are optional, which means

that empty events are allowed. Data overlap between the two is

not restricted in any way but is wasteful and should be avoided.

The role of envelope objects can be seen as a way of passing

arbitrary control information to the event dissemination

infrastructure to avoid the need to scrutinize the main event

payload for that same purpose at a greater cost. For instance, the

envelope can be a rough description of the main event payload, to

assist QoS templates in optimizing event dissemination based on

aggressive event filtering practices. Or, more simply, an envelope

can be an expiration deadline to allow the QoS template of the

event channel to automatically discard late events before reaching

some of its subscribers and, thus, free network resources earlier.

The counterpart of the envelope is the criteria object used in

subscription operations. These are generic event filters operating

over envelope types that are used to check the envelopes of

incoming events to select those to be delivered to the application.

Together, envelopes and criteria form the basis of the event

filtering capabilities of the framework.

The event model also includes the notion of receipt objects,

whose purpose is to aggregate and return system-generated

information associated with an event, such as event-source

identifiers, sequence numbers and subscription “handbacks”.

These receipts cannot be fabricated and are important for the

feedback operation because they identify the event source targeted

by the operation.

3.3.1 Application Programming Interfaces
The basis of the programming interfaces is the EventChannel

class, which provides the access points to the event dissemination

operations according to the publish/subscribe/feedback model.

References to these objects are obtained by performing a lookup

operation on a global event channel directory. The only parameter

required is the string name of the desired event channel. Creation

of a new event channel is accomplished with the clone operation,

which takes the intended name for the new channel and the name

of the QoS template plug-in, in which the new channel will be

based upon. The use of “clone” for the operation name is meant as

way of emphasizing the idea that the new event channel will be a

copy or clone of a prototype channel already present and accepted

into the system.

Having obtained a reference to an EventChannel object, the

application can follow the expected programming pattern of the

publish/subscribe paradigm. The specifics being that the publish

operation requires an envelope and an object (the main payload)

and returns a receipt. To be notified an application performs

subscribe operations, specifying criteria objects to filter out

undesired events based on their envelopes. The feedback

operation fits in the model to allow a notified application to

engage into a one-to-one dialog with a specific event source; it

differs from the publish operation by requiring a receipt of a

previously received event as an extra argument.

The following code excerpt exemplifies the use of these main

programming interfaces in two basic publisher and subscriber

applications. For clarity and brevity, only partial argument lists

are shown.

import deeds.api.*;
public class Publisher implements EventFeedbackSubscriber {
 EventChannel c ;
 public Publisher() {
 Deeds.Directory().clone(“QoStemplate”, “channel_name”);
 c = Deeds.Directory().lookup(“channel_name”);
 c.subscribeFeedback(criteria, …, this);
 while(…) c.publish(envelope, payload);
 c.unsubscribe(…);
 }
 void nofifyFeedback(Receipt r, Envelope e, MarshalledEvent m) {
 Object payload = m.getEvent();
 …
 c.feedback(r, envelope, payload2) ;
 }
}

3

import deeds.api.*;
public class Subscriber implementsEventSubscriber,EventFeedbackSubscriber{
 EventChannel c ;
 public Subscriber() {
 c = Deeds.Directory().lookup(“channel_name”);
 c.subscribe(criteria, …, this) ;
 c.subscribeFeedback(criteria2, …, this);
 }
 void nofify(Receipt r, Envelope e, MarshalledEvent m) {
 Object payload = m.getEvent() ;
 …
 c.feedback(r, envelope, payload2) ;
 }
 void nofifyFeedback(Receipt r, Envelope e, MarshalledEvent m) {
 Object payload = m.getEvent();
 …
 c.feedback(r, envelope, payload2) ;
 }
}

3.3.2 QoS Template Development
Extending the framework capabilities is in great part tied to the

development of new QoS template plug-ins. In their essence,

event channel templates implement a particular routing protocol

across the overlay network to deliver events to interested parties.

A QoS template must deal with two separate streams of events,

the multi-point stream that is produced by publish-operations, and

the (optional) unicast stream consisting of feedback events. To

achieve this purpose, the plug-in can also format any appropriate

control messages it needs and exchange them with other nodes.

Unless the desired QoS is very basic, design of a new plug-in can

be a complex task. To make their development easier it is possible

to capitalize on useful information already available in the node.

This information is made accessible through the system registry

and is presented in the form of dynamic objects that other

processes keep updated and store in named containers. Containers

keep track of changes in the information they store and notify

interested parties. This scheme allows QoS plug-ins to

synchronize their state (a privately computed routing table, for

example) in reaction to changes in the containers they monitor.

The framework already provides a number of these containers

such as, a list of known backbone nodes and the transports

available to reach them, a list of local subscribers for each event

channel, a current view of the overlay network links, a low-cost

spanning tree covering the backbone nodes and the associated

broadcast and unicast routing tables. These resources are a great

help in the programming of new plug-ins, as will be shown in the

following sections, where we describe the ones that were

developed for the purpose of the group conference tool suite. A

source example is also provided in the appendix at the end of this

paper.

4. CASE STUDY DEVELOPMENT
In this section we describe the most relevant aspects that guided

the development of each of the applications that make up this case

study. We recall that the challenge we have undertaken has been

to show that a combination of the right quality of service in

communication can lead to simple (peer-oriented) applications

that address elaborate problems. Furthermore, we want to verify

that, with an acceptable effort, the desired QoS is feasible within

plug-in model of the DEEDS framework. In any way, we want to

advocate here that this is the best way to solve these problems but

that it is a good, promising way; a viable alternative to more

popular approaches such as the centralized client-server model.

4.1.1 Video-Conference Tools
The videoconference tools are more precisely described as being

two separate programs, the transmitter that captures, encodes and

transmits the a/v streams and the receiver that decodes and

presents them. For obvious reasons, we used the Java Media

Framework [4] to create these programs. It allows a JAVA

application to easily capture, encode or transcode audio and video

streams in a number of standard formats. One feature of JMF that

is particularly pertinent for this case study is its ability to deal

with RTP encoded media streams. RTP [3] (and its companion

protocol RTCP) is a IETF sponsored transport protocol,

specifically designed for transmitting real-time data, such as

audio, video over multicast or unicast network services. What

makes RTP so attractive is that it has been made independent of

the underlying transport and network layers, which enables us to

encode RTP streams and multicast them over our event

dissemination overlay network.

The core effort in delivering RTP streams over DEEDS rested in

the creation of the appropriate RTPConnectors adaptors according

to the JMF specifications, which are the actual objects used

internally to have a media source send out the RTP and RTCP

packets and gather reception statistics reports (RTCP packets)

from its listeners. Implementing these connectors in DEEDS was

no trouble at all, and merely consisted in having the connector

publish the RTP and RTCP packet stream in a given event

channel and use the feedback operation to report back the RTCP

packets to the source.

The greater undertaking in the development of these tools was the

selection of the best event channel type for the task and

implementing the corresponding QoS template plug-in. Given the

nature of the problem, the desired event channel type had to offer

a light-weight multicast service with as low as possible latency

and jitter. In this particular case, reliability is not an issue and

dropping a few packets is tolerable. Moreover, a simpler single-

source multicast routing protocol solution can be adopted

provided each sender uses its own channel, which is actually

desirable in this case. With these characteristics in mind, we

implemented a SingleSourceUnreliableMulticast plug-in.

The plug-in implements its multicast routing protocol capitalizing

heavily on network state data already provided by the normal

operation of the framework. It essentially creates a tree of

backbone nodes, see picture above, rooted at the node where the

4

event source is connected and spanning the nodes with registered

subscribers. A special rendezvous node selected independently for

each channel, by mapping the channel id to a node id and finding

the best match in the list of backbone nodes, acts as a temporary

root. A node joins the multicast tree, in response to changes in its

registrations container, by sending a JoinRequest control packet

towards the root of the tree. These requests travel towards the root

one hop at time (except the first time when they have to reach the

root via the rendezvous node). Each node merges all the requests

it receives from lower level nodes into a larger compound request.

As a result, the root is not flooded with many single requests but

receives just a few larger ones. When the root detects a new node

after merging together all the requests (or when it is time to

refresh the tree) the channel’s multicast tree is updated. The new

tree is obtained by finding the minimum spanning tree covering

the root and the subscribed nodes, according to the current state of

the backbone. It is then propagated down to all nodes, by having

each node send it to its children and so on, according to the

topology conveyed in the updated tree. A node knows that it has

joined the multicast group when it receives a tree update that

includes it; to leave the multicast tree it sends LeaveRequest

packets directly to the root packet until it gets a confirmation; the

root in turn updates the tree in response.

4.1.2 The Desktop
The desktop is the main application that glues everything

together. Its purpose is more than just to be a background where

the tools are launched and manipulated. It has the important role

of managing the group session by monitoring the status of its

participants and providing the necessary binding information that

turns the isolated tool instances into a closely coupled group.

The desktop relies on a dedicated event channel for its operation.

The name of this event channel identifies the session that the user

is joining. The remaining tools rely also on this name to complete

binding information by appending appropriate suffixes to derive

their own event channels’ names.

During the course of its operation, the desktop uses its event

channel to publish a periodic heartbeat that informs other

desktops in the same session about the presence of this

participant. The desktop collects these heartbeats (including its

own) to keep a list of the session’s participants. This list is

presented graphically on the left side of the desktop, showing both

online participants and offline ones. A participant is considered

offline if the last time its heartbeat has been heard exceeds a

preset amount of time.

The type of event channel required for the correct operation of the

desktop in the terms described differs from the one used in the

video conferencing tool in the fact that it has a clear a multi-

source requirement. An unreliable type can be used and has been

developed but we later decided to replace it with a reliable

version. The difference being that a reliable event channel allows

for a tighter tolerance in heart beat timings because with a reliable

event channel one only has to consider delayed heart beats,

whereas with an unreliable one, lost heart beats must take into

consideration and, therefore, one can only reasonably conclude

that a participant is offline if a certain number of consecutive

heart beats failed to arrive.

The two QoS template types were developed anyway, basically

because it makes sense to produce the reliable version after the

unreliable one. Moreover, the UnreliableMulticast QoS template

is essentially an extension of the single-source version developed

earlier. The changes made consisted in also having the nodes with

sources join the multicast tree, in addition to the nodes with

subscribers, and always choosing the rendezvous node as the root

of the multicast tree. The JoinRequest handling and related

multicast tree updating was kept the same. The only additional

modification required was about the routing of the actual events.

They no longer travel down the tree, as before, but at each node

are sent away from their point of origin along the branches of the

multicast tree (now interpreted as a graph).

This multicast routing algorithm will perform poorly if the

number of nodes that are exclusively a source of events is much

larger than the receiver nodes. However, this does apply in the

case of the desktop application because every node is always both

a source and a subscriber.

The ReliableMulticast template that was eventually used in the

desktop application solves the problem of lost packets with a

small fixed-sized packet queue, at each node of the multicast tree,

one for each source. Holes in queue are filled by sending a

negative acknowledgement packet, listing a certain number of

missing packets, one hop towards the source. Every so often, a

node is also required to send a packet, one hop towards the

source, acknowledging the last event in sequence it received. At

each level of the tree (in respect to the source in question) these

ACK packets are aggregated into larger compound ones to avoid

the problem known as ACK implosion. The source advances the

queue in step with the lowest sequence numbered ACK received

and drops any node that fails to advance its sequence number for

too long.

4.1.3 Moderator Tool
The purpose of this tool is to help coordinate an ongoing

videoconference session by muting the audio streams of selected

participants, while keeping the video going. This tool is rather

simple in its approach; it manages a queue of enrolled

participants, monitoring changes to the queue and only allowing

the participant at the head of the queue to talk, keeping the others

silent. The actual tool consists of a simple graphics interface that

shows the state of the queue, with its enrolled participants, and

allows a participant to enter or leave the queue. No fault-

tolerance features have been implemented but, given its overall

informal nature, this problem would addressed by allowing

anyone to remove a silent participant from the queue.

To keep it simple and peer-oriented, all instances of the tool

behave in the same way, none having a special role. Changes to

the queue are made by publishing enter or leave events to an

event channel that every moderator tool (in the same session)

subscribes, with the sanity of this whole process resting in the

event channel’s ability to keep all the queues consistent. The

actual muting and enabling of the audio streams is done indirectly

by publishing appropriate events to another event channel shared

with the all the tools running on the same desktop, video-

conference ones included. This is an event channel that only spans

one particular desktop and is a clone of the built-in LocalLoop

QoS template.

This simple approach to the moderator tool was thought viable on

the assumption that a suitable QoS template could be developed

easily enough to not completely offset what would be gained in

the first place. Specifically, the moderator tool required a multi-

source reliable multicast event channel, with the additional need

5

for a consistent ordering of events for all subscribers. Our bet was

that it would be possible to adapt one of the existing QoS

templates and, with a modest effort, turn it into what was

necessary. It turned out that it was, indeed, a rather simple task to

extend the existing ReliableMulticast template into a TotalOrder

ReliableMulticast version that also guaranties that every node

receives events in exactly the same order. Basically, the

adaptation consisted in having the rendezvous node serve as a

sequencer and establish the globally perceived ordering of the

events, by embedding in the event stream a new control message

stream relating the source sequence number of each event to the

total order of the channel. The reliability mechanism already used

in the event stream also applies to these new control messages

thus avoiding any gaps in the total order sequence numbers. In

each node, events are delivered to the application when both the

next in sequence mapping message and the corresponding event

have arrived. This solution to the problem is not novel but we feel

that it adds additional proof to the extensibility claims of the

framework.

4.1.4 Chat Tool
This tool allows the users in a session to engage in a written

dialog. It follows a similar approach to the one used in the

moderator by having all the instances of the tool share exactly the

same role. Consequently, the chat tool also shares with the

moderator tool the same QoS requirements for its event channel,

thus allowing us to re-use the same QoS template plug-in already

developed for the moderator tool. As a result, the chat too is very

small and simple. Basically, it only needs to publish the text input

by the user into a dedicated event channel that every chat tool also

subscribes to receive what the other users are saying. When a new

event arrives, a log of the messages received is converted to

HTML code to be presented, taking advantage of JAVA support

for this format. To dress up the chat tool, and by taking further

advantage of the HTML rendering capabilities of the JAVA

environment, we opted for presenting each message side by side

with the icon image associated with its author. The real

motivation was that with only a replacement of the default

protocol handler of the JAVA environment we managed to use the

system registry as the URL source for those images and exploit

and evaluate its location independent addressing, load on demand

and caching capabilities.

Our next step to improve this chat tool has been to get it to replay

the history of the messages exchanged in previous sessions. To

keep the changes in line with the overall philosophy, we would

like to accomplish this without modifying the application code.

Specifically, the goal is to replace the event channel type,

currently in use, with a new type also advertising a persistency

quality. Such a channel type would replay past events to a new

subscriber before catching up with the rest of the group. Again,

we feel this is quite achievable by extending an existing QoS

template and developing a persistency support service.

5. TRIAL EXPERIMENTS
The group conference tool suite described in the preceding

sections has been tested on a limited scenario in terms of the

number of backbone nodes used. For practical reasons, the

evaluation of the correctness of the QoS template plug-ins in

scenarios involving a realistic number of backbone nodes was

done by simulation only. For this task, we used the framework’s

built-in simulator to run the unchanged QoS templates in random

networks with up to 100 backbone nodes during several hours of

virtual time. To stress the routing algorithms and to rapidly

expose any errors, very aggressive (and unrealistic) packet loss

rates of up to 50% were tested. The algorithms behaved as

expected, delivering the promised QoS. Actual performance data

was not gathered at this time because the goal of the current line

of work is not the design of overlay routing algorithms per se but

to prove that the framework’s proclaimed extensibility and

programmability lives up to expectations. In this respect, we were

pleased to confirm that the DEEDS framework does, indeed,

support the coding and adaptation of elaborate routing algorithms

in a natural and straightforward manner.

Testing of the actual group conference tool suite has involved, so

far, a LAN DEEDS environment setup with the following

characteristics. The dissemination network consisted in just two

backbone nodes to which the desktop applications were connected

directly; therefore, no secondary servers (second tier nodes) were

used. Heterogeneous mixes of TCP, UDP and IP multicast

transports were employed to assemble the network. Specific

transport bindings were setup for each event channel, depending

on the template involved. Reliable channels were set to use TCP

across the entire network, while unreliable ones were set to use

UDP between the two backbone nodes (with a 200 ms imposed

delay) and IP multicast among the clients of the same backbone

node and itself. It is worth mentioning that the choice of specific

protocol bindings is a node configuration procedure that is meant

to reflect local administrative practices of a particular site.

Although, choices of protocol bindings can and will affect QoS

template performance, the templates themselves cannot

programmatically specify or enforce a particular configuration.

Informal testing with the network configuration described above,

conducted with a group of up to four participants, has shown that

the tools behave in an acceptable way despite their prototypal

nature. In particular, the more demanding videoconference tool

showed that the overhead inherent to the framework is not too

impairing. Conferencing using audio alone worked particularly

well but video suffered a noticeable frame drop. A more careful

analysis of the problem revealed that video alone worked fine and

that the problem was more apparent when audio and video were

used together. This led us to think the problem was in the tool

itself and not in the actual dissemination process. This suspicion

was confirmed when the same tests conducted over pure IP

multicast exposed the same problem.

6. FUTURE WORK
Results obtained from this case study have been very encouraging

and strengthened our motivation to continue the validation of the

DEEDS’ event dissemination model and architecture. To that end,

we will next evaluate how key problems, such as, efficient routing

based on aggressive filtering policies or content-based routing

problems, can be solved using the framework. We would like to

incorporate any results from these efforts to expand the usefulness

of the system registry in application design beyond that already

tried in the chat tool. The other major undertaking still required is

to evaluate the impact of enhancing the framework with security

related features. More specifically, we intend to incorporate

signed code techniques to the load on demand procedure of QoS

template plug-ins and introduce other cryptography elements to

6

protect the overlay network from outside interference and

eavesdropping.

7. RELATED WORK
The lack of Internet-wide, reliable “native” multicasting support

has fuelled the search for several middleware solutions to the

information dissemination problem. Horus[1] and iBus[2] are two

paradigmatic middleware messaging systems that addressed the

problem of group-oriented communication with customizable

QoS guaranties. In these systems, QoS is offered by layered

protocol composition, by means of extensible protocol stacks. The

chosen communication model is strongly biased towards peer-to-

peer computing between end applications, without or with very

limited intervention of support servers. Our work differs greatly

both in scope and approach. We advocate a solution that includes

support for large-scale scenarios, whereas theirs is essentially

targeted at LAN environments. We also address the problem of

QoS in a radical different way; preferring non end-to-end oriented

protocols according to principles inspired from active-networking

[5] research but adapted to the specifics of overlay networking.

The problem of QoS handling in the specific context of

publish/subscribe systems has also been discussed in [6]. In this

work, QoS based delivery of events is exposed at the

programming language level using a framework of “asynchronous

collections” that offers familiar object-oriented programming

abstractions for handling information, such as bags, sets, arrays,

lists, sorted sets, etc. Little information is given about the

underlying architecture.

Siena[6], Elvin[8] and Gryphon[9] are noteworthy examples of

elaborate event systems, based on content-based subscription. In

these systems, event consumers subscribe from a global pool of

structured events by providing sophisticated filter expressions,

which must be evaluated against incoming events to determine

those of interest. In [8], Elvin is described as a non-scalable,

centralized solution but, on the plus side, offers support for client

disconnection. Both Siena and Gryphon address scalability issues

by migrating subscription expressions over decentralized multi-

server architectures. These platforms pursue, mainly, optimized

content-based solutions based on a fixed set of routing protocols.

Being a framework, DEEDS lacks most of the specific event

algebra processing engines of these systems but, on the other

hand, its extensibility offers a larger potential for the support of a

broader range of scenarios. It also puts a greater emphasis on the

dissemination component of distributed event systems.

[10][11][12] are systems that also tackle the problem of

multicasting in overlay-network environments, each offering a

specific multicast routing algorithm and a fixed protocol for the

self-organization of the overlay network. They differ mainly in

those respects to our offering, because ours has been designed

from the ground up to be extended with new routing algorithms

via pluggable templates.

Finally, discussion on group-oriented meeting tools can be found

at [13][14], which are important references in their field. These

systems are particularly good examples of the pragmatic tendency

of choosing centralized client/server solutions whenever that is

acceptable. Our work has hinted that fully distributed, more fault-

tolerant solutions can be viable alternatives to that model.

8. CONCLUSIONS
The design and implementation of this case study has been very

helpful in our work on the development of DEEDS, a

programmable and extensible event dissemination framework. It

has strengthened our belief in the soundness of our goals and in

the design decisions made so far.

It confirms the viability of the programming model advocated in

the framework, which claims that simple, yet, effective event-

aware distributed applications can be built on top of an overlay

network communication infrastructure, provided the most natural

or straightforward requirements in quality of service are met. This

conviction comes from the fact that elaborate routing protocols,

offering diverse types of QoS, were developed, readily, and in the

form of pluggable and re-usable extensions to the dissemination

framework, perfectly in line with our expectations.

This case study also provided evidence that DEEDS offers enough

built-in conveniences to make it is relatively easy to adapt existing

documented routing algorithms into its overlay networking

environment. Is has also shown that the creation of new QoS

plug-in templates can follow an incremental approach from

previously developed ones. The active networking inspired plug-

in model represents great versatility because it encourages the use

of tweaked variants of the same plug-in as a form of optimization

for specific requisites, instead of having to settle with an overall

best one.

Another area of framework design that confirmed its value was

the adoption of a protocol agnostic approach to the programming

model. It showed that there are obvious advantages in supporting

protocol heterogeneity in a independent manner to the

programming of new applications and template plug-ins.

Allowing the choice of actual bindings between event channels

and underlying communication protocols to be left to the

deployment phase proves to be sensible, because it can be

changed at any time and so can be better adapted to what is

available in each particular circumstance at a given time. Overall,

it was made clear that the adoption of protocol heterogeneity will

offer a more diverse and richer realm of deployment possibilities.

Finally, we feel the results obtained so far encourage us to

continue the validation process of the dissemination framework by

tackling other areas of the distributed event dissemination

problem along the lines exposed in the future work section above.

9. REFERENCES
[1] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A

flexible group communication system. Communications of

the ACM, 39(4):76--83, April 1996.

[2] M. Altherr, M. Erzberger and S. Maffeis. “iBus - A Software

Bus Middleware for the Java Platform”. In International

Workshop on Reliable Middleware Systems, p. 43-53,

October 1999.

[3] Schulzrinne, A., Casner, S., "RTP: A Transport Protocol for

REAL-Time Applications", Internet Engineering Task Force,

Internet Draft, Oct. 20, 1993.

[4] Sun Microsystems. “Java Media Framework 2.0 API Guide”.

http://java.sun.com/jmf. 1999.

[5] J M. Smith, et al. “Activating Networks: A Progress Report”.

IEEE Computer, Vol. 32, No. 4, p. 32-41, April 1999.

7

[6] P. Eugster, R. Guerraoui, J. Sventek. “Distributed

Asynchronous Collections: Abstractions for

Publish/Subscribe Interaction”. ECOOP, pp. 252-276, 2000

[7] A. Carzaniga, D. S. Rosenblum and A. Wolf. “Achieving

Scalability and Expressiveness in an Internet-scale Event

Notification Service”. In Proceedings of the 19th Annual

ACM Symposium on Principles of Distributed Computing

(PODC-00), July 2000.

[8] B. Segall, D. Arnold. “Elvin has left the building: A

publish/subscribe notification service with quenching”. In

Proceedings of AUUG97, Brisbane, 1997.

[9] G. Banavar et al. “An efficient multicast protocol for content-

based publish-subscribe systems. In the 19th IEEE

International Conference on Distributed Systems

(ICDCS’99), May 1999

[10] Yang-Hua Chu, Sanjay Rao, and Hui Zhang. “A case for end

system multicast”. In Proceedings of ACM Sigmetrics, Santa

Clara, CA, 2000

[11] J. Jannotti, D. Gifford, K Johnson, M.Kaashoek and J.

O’Toole Jr.”Overcast: Reliable Multicasting with an Overlay

Network”. In Proceedings of the Fourth Symposium on

Operating Systems Design and Implementation, San Diego,

pp 197-212. USENIX Association October 2000.

[12] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. “Almi:

An application level multicast infrastructure.” In Proceedings

of the 3rd USENIX Symposium on Internet Technologies

and Systems (USITS), pages 49--60, 2001.

[13] K. Watanabe et. al. “Distributed Multiparty Desktop

Conferencing System: MERMAID”. In Proceedings of the

Conference on Computer-Supported Cooperative Work, Los

Angeles, CA, September 1990.

[14] T. Crowley, P. Milazzo, E. Baker, H. Forsdick, and R.

Tomlinson. “MMConf: An infrastructure for building shared

multimedia applications”. In Proc. CSCW'90, pages 637--

650, Los Angeles, CA, October 1990.

10. APPENDIX
The sample below represents the main JAVA class that implements the UnreliableMulticast QoS template plug-in. This refers to the

template code that executes in the context of the backbone (1st tier). Two other simpler classes provide the routing logic for the 2nd and 3rd

tier of the overlay network. Most of group membership management, spanning tree calculation is done in the NodeGroup class, not shown

here. The actual sendTo methods are found in the base class. These methods take a node id or a collection of node ids and forward events

by selecting the appropriate transports. That selection is based on information kept in a container that tracks changes in primary node data.

package deeds.sys.templates.unreliable.e;

//…removed list of imports.

public class p_UnreliableMulticast extends ControlPacketRouter {

 public p_UnreliableMulticast(GUID channel) {

 super(channel) ;

 }

 public void init() {

 super.init() ;

 Container.monitor("p-" + this.channel(), new ContainerListener() {

 public void handleContainerChanges(Container c) {

 sc = (SubscriptionContainer) c.item("SubscriptionContainer") ;

 isMember = ! sc.isEmpty() || isRendezVousNode() ;

 }

 }) ;

 members = new NodeGroup(links) ;

 lauchRefreshMembershipsTask() ;

 }

 // routes the actual published events

 public void pRoute(pDataEnvelope de) throws Exception {

 if(de.isLocalEvent() || de.isMinorEvent()) isSource = true ;

 sendTo(members.children(de.src.major()), de) ;

 loq.send(de) ;

 }

 // routes the actual feedbacked events

 public void fRoute(fDataEnvelope de) throws Exception {

 Object node = de.dst.major() ;

 if(node.equals(thisNode)) loq.send(de) ;

 else sendTo(node, de) ;

 }

 void cRoute(JoinGroupRequest r) {

 if(members.addAll(r.members())) {

 if(isRendezVousNode()) {

 sendTo(members.root(),

 new MulticastTreeUpdate(channel(), members.freshTree())) ;

 }

 else {

 cDataEnvelope nr = new JoinGroupRequest(channel(), members.nids());

 sendTo(members.parentOrDefault(rendezVousNode()), nr) ;

 }

 }

 }

 void cRoute(LeaveGroupRequest r) {

 boolean changed = members.remove(r.src()) ;

 if(isRendezVousNode()) {

 if(changed) {

 sendTo(members.root(),

 new MulticastTreeUpdate(channel(), members.freshTree())) ;

 }

 sendTo(r.src(), new LeaveGroupAck(channel(), r.src())) ;

 }

 else sendTo(members.parentOrDefault(rendezVousNode()), r) ;

 }

 void cRoute(LeaveGroupAck a) {

 if(a.matches(thisNode)) joinedGroup = false ;

 }

 void cRoute(MulticastTreeUpdate u) {

 joinedGroup = u.contains(thisNode) ;

 members.updateTree(thisNode, u.ste) ;

 sendTo(members.children(), u) ;

 }

 private void lauchRefreshMembershipsTask () {

 new PeriodicTask(0, 60000) {

 public void run() {

 if(isMember || isSource) {

 isMember = true ;

 members.add(thisNode) ;

 cRoute(new JoinGroupRequest(channel(), members.nids())) ;

 }

 else

 If(joinedGroup) cRoute(new LeaveGroupRequest(channel())) ;

 }

 } ;

 }

 private NodeGroup members ;

 private boolean isSource = false ;

 private boolean isMember = false ;

 private boolean joinedGroup = false ;

 private SubscriptionContainer sc = null ;

 private NetworkLinks links = (NetworkLinks) Singleton.get("NetworkLinks"

8

