
A case study on modeling shared memory access effects during performance

analysis of HW/SW systems

Marcello Lajolo *

Politecnico di Torino

Torino, Italy
lajolo@polito.it

Anand Raghunathan
NEC C&C Research Labs.

Princeton, NJ, USA
anand@ccrl.nj.nec.com

Sujit Dey*

UC San Diego
La Jolla, CA, USA

dey@ece.ucsd.edu

Luciano Lavagno
Politecnico di Torino

Torino, Italy
lavagno@polito.it

Abstract

Behavioral simulation with timing annotations derived

from performance modeling and analysis is a promising

alternativefor use in evaluating system-level design trade-

offs [1, 2J. The accuracy of such approaches is determined
by how well the effects of various HW and SW architec-

turalfeatures, like the Real Time Operating System (RTOS),
sharedmemories and buses, HWISW communication mech-

anisms, etc are modeled at this level.

Wepresent a study of the effects of shared memory buses

during system-level performance analysis in the POLIS co-

design environment, using the example of a TCPI/P Net-

work Interface System. We demonstrate how the effects of
the memory arbiter and shared memory bus can be mod-

eled efficiently at the behavioral level, and used to evaluate

variousdesign tradeoffs. Experimental results demonstrate

that modeling these effects can significantly increase the
accuracy of system-level performance estimates.

1 Introduction

Efficientexploration of system-level design tradeoffs de-

pends heavily on the availability of fast and accurate esti-

mation and modeling techniques, for metrics such as perfor-

mance, power, and cost, to guide various design decisions.

Various techniques have been proposed for performance

analysis of hardware [3,4,5] and software [6,7]. In this pa-
per, we focus on performance modeling for mixed HW/SW

embedded systems. Hardware-software co-simulation [8]

remains the most popular approach to performance estima-
tion for such systems. There are several flavors of hardware-

"This work was started when the authors were at NEC C&C Research

Labs, Princeton, NJ

1092-6100/98 $10.00 @ 1998 IEEE

[

Alberto Sangiovanni Vincentelli

University of California at Berkeley
Berkeley, CA, USA

alberto@eecs.berkeley.edu

software simulation, with varying degrees of efficiency and
accuracy. The techniques that involve simulating (RTL)

hardware models of the embedded processor(s) along with
the models of the hardware components tend to be the most
accurate, but are also the slowest. Moreover, detailed hard-

waremodels for embeddedprocessors areoften not available
to system designers. A popular alternative is to use instruc-

tion set simulators (ISS) to simulate the software compo-
nents of the system, and HDL simulators to simulate the

hardware components. Instruction set simulators may be cy-
cle and bit-accurate, or may abstract out some architectural

details of the target embedded processor such as pipelines
and superscalar ordering for efficiency. The efficiency of

this approach may still be limited due to the (assembly or
binary instruction) level of detail in software simulation, and

the communication overhead required to synchronize the ex-
ecution of the ISS and hardware simulator. While there has

been some work on attempting to reduce the synchroniza-

tion overhead [9, 10], such approaches are still not very
efficient for use in exploring tradeoffs during HW/SW co-

design. Bus functional models of the embedded processors
may be used to exercise the hardware components without

needing to run an ISS concurrently, however, only the hard-
ware functionality is simulated in this approach, making it
more suitable for validation ofthe hardware and HW/SW in-

terface. Using an interface-based design methodology [11]
helps separate the behavior of the components from their

interface protocols, and allows the use of time and space
abstractions for efficient validation and analysis.

Behavioral simulation coupled with timing annotations

based on performance modeling techniques offers a promis-

ing alternative for use in evaluating system-level design
tradeoffs [12, 2]. In such approaches, behavioral models

of the software components are simulated, and performance

estimates for blocks of code are used to annotate timing in-
formation. In the POLIS co-design environment [12], a ho-

117

mogeneousbehavioral representation is used for hardware

as wellas softwarecomponents. The behavioral simulation,

analysis,and evaluation is performed using the PTOLEMY

heterogeneoussimulation environment [13]. Timing infor-

mation for software modules during simulation is main-

tained based on performance estimates derived using the

techniquepresented in [1]. The accuracy of behavioral sim-

ulation based approaches is determined by how well the
effects of various HW and SW architectural features, like

the Real Time Operating System (RTOS), shared memo-
ries and buses, HW/SW communication mechanisms, ete

are modeled at this level. For example, the effects of the

RTOS are modeled in POLIS during performance analysis,

and the user can select between several scheduling policies

(e.g. round-robin, static priority based, etc.) and evaluate

their impact on the system performance.

In this paper, we focus on modeling the effects of shared

memory buses during system-level performance analysis,

using the POLIS co-design environment. The performance

of several designs, including graphics and telecommunica-

tions applications, may be dominated by memory accesses,
making it important to accurately model memory-related ef-

fects during system-level design exploration. Using the ex-

ample of a TCP/IP Network Interface System, we illustrate
how the effects of the memory arbiter and shared memory
bus can be modeled efficiently at the behavioral level, and

used to evaluate various design tradeoffs. Experimental re-
sults are presented to indicate that ignoring the effects of the

shared memory access bus would have led to significantly

incorrect performance estimates, and possibly incorrect de-
sign decisions.

The paper is organized as follows. Section 2 provides

some background about the TCP/IP Network Interface Sys-
tem used for our study, and the modelling of the system in

the POLIS co-design environment. Section 3 presents the

results of the evaluation ofthe effects ofthe shared memory
bus on several design tradeoffs, and section 4-concludes the

paper and discusses future work.

2 The TCPIIP System Model

This section provides some background relating to the

TCP/IP system, and presents the model used for the system
in the POLIS environment.

2.1 Background

A TCP packet consists of three parts:

. An IP header containing, among other fields, the source

and destination IP address. The IP header is usually,

but not always, 20 bytes long,

. A TCP header, containing TCP-specific information.
This is usually another 20 bytes,

. The payload, a variable number of bytes (possibly odd)

up to a maximum of 65535 bytes.

The TCP/IP protocol requires various tasks to be performed

on incoming and outgoing packets, and to maintain the sys-
tem state. We focus on the evaluation of a dedicated hard-

ware implementation for one of the tasks that is part of the
TCP layer - checksum computation. The factors that make

this task a good candidate for hardware implementation are

explained later.
The IP header is protected by its own 16 bits checksum,

that is computed in the IP layer. Since this is computed over

such a small number of bytes, it is (relatively) cheap even
in software. The TCP data has a 16 bits checksum, carried

in the TCP header. It is computed over:

. The 8 bytes of IP address and 16 bits of length field in
the IP header,

. The TCP header excluding the 16 bits checksum,

.The payload, taken 16 bits at a time, padding the last
byte as NULL if required.

The checksum treats the bytes in pairs, taking each pair
of bytes as a 16 bits integer in big-endian byte order. Each

16 bits number is added in to the temporary result using un-
signed 32 bit,integer arithmetic. To obtain the final check-

sum, the most significant 16 bits of the temporary result
are added to the least significant 16 bits, and the result is

XOR'ed with Oxffff.

The checksum computation is particularly inefficient on

little-endian processors because the big-endian 16 bit num-
bers have to be generated by shift-or logic. Also, it is

basically a repetitive operation over potentially large vol-
umes of data and contains several bit-level operations. The

above factors make the checksum computation a good can-

didate for hardware implementation. We attempted to model
parts of the TCP/IP system relating to the checksum com-

putation using POLIS with the motivations of quantitatively

evaluating (i) the performance improvement obtained by im-
plementing the checksum computation in HW, and (ii) the

Figure 1. The modeled TCPIIP sub-system

118

possible adverse effects of SW and HW processes conflict-
ing for accessing the shared packet memory. However, we

believethat the effects of shared memory access on system-

levelperformance evaluation that we present are applicable

to any HW/SW system, and not limited to the design exam-

pleor HW/SW configuration used for this study.

2.2 Modeling the TCP/IP subsystem in POLIS

Figure 1 shows the sub-system that has been described

in POLIS for our case study. The system was modeled

asten interconnecting CFSMs, each specified in ESTEREL,

andtheir interconnection was described graphically with the
Ptolemyuser interface.

For incoming packets, the module create_pack re-

ceives a packet from the lower layer (in this case, the IP

layer),and stores it in the shared memory. When it finishes,

it sends the information about the starting address of the

packet in memory, the number of bytes and the checksum

header to a queue (packet queue). From this queue,
themodule ip_checkretrieves a new packet, overwrites
parts of the checksum header (which should not be used

in the checksum computation) with Os, and signals to the

checksumprocess that a new packet can be checked for

checksumconsistency. The checksum process performs

the core part of the checksum computation, accessing the
packetin memory through the arbiter and accumulating the
checksumfor the packet body. When it is done, it sends the

computed l6-bit checksum back to the ip_checkprocess,

which then compares the computed checksum with the in-

comingtransmitted checksum, and flags an error if they do
notmatch. The flow for outgoing packets is similar, but in

thereverse direction, and there is no need for comparison of
the finalchecksum.

2.3 Behavioral Model of the Memory Bus and
Arbiter

In the original behavioral description that was used to

validatethe functionality of the processes, memory accesses
weremodeled by access to a global array, using a C func-
tioncall from Esterel, i.e. the module arbi ter shown in

Figure 1 was not present. However, as we show in Sec-

tion3, using the same model for performance evaluation

suffersfrom the drawback of ignoring effects such as shared

memoryaccess conflicts, block access mode (DMA), etc.
Hence,we described a behavioral model of the shared bus

andmemory arbiter (shown as module arbi ter in Fig-
ure 1) to model the effect of the controller (arbiter) of the

sharedmemory bus. The arbiter module is the only
modulethat can access the shared memory: it receives re-
questsfromthe processes create_pack,ip_checkand

checksum, and is responsible for deciding which module

isgivenaccessto the memory. The functional model of the

I

arbiter is such that the access priority scheme can be eas-

ily changed or parametrized. For example, we may specify
that in the case of simultaneous requests, the arbiter should

give higher priority to checksum and lower priority to
crea te_pack.

In our system, the primary functions of the arbiter are:

(i) to avoid multiple components simultaneously driving the

bus in an attempt to access memory using a simple request-

grant protocol, (ii) to resolve simultaneous access attempts

based on priorities that can be specified by the designer,

(iii) to allow components to request dedicated access of
the memory bus for a certain number of bus cycles (block
access mode or DMA mode). We have created a behavioral

model of the arbiter and shared memory bus in Esterel that

is called arbiter in Figure 1. The arbiter process has

a dedicated interface to each of the processes that require
to access memory, that can be similar to, or an abstraction

of, the shared memory bus interface. In addition, each

process that accesses memory is enhanced to include an

arbiter interface. For example, the signals that interface

the arbiter process to the checksumprocess are shown

in Figure 2. The interface consists of a memory access

Figure 2. The interface of the arbiter model

request signal req_chk on which the checksum process
generates an event to indicate that it would like to access

memory. The starting address is placed on signal addr ..£hk,

and a block size signal nword_chk is used (in DMA or

block access mode) to convey the number of bus cycles of

dedicated bus access requested. The arbiter generates and

event onethe signal granLchk to indicate that the request
has been granted. In addition, there are data in, data out,

and read/write signals to the memory.

A part of the Esterel specification of thearbi ter pro-

cess is shown in Figure 3. Signals req_create, req_ip, and

req_check represent the requests for access to the memory
bus fromthe create_pack,ip_check,andchecksum
processes, respectively. Note that the behavior of the arbiter

is described as an infinite loop which immediately encloses
a set of nested if - then - else statements that test for

the presence of events on the various memory access re-
quest signals. The code within this set of if - then - else

statements represents the actions to be taken for processing

a memory access request from the corresponding module.

Figure 3 only shows the code for processing a memory ac-

cess request from the checksum process, the parts for han-

119

re<L-chk
-

grantchk
addr=chk

CHECK-nword_chk
rnw chk I:; SUM
din':::-chk

dout_chk

ARBITER

loop

if (?re~create=l) then

% grant access to create-pack

elsif (?re~ip=l) then

% grant access to create-pack

elsif (?re~chk=l) then

i:=?addr_chk;

emit grant_chk;

repeat ?nword_chk times

if (?rnw_chk=false) then

await din_chk; % memory write

emit addr(i); emit din(?din_chk);

emit rnw(?false);

else

emit addr(i);

emi t din (?din_chk) ;

emit rnw(?true);

await din_mem;

emit dout_chk(?din_mem);

end if;

i:=i+l;

end repeat;

emit res_chk;

end if;

end loop;

% memory read

Figure 3. Esterel model of the arbiter pro-
cess

dling requests from other modules are similar. The priorities
given by the arbiter to requests from the various processes

are determined by the order in which the request signals are
tested in the nested if - then - else statements. For ex-

ample, the code shown in Figure 3 gives highest priority to

requests from create_pack, since the signal req..create

is tested for an event first. Thus, changing the memory ac-

cess priorities of the processes can be achieved by simply

re-ordering the testing of the access request signals in the
behavioral arbiter model.

We would like to reiterate that the behavioral arbiter

model shown above is not part of the system specification -
it was added to model the effects of the shared memory bus

and memory arbiter during behavioral .level performance

simulation. However, during the performance simulation, it

is treated just like any other module. The implementation
of the arbiter process is specified to be HW, because it

allows us finer control of its timing properties. The number

of memory access cycles, and processing time taken by the

arbiter, can be easily modeled using await tick statements

appropriately inserted in the behavioral model.

t;;...

3 Performance Simulation and Experimental
Results

In the POLIS environment, the system specification,

which may consist of a PTOLEMY netlist that describes the

interconnection of the functional components or modules

and an Esterel specification that describes the functionality

of each module, is translated into a network of co-design
finite state machines (CFSMs), which are extended FSMs

with asynchronous buffered communication. Performance

analysis is carried out using the heterogeneous simulation
environment offered by PTOLEMY [13]. The performance
simulation is based on a C model of each CFSM that is

automatically generated, using the hardware/software parti-
tioning specified by the user, the scheduling policy for the

RTOS specified by the user, and a timing model for the target

processor that is derived during a characterization step [12].
We simulated the TCP/IP subsystem with network traffic

that was captured using a profiling tool from an existing
software implementation of the TCP/IP protocol.

We performed several experiments to demonstrate the
value added by our behavioral model of the arbiter and

shared memory bus during system-level design, some of

which we present here.

2200

2000 \.
~1800 \

!:: < ~~u_-
~12oo ~
j1000

~800
~...
:'400

-.

200, ~~~=""""'="".,--"""""""""'--,-, j0
0 10 20 30 40 50 .. 70

DMA block oJz.

Figure 4. Variation of computation times with
DMAblock size

In the first experiment we performed an analysis of the

variation of the processing times for each module as well

as the complete per-packet processing time for the entire

system for various sizes of the DMA block size used for

memory access. For this experiment, the create_pack

process was mapped to software running on a MIPS R3000

processor, and the checksum and ip_chkprocesses were

mapped to hardware. Figure 4 shows the variation of (aver-

age) per-packet processing times for the three processes for

a test bench consisting of three packets of length 512,64,
and 448 bytes, for block sizes of 4, 8, 32, and 64 bytes. The
following conclusions can be drawn from Figure 4:

. As expected, the processing times for all the modules as

well as the total processing time decrease with increas-

ing DMA block size, since the handshaking overhead
required to obtain memory access is amortized over a

120

Table 1. Processing times without memory
conflicts

larger number of data transfers. The decrease is signif-
icant at lower DMA block sizes.

. In addition, the sensitivity of the performance of the
software module (crea te_pack) to DMA block size

is higher, since the time required for handshaking with

the arbiter is much higher for the software module than
for the hardware modules.

Note that it would have been impossible to perform the

aboveanalysis in the absence of the behavioral model of the

sharedmemory bus and arbiter, since the reported processing
times would be constant for various values of block size.

The next experiment we performed was to evaluate the effect

ofmemoryconflicts due to the shared memory bus on the perfor-
manceof the individual processes as well as the overall system
performance.The performance estimates without and with mem-

ory conflictsare presented in Tables 1 and 2, for a sequence of

threepackets(512, 64 and 448 bytes long) that are part of a longer
stream.The performanceestimates without memory conflicts were
obtainedby not including the arbiter process, and modeling mem-

ory as an array shared between the create_pack,ip_check

and checksum processes. Access to the shared array is per-

formedusing a C function call annotated with a fixed delay to
representthe access time of the memory.

Table2. Processing times with memory con-
flicts

The results indicate that:

. The performance of the create_pack process was

not affected by the presence of memory conflicts. This

is because the memory arbiter gives highest priority to

requests from create_pack when simultaneous or

pending requests are present.

. The per-packet performance estimates of the

ip_check and checksum processes are in error (un-

derestimates) by 46.9% (and 41.4%, respectively if

memoryconflicts are ignored, and the total perfor-

manceof the system is underestimated by 36.39%

I

I

It is clear from the above results that the effects of memory

conflicts due to the use of shared memory and the DMA

block size need to be considered while estimating the per-
formance of HW/SW systems.

4 Conclusions and Future Work

We presented a case study to study the effects of shared

memory buses and arbiters during system-level performance

analysis. Using the case study of a part of a TCP/IP net-

work interface system, we have proposed a methodology to
model the shared memory bus and arbiter at the behavioral

level. Wepresented experimental results to demonstrate that

ignoring these effects leads to a large error in system-level

performance estimates, and that the effects of some design

tradeoffs cannot be evaluated without modeling memory ef-

fects accurately. We are currently working on automatically
generating the models required to incorporate the effects of

the shared memory bus and memory arbiter during perfor-

mance analysis of HW/SW systems.
Acknowledgements: The authors would like to thank
Leslie French and Toshio Misawa of NEC C&C Research

Labs for providing the software implementation of the

TCP/IP system, and for useful technical discussions.

References

[I] K. Suzuki and A. Sangiovanni- Vincentelli. "Efficient software performancees-
timation methods for hardware/software codesign:' in Proc. Design Automation
Conf., pp. 605-61O,June 1996. .

[2] B. Tabbara and L. Lavagno and A. Sangiovanni- Vincentelli, "Fast Hardware-
Software Co-simulation Using Software Synthesis and Estimation:' in Proc.
Int. High Level Design Validationand Test Wkshp.. pp. 149-156. Nov. 1997.

[3] S. Bhattacharya, S. Dey, and F. Brglez, "Performance analysis and optimization
of schedules for conditional and loop-intensive specifications," in Proc. Design
Automation Conf., pp. 491-496, June 1994.

[4] M. Rahmouni and A. Jerraya, "Formulation and evaluation of scheduling tech-
niques for control flow graphs," in Proc. European Design Automation Conf.,
Sept. 1995.

[5] S. Dey and S. Bommu, "Performance analysis of a system of communication
processes," in Proc. Int. Conf. Computer-Aided Design, pp. 590-597, Nov.
1997.

[6] S. Malik, M. Martonosi, and Y. T. S. Li, "Static Timing Analysis of Embedded
Software," in Proc. Design Automation Conf., pp. 147-152, June 1997.

[7] R. Ernst and W. Ye, "Embedded program timing analysis based on path cluster-
ing and architecture classification," in Proc. Int. Conf. Computer-Aided Design,
pp. 598-604, Nov. 1997.

[8] J. Rowson, "Hardware/Software Co-Simulation:' in Proc. Design Automation
Conf., pp. 439-440, June 1994.

[9] "Mentor
Graphics Seamless CVE Home Page (http://www.mentorg.comlseamlessl).''.

[10] S. Yoo and K. Choi, "Synchronization Overhead Reduction ini Timed Cosimula-
tion:' inProc.lnt. High Level Design Validationand Test Wkshp., pp. 157-164,
Nov. 1997.

[II] J. Rowson, "Interface Based Design," in Proc. Design Automation Can!.,
pp. 178-1 83, June 1997.

[12] F. Balarin, M. Chiodo, H. Hsieh, A. Jureska, L. Lavagno, C.Passerone,
A. Sangiovanni- Vincentelli, E. Sentovich, K. Suzuki, and B. Tabbara,
Hardware-software Co-Design of Embedded Systems: The POllS Approach.
Kluwer Academic Publishers, Norwell, MA., 1997.

[13] J. Buck, S. Ha, E. Lee, and D. Masserchmitt, "Ptolemy: A framework for
simulating and prototyping heterogeneous systems," International Journal on
Computer Simulation, Special Issue on Simulation Software Management, Jan.
1990.

121

packet # create_pack ip_check checksum total
1 513 1101 1088 2702
2 65 149 136 350
3 449 965 952 2366

packet# create_pack ip_check checksum total
I 513 1617 1538 3688
2 65 . 218 192 475
3 449 1418 1346 3213

