
 Open access Proceedings Article DOI:10.1109/ADC.2005.1

A case study on the impact of scrum on overtime and customer satisfaction
— Source link

C. Mann, Frank Maurer

Institutions: University of Calgary

Published on: 24 Jul 2005 - Agile Development Conference

Topics: Customer satisfaction, Scrum and Overtime

Related papers:

 Empirical studies of agile software development: A systematic review

 Agile Software Development with SCRUM

 Extreme Programming Explained: Embrace Change

 Challenges of migrating to agile methodologies

 Agile software development methods: Review and analysis

Share this paper:

View more about this paper here: https://typeset.io/papers/a-case-study-on-the-impact-of-scrum-on-overtime-and-customer-
2a45cmi79j

https://typeset.io/
https://www.doi.org/10.1109/ADC.2005.1
https://typeset.io/papers/a-case-study-on-the-impact-of-scrum-on-overtime-and-customer-2a45cmi79j
https://typeset.io/authors/c-mann-45dwezlcyn
https://typeset.io/authors/frank-maurer-4ab6a04kwp
https://typeset.io/institutions/university-of-calgary-3rbzln32
https://typeset.io/conferences/agile-development-conference-26mew52h
https://typeset.io/topics/customer-satisfaction-1xvixtyj
https://typeset.io/topics/scrum-gueqwwb8
https://typeset.io/topics/overtime-s6w8qi29
https://typeset.io/papers/empirical-studies-of-agile-software-development-a-systematic-4kky3l7vnd
https://typeset.io/papers/agile-software-development-with-scrum-1wvi4f5bqm
https://typeset.io/papers/extreme-programming-explained-embrace-change-bu7gfti9qv
https://typeset.io/papers/challenges-of-migrating-to-agile-methodologies-4q94dytzhd
https://typeset.io/papers/agile-software-development-methods-review-and-analysis-3skkj72hea
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-case-study-on-the-impact-of-scrum-on-overtime-and-customer-2a45cmi79j
https://twitter.com/intent/tweet?text=A%20case%20study%20on%20the%20impact%20of%20scrum%20on%20overtime%20and%20customer%20satisfaction&url=https://typeset.io/papers/a-case-study-on-the-impact-of-scrum-on-overtime-and-customer-2a45cmi79j
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-case-study-on-the-impact-of-scrum-on-overtime-and-customer-2a45cmi79j
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-case-study-on-the-impact-of-scrum-on-overtime-and-customer-2a45cmi79j
https://typeset.io/papers/a-case-study-on-the-impact-of-scrum-on-overtime-and-customer-2a45cmi79j

A Case Study on the Impact of Scrum

on Overtime and Customer Satisfaction

Chris Mann

University Of Calgary

mannc@cpsc.ucalgary.ca

Frank Maurer

University Of Calgary

maurer@cpsc.ucalgary.ca

Abstract

This paper provides results, and experiences from a

longitudinal, 2 year industrial case study. The

quantitative results indicate that after the introduction

of a Scrum process into an existing software

development organization the amount of overtime

decreased, allowing the developers to work at a more

sustainable pace while at the same time the qualitative

results indicate that there was an increase in customer

satisfaction.

1. Introduction

Now that agile methods are crossing the chasm into the

mainstream of software organizations, the need for

evidence as to how well these processes work in

industry is increasing. The current results available are

derived mainly from anecdotal experience reports from

early adopters. These experience reports are usually

very specific to a certain company or environment and

often do not provide quantitative support for the

qualitative observations. Experience reports usually do

not provide enough context information to compare

them with other reports.

In order to add to the body of knowledge of agile

methods in industry and explore future directions of

research, we conducted a two year exploratory

longitudinal case study to look into the effectiveness of

agile methods and practices in a small team industrial

environment. This case study is being done as part of a

cooperative effort between the University of Calgary

and Petrosleuth Inc. (PetroSleuth). Petrosleuth is a

software development firm located in Calgary. The

company develops both MS Windows and web based

applications for the oil and gas industry. This paper

reports results on the impact of Scrum project

management practices on overtime and customer

satisfaction.

There are two motivations for this case study. The

first motivation is to increase the body of knowledge

about Scrum and to see what patterns emerge when

Scrum is used in an industrial setting. The second came

from the company itself. The company wants to

increase the quality and speed at which it could deliver

its products. The company believed that Scrum could

be beneficial based on anecdotal reports but it didn’t

know how to adopt Scrum into their environment.

In our study, we compare the results of software

development before and after the introduction of Scrum

and other agile practices (pair programming, unit

testing, continuous integration). We decided to conduct

a study over two years to get an understanding of long

term patterns and trends instead of seeing only short

term effects. In this paper, we report on qualitative and

quantitative results on Scrum practices. The paper will

focus mainly on the quantitative results of changes in

overtime patterns and the qualitative results of

customer and developer experiences.

 The remainder of the paper is organized into four

sections. Section 2 discusses related work and Section

3 provides the experimental setup for the case study. In

Section 4, we present and discuss the results of the

study. Finally, in Section 5 we summarize our findings

and elaborate on future work.

2. Background and Related Work

The research approach taken for this study is a

combination of qualitative and quantitative research

methods. The study is a long term longitudinal study

of approximately two years where the researcher is

embedded part-time in the workplace context for the

duration of the study. A longitudinal study is used so

that we can get an understanding of the long term rather

then the short term effects of introducing agile

methods. The embedding of the researcher in the

workplace context is done so that the day to day events

before, during, and after the introduction can be

observed and recorded. This gives a better

understanding as to what goes on during the

introduction and provides contextual information

throughout the data generation period, which can be

used to provide additional insight into the results.

Embedding researchers within the subject of the

investigation is based on ethnographical research

approaches.

Ethnography: Ethnographic research methodology

comes from the area of anthropologic studies but can

also be applied to information systems research [1]. Its

main goal is to describe the cultural context of a

situation. One impact of ethnographic research is that

since the researcher is part of the environment he is

studying, he will have a direct impact on that

environment and the understanding of the environment

will have a subjective component.

Scrum: There are many experience reports such as

[2,3] that describe success stories of introducing Scrum

into a company. Most of the knowledge about Scrum

in industry is contained within such experience reports.

Two problems, though, are that these reports usually do

not provide enough context about the experience and

usually do not provide quantitative results with the

observations. Our study is different in that it provides

data over a longer period (2 years), provides a lot of

study context and provides quantitative results together

with qualitative observations.

3. Experimental Setup of the Case Study

 In this section, we will present the data that has

been collected as part of the study and the methodology

of how it is collected. In addition we will describe the

context in which the study took place.

3.1 Data Collection and Methodology

For the study, data has been collected from three

sources: office hour time records, questionnaires, and

workplace observations. In this section we will

describe each data source and the method of data

collection.

Office Hour Records: Office hours (or: work

hours) are hours that are spent at the workplace except

for lunch. This means that on a regular working day, if

the developer is at the workplace from 8 am until 4:30

pm, the number of office hours should be 7.5 hours of

office time if they took a 1 hour lunch break (8.5 total

hours – 1 hour for lunch). The office hours reflect the

expected amount of time the developers have to

develop software. To record the office hours the

developers were asked to use an internally developed

application called TimeTracker. TimeTracker is a

Windows application that allows the developers to

enter their office hours into a database. The hours

entered into the database are used by the accountant for

billing purposes and are, thus, considered relatively

accurate. The tool gives the developers the ability to

categorize their time into a few different categories:

Administrative (sick days, vacation, and statutory

holidays), time working on client hardware support,

and time spent working on software development tasks.

For the purpose of the study the Administrative days

such as sick days and holidays (both statutory and ones

taken by the developers as part of their vacation time)

are filtered out during the data collection process. This

means that any time entered against sick days, vacation,

etc are not expressed in the results. The reason for

removing the administrative hours is because the

developers are not actually supposed to be working

during those hours. The frequency as to when the

developers enter their office hours into the system

varies with each developer. Some developers enter

their time daily while others record the hours in day

planners and enter the time on a weekly basis.

Regardless of which way the developers choose to

enter their time, all time must be entered by the end of

the month. This is when the office hours are required

by the company’s accountant. We retrieved the office

hour records for analysis form the database.

Personal observations: Since September 2003, one

of the researchers (Chris Mann) was at the Company

two days per week, usually on Mondays and

Thursdays. His role was to assist in the build

management process and the installation and

maintenance of the tools introduced as part of the study

within the build process. He introduced pair

programming, test driven development and continuous

integration into the company as part of the study but

not Scrum. Some of the results obtained were through

observations and conversations with developers and in

some cases opinions based on the context of the

observations. Since the study is using principles from

ethnology, Chris’s observations were recorded daily in

a research note document. The research notes

document was started in June 2004. Prior to this date

no written personal observations exist.

3.2 Case Study Context

This section will use categories based loosely on the

context factors found in the XP-Evaluation Framework

1.4 [6] as they provide an easy to understand format to

convey contextual information.

Figure 1: Team Size Over Time

Team Size: Figure 1 graphs the team size changes

over the course of the study. Starting in January 2003,

there were four full-time developers, with the president

of the company acting as the project manager. In

February of 2003, a developer was hired out of

university. I again worked as a summer student In May

of 2003 until September 2003 when I started this

research and ceased being a software developer. In

October 2003 one of the senior developers was given

the role of project manager. He, however, also

remained as a part time developer by splitting his time

50% development and 50% project management. In

November 2003 a developer from PetroSleuth’s client

was added to the team. In March 2004 one developer

left the company. In April 2004 one developer left the

company and one developer was hired. In May 2004

two computer science summer students started to work

for PetroSleuth. These summer students worked until

the end of August 2004. In November 2004 a

developer left the team and was replaced the same

month (November 2004).

Highest Degree Obtained: Table 1 outlines the

highest degree obtained

Table 1: Highest Degree Obtained

Degree Number Of Developers

B.Sc Computer Science 4

B.Sc Plant Sciences 1

B.Eng 1

MCSE 1

None 1 + 2 summer students

Experience Level: The following table outlines

the amount of software industry experience the

development team had.

Table 2 Software Industry Experience

Years of Experience Number of Developers

<5 years 4 + 2 summer students

15 years 1

>20 years 2

Most of the team is comprised of summer students and

developers just out of university.

Language Expertise All of the developers who

worked at the company from January 2003 until the

present (March 2005) had less then five years of

expertise using C# (This is the primary development

language in the company). All but one had less then

five years of SQL development experience. One

developer had greater then 5 years of SQL experience.

Agile Experience: Table 3 outlines the agile

experience of the development team.

Table 3: Agile Experience

Agile Experience # of Developers

Tried unit testing at home 1

Pair Programmed in school 2

Class used Extreme Programming 2

No Agile Experience 3

Project Manager Experience: The person acting

as the project manager from October 2003 to the

present was both a developer and the project manager.

His experience can be classified as medium as he has

Number Of Developers Over Time

0

1

2

3

4

5

6

7

8

Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Jul-04 Oct-04 Jan-05 Apr-05

Month

N
u

m
b

e
r

O
f

D
e
v
e
lo

p
e
rs

 W
o

rk
in

g
 P

e
r

M
o

n
th

Full Time Summer Project Manager / dev

approximately 10 years of project management

experience and a PMP certification.
Geographical factors: Both the customers and the

offices of the company are co-located in the same

building. All of the software developers are on the

same floor while the primary customer is partially on

the same floor and the floor below.

Previous Software Development Methodology:

Before the introduction of Scrum, the software

development process could be considered an ad hoc

approach. There was little actual planning involved

when developing the software. There were no planning

meetings per say. Every so often, when the president of

the company wanted to get a status update as to the

progress everyone was making, he would call a

meeting. The meetings were usually held every

Monday morning. Sometimes during these meetings, as

part of the update, the team would talk about what they

were working on but the meeting was not seen as a

place to do planning. In addition to the usual Monday

meetings, the president would sometimes call

impromptu status meetings. A major problem with

these impromptu status meetings was they were called

without much warning and though they were intended

to be only a few minutes, they took much longer,

sometimes 45 minutes or more. In addition to both the

Monday meetings and impromptu status meetings,

there were also weekly meetings on Wednesday with

the stakeholders of the product.

During the weekly meetings, functionality that was

completed in the past week was demonstrated.

Sometimes if user functionality could not be shown it

was described. If there was nothing to describe or

demonstrate, the session would turn into a question and

answer session about the product. During the meetings,

stakeholders would make suggestions and requests

improvements and additional functionality. The

suggestions and requests for the software being

developed sometimes changed drastically from week to

week.

There were two problems associated with the

rapidly changing requirements. First, there was a very

poor picture of what work was going on internally and

what work was planned for future completion.

Internally, there was no place that a developer could go

and see an up-to-date comprehensive picture of what

needed to be completed and when it was expected in

relation to other pieces of functionality. One method,

used to try and reduce this confusion, was to have a

meeting every so often to discuss what was needed to

be finished and when it was supposed to be completed.

These meetings helped in the short term, but did not

address the core issue of controlling the ever increasing

number of requirements for the release. The second

problem associated with the rapidly changing

requirements was there was no control put in as to what

the developers were working on. If a stakeholder

suggested something in the weekly meeting it was very

likely the developer would add what was requested to

what they were working on without consulting anyone.

Even though the team was communicating with the

customers on a weekly basis and showing off what they

had done, the process was still out of control in terms

of controlling what features went into the product at

what point.

At the end of January 2004 - before Scrum was

introduced - pair programming was introduced at the

company. A month after Scrum was introduced (June

2004), unit testing with continuous integration was

introduced. These practices were introduced to deal

with the actual development of the software itself rather

then the managing of the software requirements and

timelines. We will now describe how the Scrum [4]

process was introduced at the company and the

modifications made to the process as part of the

introduction.

 Scrum had been talked about as a way to improve

the software process at the company by Chris for over a

year but there was not enough management support to

implement it. Scrum finally gained acceptance when

the project manager went to a Scrum presentation at a

VS Live conference and saw the Scrum process as part

of a presentation. When he returned, he championed

the use of Scrum as the software development

methodology to be used in the future. A month later,

the Scrum process was put in place at the company.

The company adopted many of the techniques of

Scrum such as: Daily meetings, Sprint Planning

Session, 30 day fixed sprints, Sprint review, Sprint

Retrospective, Prioritized Product Backlog, and Sprint

Backlog. Modifications were made to the process to

have it fit into the environment the company was

operating within. The first modification was to the

daily Scrum meetings. In the Scrum process, these

meetings are supposed to be short 10-15 minute

standup meetings. The practice at the company is to

have sit-down meetings. In the beginning, it was

explained to the people attending the meeting that the

reason the meetings are standup is to prevent the

meetings going on for more then 15 minutes but the

developers and the customers who come still prefer to

sit down at the meetings as it is more comfortable for

them and although the meetings are sit-down they are

held at the same time in the morning each day in the

same room. Another modification to Scrum is the scope

of the sprints is not totally fixed. The reasoning is

because the company has to do maintenance on the

current software out there and if a critical bug pops up

and needs to be fixed it is slotted into the sprint. If the

bug has to be slotted in, the customer is informed that

something will have to be dropped and the customer

makes the decision what they can live without. In

addition, if some developers finish early they go to the

customer and ask what is next on their priority list even

though there is a prioritized backlog.

4. Results and Discussion

In this section, we will provide a description of both

the qualitative and quantitative results from the case

study.

4.1 Quantitative Results and Discussion

Sprint Timelines: The sprint start and end dates were

retrieved from the VersionOne [5] sprint planning tool.

Originally, the sprints were decided to be as close to 30

days in length as possible. The first sprint took 29 days.

The second sprint ended up being 57 days in length.

The second sprint which started on June 4
th

 was

originally planned to end on July 5
th

. It was extended to

July 16
th

to accommodate more work to the sprint. Near

July 16
th

 a problem with input data (provided by an

outside source) was discovered and the sprint was

extended to July 22
nd

 to try and correct the problem.

Eventually it was determined the problem could not be

fixed quickly so the sprint was extended to July 30
th

.

The team knew that the problem was not going to be

fixed by July 30
th

 but the decision was only made to

stop the sprint after the second extension to allow the

team to regroup and plan how to attack the discovered

problem. The other reason for stopping the sprint was

because the series of extensions seemed like the way

software was developed before Scrum was introduced

and no one wanted that to happen again.

The third sprint which took 53 days also

encountered a problem near its completion. For the

third sprint, the developers finished everything a week

early and they went to the customers to see what they

wanted done to fill in the remaining time. The

customers came back with a request for work that

would take the team two weeks to complete. The

Scrum master at the time was one of the developers as

the regular Scrum master was on vacation. He decided

that since they could not get the work done in the week

remaining that they would extend the sprint to allow the

work to be completed. The decision not to end the

sprint and start a new one was taken because the

developers did not want to “waste” a day doing the

review and planning sessions again. After the Scrum

master returned, the sprint was extended again to allow

for the work that had been promised to the customer to

be completed. During the third sprint retrospective both

the customers and developers agreed that there would

be no more extended sprints as they had caused too

many problems in terms of the developers not knowing

what they needed to do. The extensions can be seen as

part of learning how to use the Scrum process from

books rather then experienced consultants. It was

decided that for all future sprints if the work could not

be completed in the sprint it would either be trimmed

down or moved to the next sprint. The table below

reflects the start and end dates for each of the sprints

completed so far at the company.

Table 4. Sprint Timeline

Sprint Start Date End Date

1 May 3
rd

 2004 May 31
st
 2004

2 June 4
th

 2004 July 30
th

 2004

3 July 31
st
 2004 September 21

st

2004

4 September 21
st
 2004 October 21

st
 2004

5 October 22
nd

 2004 November 20
th

2004

6 November 21
st
 2004 December 23

rd

2004

7 December 23
rd

 2004 January 31 2005

8 January 31
st
 2005 March 1

st
 2005

Background information for time charts: In this

section, we will provide some timeline background

information for the quantitative and qualitative

information to be presented. Before January 2003, the

software team released a small Windows application. It

was fairly small with little functionality. Between

January 2003 and October 2003 the team was both

maintaining and enhancing the Windows application

they had developed previously. There were very few

official release dates for this application that was being

maintained and enhanced, with releases being more of

a hot fix to user problems. The hot fix that was

deployed was usually whatever code had compiled on

the developers machine that made the fix in the first

place.

In the period of October 2003 until the end of

February 2004, the team had developed a website

application that was a large scale project with a very

aggressive deadline. They did not have experience

doing a website before so most technical aspects of the

project had to be learned as the team developed the

Figure 2: Mean percent overtime worked by team

software. March and April 2004 were spent on cleaning

up and maintaining the website. In May 2004, Scrum

was introduced. During this month the team decided

that the previous windows application could no longer

be extended so they started a period of researching and

developing a new system architecture and a new

windows application.

Mean Percent Overtime Worked by Team:

Figure 2 outlines the mean percent of overtime worked

by the software developers as a team on a weekly basis

[see Appendix A for the metric definition]. This means

that a given percentage is the percent overtime per

developer per week. The use of a weekly basis instead

of on a per sprint basis was done to allow the

comparison of pre-Scrum introduction overtime

amounts with post-Scrum introduction overtime

amounts.

From the above chart you can see that in the period

before Scrum was introduced there were periods of

overtime spikes, both during a release such as in

November 2003 to March 2004 and development and

maintenance such as between January 2003 and

October 2003.

There are two fairly noticeable spikes before the

introduction of Scrum. At the end of June 2003, the

team was transitioning from .net 1.0 to .net 1.1 and it

broke a lot of the application the team was supporting,

therefore there was a large spike of overtime during

this period. The other spike was for the development of

the website.

After Scrum was introduced there are still some

spikes, although substantially smaller. These spikes

almost perfectly correspond to dates where the team

had to run a data transformation process that was

created before the website, that never has really worked

the way it is supposed to and there is always a lot of

clean up of the output when it is finished. In the

following table we will compare the mean percentages

before and after Scrum was introduced.

Table 5. Before and after statistics

 Before Scrum After Scrum

Mean percentage

overtime worked

19 7

Standard

Deviation

14

5

F Test for variance: F= 9.11 Dfn=68 DFd=51

p= < 0.01 (one tailed)

T Test (unequal variance): DF=87

p= < 0.01 (one tailed)

To compare the periods before and after the

introduction of Scrum an F-Test was performed with

the following hypothesis:

HO: there is no difference between the two

variances

HA: The larger standard deviation in overtime

before Scrum was introduced is significantly different

than the smaller standard deviation in overtime after

Scrum was introduced.

The F-Test showed the standard deviation before

Scrum was introduced was greater than the standard

deviation after Scrum was introduced indicating that

there was more stability in terms of overtime worked

Mean Percent Overtime Worked By Team

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

01
-0

5-
20

03

02
-1

6-
20

03

03
-3

0-
20

03

05
-1

1-
20

03

06
-2

2-
20

03

08
-0

3-
20

03

09
-1

4-
20

03

10
-2

6-
20

03

12
-0

7-
20

03

01
-1

8-
20

04

02
-2

9-
20

04

04
-1

1-
20

04

05
-2

3-
20

04

07
-0

4-
20

04

08
-1

5-
20

04

09
-2

6-
20

04

11
-0

7-
20

04

12
-1

9-
20

04

01
-3

0-
20

05

03
-1

3-
20

05

04
-2

4-
20

05

Week

%

H
o

u
rs

 O
v
e
rt

im
e

Scrum Introduced

New Windows

App Release

Website Release

Windows App 1

support and Windows

App 2 Development

after Scrum was introduced. A T-test was also

performed on the following hypothesis:

HO: there is no difference between mean

percentage of overtime worked before and after Scrum

was introduced

HA: The mean percentage of overtime worked

before Scrum was introduced is greater than the mean

percentage overtime worked after Scrum was

introduced.

The T-test assumed that the variances of the period

before and after the introduction of Scrum were not

equal as shown by the F-Test. The T-test shows the

mean after Scrum was introduced was less than the

mean before. Indicating that the team worked less over

time after Scrum was introduced.

 Overtime Discussion

 Here we will discuss the quantitative results

obtained.

The mean Percent of Overtime worked by the team

hours in the period before the introduction of Scrum is

much higher then the overtime after Scrum was

introduced. In the case of the Mean Percent of

Overtime between the before and after there was almost

a three times decrease in overtime from before to after.

The F-Test showed that after Scrum was introduced the

variance in overtime decreased, this indicates a more

stable work environment. Also the T-Test showed that

the mean percentage of overtime was smaller after

Scrum than before Scrum. The influence of Scrum is

supported by our data but would have to be tested in

future experiments and/or case studies to see if it is

actually valid in other environments. However there are

some limitations to the results provided. The two time

periods discussed have several differences between

them even though they are at the same company.

The first difference is that the software developers

are not the exact same software developers who

worked after Scrum was introduced. There are many

points in time where developers are added (summer

students) then they leave after a few months. There are

also instances of developers leaving the company.

Another difference between before and after is that

there were differing pressures to deliver the software.

Between May 2003 and October 2003 the pressure

fluctuated almost daily. The reason was that the

development team was under pressure both to develop

new feature and to fix the many bugs that kept on

appearing in the previously deployed software. From

October 2003 until March 2004 there was a

tremendous amount of pressure to deliver the website

as the company was seeking to use it as a revenue

source. After the website was delivered, there was very

little pressure to deliver anything new but there was

pressure to figure out a better software process than

before. Finally from April 2004 until present, there has

been a lot of pressure to deliver the new application

again as the company looked to use it as an additional

revenue source but when looking at the mean overtime

during this period there was no large spike in overtime.

A third difference is the complexity of the projects.

Unfortunately at this time we have no quantitative way

of comparing the complexity of previous projects to the

current one. In informal discussions with the

developers they say that the website is of similar

complexity to the new Windows application deployed

in March, though they do say that they are much more

experienced then when the website was developed and

they are also now using pair programming, unit testing

and continuous integration. In the future we may be

able to look at features developed or code created.

One key result that can be seen in the data is after the

Scrum process was introduced there seems to be much

more emphasis put on working at a sustainable pace

over the long term rather then working at a frantic pace

over the short term. Even though there are other

practices in play that may have helped the developers

do their work faster, it was still the Scrum process that

helped keep the amount of work and the amount of

time to do it reasonable from both a developer and

customer perspective.

4.2 Qualitative Results and Discussion

Developer and Customers Opinions: Here we

will present some qualitative results from developer

and customer questionnaires. The questionnaires were

run to get some feedback from the customer and

developer perspective about the Scrum process and to

get some idea of the differences before and after the

introduction of Scrum.

Customer Opinions: The overall feedback we got

from the customer group was positive. All three of the

customers said that they would recommend using

Scrum in the future, though some would like to see

some modifications to it. Of the current set of

customers, some were involved with the previous

releases of software in terms of testing and verification

but were not very involved with the decisions relating

to functionality or usability. This situation was very

common prior to Scrum where the customers were only

used to check the results of the development rather than

making decisions as to what they wanted to see for

development and how they would use it.

 When asked how satisfied they were about the

software developed before Scrum was introduced the

customers said that they weren’t really part of the

process and did not really care for the software

produced. One customer said that they were

“Ambivalent, [the] product was alright, not great”.

Other customers had stronger opinions. “The release of

the website was quite honestly a nightmare...”. The

overall theme from the customers was that they were

not very involved with the software produced before

Scrum and in some cases were not satisfied with what

was produced. Since the introduction of Scrum the

customers have been more satisfied with the software

developed. When asked how satisfied they were with

the software produced after Scrum had been introduced

one customer was “Very satisfied”. Other customers

responded to the same question by mentioning other

benefits Scrum had brought: “I believe there has been

far greater consistency, transparency and coordination

since the implementation of Scrum”. Another customer

mentioned that they were much more involved in the

process than before, “…The initiation of the Scrum

process has lead to our being more involved in the

daily review and discussion. This has lead to us being

more aware, and being held accountable earlier in the

process for any changes and concerns that have or had

to be considered.”

The customers said that the Scrum process

changed how they interact with developers. Some

customers gained more respect for the software

developers, “I have a greater respect for the software

developers and understand how easy it is for

expectations and results to differ without clear

instructions and regular communication between all

parties”.

The customers said that they like the sprint

planning meetings. One customer had this to say about

the planning meetings, “Superb forum for planning; the

whole team is involved and thus everyone knows what

is required from them”. Another customer mentioned

how they think that the planning meetings prevent

problems later on: “Although the day as a whole can be

a very tiring process, I have found that the time spent

in the planning meetings has lead to less misdirected

development and a more clear understanding of both

the requirements and the limitations of the

development process by both the customers and the

developers”.

The customers also liked the sprint reviews and

retrospectives, “While the Scrum process has often

made much of the accomplishments in a sprint to be

known before a sprint review, it has helped us as

customers [to] see visually the product, and we are

able to see these earlier in the process again. This has

lead to the ability to “tweak” and change the product

in a more timely fashion. We as customers have found

it difficult to visualize the product ahead of time, and

some concerns have only arisen when the

demonstrations have been shown”. One customer

linked the review and retrospective to accountability by

the software developers for what work they take on.

“This is a great opportunity for the programmers to

demonstrate the accomplishments and leads to proving

their own accountability on their tasks that they took

on”.

Since many of the customers did not get very

involved with the software development decision

process with much depth until after Scrum was being

used by the development group, many of them either

did not comment on how the transition went or said that

they came on board after Scrum was introduced. One

customer was part of the previous process and

commented that the previous way of developing

software was so bad that they were willing to try

anything. “I believe the complete frustration with the

petrocube website release made it clear that a more

responsive system was needed and most were ready for

anything that would have made the system better”.

The customers found that using the Scrum master /

project manager in a business analyst role between

sprints helped them out a lot to be more prepared for

the planning meetings. “It has lead to a more timely

completion of the planning stages earlier. In the first

few sprints, we were never prepared when it came to

being ready for the next planning session. But with the

project manager actively starting the planning and

long term visions ahead of time has made this planning

sessions easier”.

The customers also found that the daily Scrum

meetings allowed them to be kept up to date on the

progress of the software development and to be

informed on issues as they happen rather than at the

end. “Good forum for hearing progress updates and

what issues/problems are lurking”. Another customer

commented that “They have helped us as customers

stay in the loop and have a better idea of when I

should expect questions”

When asked if there were any difficulties with

using the Scrum process one customer said that it was

“too ridged” while another said that sometimes it was

difficult for him to understand what tasks the

developers were doing at times.

Developer Opinions: In this section we will

present the developer views and opinions about

different aspects of the Scrum process.

The developers found the Scrum process very

beneficial. From the questionnaire every developer

would recommend using Scrum on projects in the

future. There was a range of satisfaction about the

software before Scrum was introduced. Some

developers were satisfied with the software while

others were very unsatisfied with it: “Some amazing

work was done before the Scrum process was

introduced. Not necessarily the best code” while others

said “I was very unsatisfied with the product developed

before the Scrum process and would not like to be

associated with any of the products produced at that

time”.

 After the Scrum process was introduced, the

developers were more satisfied with the products being

produced: “I am very satisfied” and another developer

said “Very satisfied with the software product(s) being

developed”.

The developers saw the Scrum process had

fostered more customer involvement and

communication: “It promotes better communication

with the client” and “It is useful to see customer

representatives everyday, since there are always

questions that could be asked…and it makes me more

confident in what we’re doing because customer

always has up-to-date information about the

progress”.

The developers also found the Sprint planning, the

review and the retrospective meetings helpful to them:

“…These meetings are useful since we can choose the

scope of work, although guessing on the time for each

backlog it is not always easy and time estimates do not

always come out right”. Although the developers found

the planning meetings useful they did notice some

room for improvements: “The only negative is that

these [meetings] take a little too much time and it’s

hard to concentrate”. Another developer noted the

customers were not as prepared as they should be “…I

feel that our Scrum master/project manager and

customer are not prepared enough for them

[meetings], so the meeting drags on”.

This feedback was noticed in previous sprints so

for Sprint 8 the project manager worked with the

customer during the sprint. The developers had this to

say about the project manager working with the

customers: “Someone (being the project manager or a

BA [business analyst]) needs to help the client

formalize their thought on what they want. The

development team should not decide for the client on

what needs to be done. The client needs to make the

decision. In order to have the client make a thoughtful

decision all alternatives need to be explained in the

client’s language as well as pros and cons for each

option. So I guess my answer is that it did help. There

is more work to do on that aspect, but generally the

last sprint planning was much better that way”

The developers found the review and

retrospectives useful. One developer liked the review

because it was a place to show off what they had done

and get feed back on it: “Useful, because not only the

customer can see what we have achieved so far, but all

the developers can see how it all works (or doesn’t

work) together. Plus we can hear some useful

questions/suggestions for the improvement”. Another

developer compared the review meeting to the previous

process where there were weekly meetings: “It replaces

a weekly meeting and is more efficient”.

For the most part the developers like the

retrospectives but there was still the problem of the

meeting not being as focused as it should be.

“Sometimes we don’t keep focused and it goes on too

long, but it’s a good concept”.

The developers found the daily sprint meeting

useful but again found that sometimes the meetings can

drag on if the team is not focused on doing them

quickly. In addition to commenting on the process the

developers commented on their confidence in the

software they are producing after Scrum was

introduced: “…before Scrum I was not as confident

since nothing was reviewed by the manager who gave

the work and I had no exact deadline. The Scrum

process makes me more confident since I know exactly

what I’m doing and when it is due (and that it is

probably doable in the time given)”. Another developer

said this about their confidence: “The Scrum process is

giving me confidence that we are developing the

software that the customer wants…”

The developers were asked about the problems

they found in transitioning to the Scrum process. The

developers found that the customers not knowing what

they want, and not being able to describe what they

want to them was a large problem.

Customer Opinion Discussion: The customers

liked the Scrum process and the changes it had brought.

They found that the daily Scrum meetings keep them

up to date and the planning meetings were helpful

because they reduced the confusion about what should

be developed. The customer’s attitude toward the

software changed from one of ambivalence to

becoming involved and invested in what was being

developed for them. The customers noted that in the

beginning they were not prepared for the Scrum

planning sessions. The solution to this problem was to

have the project manager work with the customers

between sprints. Since this was introduced, the

customers have been more prepared and the Scrum

meetings have been more useful to both the customers

and the developers. In addition, customer responses

indicate that the customer’s satisfaction has increased

over previous products developed at the company. An

important lesson learned from their responses is that

the customers should also be trained in the Scrum

process not just the developers so that they can

understand the new expectations imposed upon them.

 Developer Opinion Discussion: The developers

found the introduction of Scrum helpful. They

mentioned how it helped them have a better idea of

what they were working on and when requirements

needed to be completed. The developers noticed in

previous sprints that the customer was not prepared for

the Scrum planning meetings. The meetings would drag

on without much being accomplished because of the

lack of preparation. Therefore, the developers saw the

need for having someone work with the customers

between the sprints to help formulate their ideas with

enough detail that the developers could use for

estimates.

5. Summary and Future work

There are two main contributions in this paper. The

first contribution is the presentation of empirical results

from the case study showing that after Scrum was

introduced the customer satisfaction increased while at

the same time overtime for the developers decreased

(allowing the developers to work at a sustainable pace).

The second contribution is the formulation and testing

of a hypothesis based on observed industry

information. In the future, we would like to test the

presented hypothesis in additional case studies.

 6. Acknowledgements

The authors would like to thank the individuals on the

PetroSleuth Inc. development team for participating in

the study. PetroSleuth Inc. and the Natural Sciences

and Engineering Research Council of Canada

supported the project.

7. References

[1] Klein, Heinz K. and Michael D. Myers, A Set of

Principles for Conducting and Evaluating Interpretive

Field Studies in Information Systems, MIS Quarterly 23

(1): 67-94 (1999).

[2] K. Schwaber, Agile Project Management with Scrum,

Microsoft Press, Redmond, WA, 2004

[3] J. Sutherland, Inventing and Reinventing SCRUM in

five Companies,

http://www.agilealliance.org/articles/articles/InventingSCRU

M.pdf , Accessed March 10 2005

[4] M. Beedle, K. Schwaber, Agile Development With

Scrum, Prentise Hall, 2001

[5] http://www.VersionOne.net

[6] http://www4.ncsu.edu/~lmlayma2/xpef.html

Appendix A

The weekly mean percent overtime is calculated as

follows:

% Overtime = (Actual Hours/Expected Hours) -1

Where

 Actual Hours: Sum of hours worked from

(Sunday to Saturday) of a given week

Expected Hours: The number of hours the developers

should have worked as a team in a given week.

We will now discuss how the expected hours were

calculated. To calculate the expected hours we first

have to calculate how many person days should be

included in the week. We start out by assuming that all

the developers will work every day of the week,

From this perfect week, we then subtract the

administrative days recorded as the developers are not

expected to work on those days. In the case of the

salaried employees these administrative days are coded

as sickdays, vacation, courseday, flexday,

compassionate leave.

For persons on contract, they do not enter

administrative days into the system. If they have a sick

day or want to take a holiday then they would not enter

time for the day. For this paper, we will assume that if

the contract employee did not enter a day then it will be

counted as an administrative day and will be subtracted

from the perfect work week.

The final expected hour calculation is as follows:

Expected Hours = Expected Person Days *7.5

Expected Person Days = PerfectWeek – Administrative

Days

