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1.1 Introduction

Modern scientific experiments acquire large amounts of data which must be
analyzed in subtle and complicated ways to extract the best results from the
data. The Laser Interferometer Gravitational Wave Observatory (LIGO) is an
ambitious effort to detect gravitational waves produced by violent events in the
universe, such as the collision of two black holes, or the explosion of supernovae
[12,25]. The experiment records approximately 1 TB of data per day which is
analyzed by scientists in a collaboration which spans four continents. LIGO
and distributed computing have grown-up side by side over the past decade,
and the analysis strategies adopted by LIGO scientists have been strongly
influenced by the increasing power of tools to manage distributed computing
resources and the workflows to run on them. In this chapter, we use LIGO
as an application case-study in workflow design and implementation. The
software architecture outlined here has been used with great efficacy to analyze
LIGO data [18–21] using dedicated computing facilities operated by the LIGO
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Scientific Collaboration, i.e. the LIGO Data Grid. It is just the first step,
however. Workflow design and implementation lies at the interface between
computing and traditional scientific activities. In the conclusion, we outline a
few directions for future development and provide some long term vision for
applications related to gravitational-wave data analysis.

1.2 Gravitational waves

Although Einstein predicted the existence of gravitational waves in 1916, the
challenge in directly observing them is immense because of the extremely weak
coupling between matter and gravitation. Small amounts of slowly moving
electric charge can easily produce detectable radio waves, but the generation
of detectable amounts of gravitational radiation requires extremely massive,
compact objects, such as black holes, to be moving at speeds close to the speed
of light. The technology to detect the waves on Earth only became practical in
the last decade of the twentieth century. The detection of gravitational waves
will open a new window on the universe and allow us to perform unprecedented
tests of general relativity. Almost all of our current knowledge about the
distant universe comes from observations of electromagnetic waves, such as
light, radio and X-ray. Gravitational waves, unlike electromagnetic waves,
travel through matter and dust in the universe unimpeded. They can be used
to see deep into the cores of galaxies or probe the moment when space and
time came into being in the Big Bang.

Gravitational waves are ripples in the fabric of spacetime; their effect on
matter is to stretch it in one direction and squeeze it in the perpendicular di-
rection. To detect these waves, LIGO uses three laser interferometers located
in the Unites States. Two interferometers are at the Hanford Observatory in
south eastern Washington and one is at the Livingston Observatory in south-
ern Louisiana. The purpose of the multiple detectors is to better discriminate
signal from noise, as a gravitational wave signal should be detectable in all
three interferometers. Each interferometer consists of a vacuum pipe arranged
in the shape of an L with 4 kilometer arms. At the vertex of the L and at the
end of each of its arms are mirrors that hang from wires. Laser beams travers-
ing the vacuum pipes accurately measure the distance between the mirrors
in the perpendicular arms. By measuring the relative length of the two arms,
LIGO can measure the effect of gravitational waves. These changes in length
are minute, typically 10−19 meters over the 4 kilometer arm; musch less than
the size of a proton. To measure such small distances requires ultra-stable
lasers and isolation of the mirrors from any environmental disturbances. Any
difference in the lengths of the arms, due to detector noise or gravitational
waves, is detected as a change in the amount of light falling on a photo-
detector at the vertex of the L. Figure 1.1 shows a schematic diagram of a
LIGO detector. In a perfect detector and in the absence of a gravitational
wave, no light would fall on the photo-detector. In practice, however, random
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Fig. 1.1: Schematic diagram of a LIGO detector. Laser light is incident on a
partially reflective mirror or beam-splitter. Half the light is transmitted into
one arm of the interferometer and half is reflected into the other arm. The light
in each arm resonates between two mirrors which act as test masses and change
position in response to a gravitational wave. The light is recombined at the
beam-splitter and the light incident on the photodiode contains information
about the position of the mirrors, and hence about any gravitational waves
incident on the detector.

fluctuations in the interferometer cause some light to fall on the detector.
Among other sources, these fluctuations come from seismic noise from ground
motion coupling into the mirrors, thermal noise from vibrations in the mir-
rors and their suspensions, and shot noise due to fluctuations in the photons
detected by the photo-detector. LIGO data analysis is therefore a classic prob-
lem in signal processing: determining if a gravitational wave signal is present
in detector noise.

Data from the LIGO detectors is analyzed by the LIGO Scientific Col-
laboration (LSC), an international collaboration scientists. The searches for
gravitational waves in LIGO data fall broadly into four classes: compact bi-
nary inspiral, continuous waves from rotating neutron stars, unmodeled burst
sources, and stochastic gravitational waves backgrounds. In this chapter we
focus on the workflows used in the search for gravitational waves from com-
pact binary inspirals. For details on the other searches we refer the reader
to [25].

The gravitational waves arising from coalescing compact binary systems
consisting of binary neutron stars and black holes are one of the best under-
stood sources for gravitational wave detectors such as LIGO [41]. Neutron
stars and black holes are the remnants produced by the collapse of massive
stars when they reach the end of their life. If two stars are in a binary sys-
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Fig. 1.2: A time-frequency spectrogram of a simulated binary inspiral signal.
The waveform increases in amplitude and frequency as time increases. The
well defined shape of the waveform makes matched filtering a suitable data
analysis technique.

tem, the compact bodies orbit around each other and lose energy in the form
of gravitational waves. The loss of energy causes their orbit to shrink and
their velocities to increase. The characteristic “inspiral” signal emitted in-
creases in frequency and amplitude, until the bodies finally plunge toward
each other and coalesce, terminating the waveform. Fig. 1.2 shows a time-
frequency spectrogram of a simulated inspiral signal. It is expected that there
will be approximately one binary neutron star coalescence every three years
in the volume of the universe accessible to LIGO [38].

The shape of the inspiral waveform depends on the masses of the binary
components. When both components are below approximately three solar
masses, the waveform is well modeled by theoretical calculations and we can
use matched filtering to find the signals in detector noise. For higher mass
waveforms, such as black hole binaries, uncertainties in the waveforms grow,
but in practice we may continue to use matched filtering, albeit with a mod-
ified template family [27, 28]. These templates are not exact representations
of the signals, but are designed to capture the essential features of the wave-
forms. The first science run of LIGO focused attention on the search for bi-
nary neutron stars [18]. The second science run refined the binary neutron
star search [19] and extended the analysis to include searches for binary black
hole systems with higher masses [21] and sub-solar-mass binary black hole
systems which may be components of the Milky Way Halo [20].

Analysis of the LIGO data for binary inspirals is performed using the LIGO
Data Grid (LDG) [10]. In this chapter, we describe the LDG infrastructure,
the software used to construct data analysis workflows for the LDG, and the
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components and execution of the inspiral analysis pipeline. Finally we discuss
the use of these tools by other gravitational wave searches, and the extension
of the workflows to other Grids, such as the Open Science Grid (OSG) [13].

1.3 The LIGO Data Grid Infrastructure

LSC scientists conducting gravitational wave data analysis need to analyze
many terabytes of data. The scientists have access to a large number of dis-
tributed computing resources, including resources external to the collabora-
tion. To fully leverage the distributed resources in an integrated and seamless
way, infrastructure and middleware have been deployed to structure the re-
sources as a Grid. The LIGO Data Grid infrastructure includes the LSC Linux
clusters, the networks that interconnect them to each other, grid services run-
ning on the LSC Linux clusters, a system for replicating LIGO data to LSC
computing centers, DOE Grids certificate authority authentication [3], and a
package of client tools and libraries that allow LSC scientists to leverage the
LIGO Data Grid services.

The LDG hardware consists of Linux clusters for data analysis and Linux
and Sun SPARC Solaris servers, used for data replication and metadata ser-
vices. The hardware is distributed between the LIGO observatories, the LIGO
Laboratories at the California Institute of Technology (Caltech), the Mas-
sachusetts Institute of Technology (MIT), and various LSC member institu-
tions, as detailed below. The middleware software that supports Grid services
and users is known as the LDG server package. The LDG server package itself
is built on top of the Virtual Data Toolkit (VDT) [42] as provided by the
iVDGL [9] and OSG [13] projects. A subset of the LDG server software is
distributed as the LDG client package, and contains only the tools needed to
access the computing clusters and discover LIGO data across the LDG. The
LDG also uses some proprietary software, such as the Sun StorEdge SAM-
QFS [16] software and the IBM DB2 [6] database. In this section, we describe
the LDG hardware and software infrastructures in more detail.

1.3.1 Management of the raw detector data

The LIGO detectors are sensitive to gravitational waves with frequencies be-
tween approximately 40 Hz and 4 kHz. The output signal from each of the
three detectors is digitized as a 16 bit signal at sample rate of 16, 384 Hz. In
addition to the output photo diode signal, many other detector data chan-
nels are recorded at various sample rates between 8 Hz and 16, 384 Hz. These
channels monitor the performance of the detector and its environment. The
total output data rate of the observatories is 8 MByte per second for Hanford
and 4 MByte per second for Livingston. The many channels are written to
a high-performance file system, each individual file or frame containing 32
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seconds of data. Approximately 10, 000 frame files are written per day at each
observatory.

Distribution of this data is managed by the LIGO Data Replicator (LDR)
[11], which provides robust replication and data discovery services. The LDR
service is built on top of the Globus Replica Location Service (RLS) [30] ,
Globus GridFTP [22], and a metadata catalog service. Each of these services
is deployed separately from the other services in the LDG server package. To-
gether these services are used for replicating data. Data at the observatories
are published into LDR and then replicated to the LIGO Laboratory at Cal-
tech, which is responsible for permanent data storage and archival of data.
Other LDG sites deploy LDR to replicate particular subsets of LIGO data to
the local site for data analysis. The subsets of LIGO data that are replicated
can be configured by each site’s local policy and each site stores the data
in accordance with its own local policies in terms of the directory structure.
Note that the LDR service replicates data in bulk to sites, independently of
the demands of any particular data analysis job. In order to execute analysis
workflows LSC scientists need to be able to discover the location of specific
LIGO data files across the LIGO Data Grid. The LSCdataFind tool included
in the LDG client package allows LSC scientists to discover LIGO data based
on metadata about the LIGO data rather then based on file names. Typical
metadata attributes used for finding LIGO data include a start and end time
describing the epoch of data to be analyzed, the observatory at which the
data was collected, and the class of LIGO data files (different classes or frame
types contain different sets of data channels from the detectors).

The LSCdataFind tool by default returns a list of physical file names
(PFNs) or URLs for the location of LIGO data files at a particular LDG site.
These PFNs can then be used directly by tools building a LIGO workflow,
tailoring it for use at that particular site. In order to support the more so-
phisticated planning of the LIGO workflows detailed below, LSCdataFind also
supports returning only the logical file names (LFNs) of the data files meeting
the user’s metadata constraints. The LFNs are just the simple file names and
do not contain any location information.

1.3.2 Management of detector metadata

In addition to the access to the raw detector data, LSC scientists need addi-
tional metadata, known as data quality information which describe the state
of the interferometers, when the data is suitable for analysis, and records in-
formation about periods of unusual behavior. This metadata is stored in the
LSC segment database which allows storage, retrieval and replication of the
data. The segment database uses the IBM DB2 database to provide the un-
derlying relational database engine. The publication scripts used to publish
the data into LDR also publish detector state information into the segment
database.
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The segment databases at Caltech, and the observatories are connected
together by low latency peer-to-peer database replication, using the “Q-
replication” service provided by DB2. Any metadata inserted at one of the
three databases will be replicated to the other two databases with a latency
of a few seconds to a couple of minutes. Replication time varies depending on
the load on the databases. IBM WebSphere MQ [7] is used as the transport
layer for replication between the databases. Message queues are set up be-
tween each of the servers that take part in the replication and these are used
by the replication programs to send and receive data and control messages.

Client and server tools written on top of the LDG server middleware al-
low scientists to connect to the database, query information and insert new
metadata based on detector characterization investigations. Segment discov-
ery services are provided by the LSCsegFind server which runs at each site
and responds to user requests for segment and data quality information. It
constructs the SQL needed to service the user’s request, executes the query
on the database and returns the results to the user. The client and server
communicate over a Globus GSI [29] authenticated connection. The server
runs on the same machine as the DB2 database, and queries can be issued by
remote clients, which are distributed as part of the LDG client bundle.

Metadata is exchanged in the LSC as XML data, with the LSC-specific
schema called LIGO lightweight XML. The Lightweight Database Dumper
(LDBD) provides a generic interface between the segment database and LIGO
lightweight XML representations of table data in the database. The LDBD
server can parse the contents of a LIGO lightweight XML document containing
table data and insert it into the database. It can also execute SQL queries from
a client and return the results as LIGO lightweight XML data. Data quality
information is generated as LIGO lightweight XML by various data monitor-
ing tools and inserted via the LDBD server. This generic framework allows
construction of metadata services specific to the various requirements of grav-
itational wave data analysis. Again, communication between the client and
server is performed over a GSI-authenticated socket connection. The server
runs on the same machine as the DB2 database, and queries can be issued
by remote clients. The LDBD server is also capable of inserting LFN to PFN
maps into an RLS server, if desired, to allow metadata to be associated with
specific files.

1.3.3 Computing resources

LSC scientists have access to a number of computing resources on which to
analyze LIGO data. Some resources are dedicated Linux clusters at LSC sites,
others are Linux clusters available via LSC partnership in large Grid collabo-
rations such as the international Virtual Data Grid Laboratory (iVDGL) [9]
and its successor the Open Science Grid [13], and still other resources are
available via more general arrangements with the host institution. The vast
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majority of available computing resources are Intel [8] or AMD [1] based clus-
ters running some version of the Linux operating system.

LSC Linux clusters

The LSC itself has available as dedicated computing resources Linux clusters
hosted at the LIGO observatories at Hanford and Livingston, at the LIGO host
institutions Caltech and MIT [12], and at LSC computing sites hosted at the
Pennsylvania State University (PSU) [14] and the University of Wisconsin–
Milwaukee (UWM) [17]. In addition there are Linux clusters dedicated for
gravitational wave data analysis made available by the British–German GEO-
600 [43] gravitational wave detector, which is also a member of the LSC.

Each dedicated LSC Linux cluster and its related data storage hardware
is categorized as a Tier 1, 2, or 3 site depending (in a rough way) on the
amount of computing power and data storage capacity available at the site.
The LIGO Caltech Linux cluster, with over 1.2 teraflops (TFlop) of CPU
and 1500 terabytes (TB) of data storage, serves as the Tier 1 site for the
collaboration. All LIGO data is archived and available at the Tier 1 site. The
detector sites at Hanford and Livingston, although the LIGO data originates
there, are considered to be Tier 2 sites. The Hanford site has available 750
gigaflops (GFlop) of CPU and 160 TB of data storage while the Livingston
site has available 400 GFlops of CPU and 150 TB of data storage. The LIGO
MIT site is also considered a Tier 2 site with 250 GFlops of CPU and 20 TB
of data storage. The PSU and UWM sites are operated as Tier 2 sites. The
PSU site includes 1 TFlop of CPU and 35 TB of storage. The UWM site has
operated in the past with 300 GFlops of CPU and 60 TB of storage, although
it is currently being upgraded to 3 TFlops and 350 TB of storage.

Each of the Linux clusters within the LIGO Data Grid deploy a set of
standard Grid services including Globus GRAM [37] for submitting jobs and
resource management, a Globus GridFTP server for access to storage, and a
GSI-enabled OpenSSH server [5] for login access via digital certificate creden-
tials. The middleware software that supports these and other Grid services is
deployed using the LDG server package.

Other computing resources

Through LSC membership in large Grid computing projects and organiza-
tions, LSC scientists have access to a large number of computing resources
outside of the dedicated LSC computing resources. The LSC was a founding
contributor to iVDGL and much of the development and prototyping of the
effort described here was done as part of an effort to allow LSC scientists to
leverage iVDGL resources not owned by the LSC. In particular the initial pro-
totyping of the LIGO inspiral workflow management that leverages the use of
Condor DAGMan (see Chapter ?? and reference [31]) and Pegasus (see chap-
ter ?? and references [33] [34] [35]) was driven by the desire to leverage the
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Grid3+ [4] resources made available by the iVDGL collaboration. The more
recent work done to run LIGO inspiral workflows on non-LSC resources is
targeted at running on the Open Science Grid. In addition LSC scientists (in
particular those running inspiral workflows) have access to the large comput-
ing resources from the Center for Computation and Technology at Louisiana
State University [2].

1.3.4 Batch processing

All of the LSC Linux clusters, with the exception of the cluster at PSU, use
Condor (see Chapter ??) as the local batch scheduler. As discussed in detail
below, this has allowed LSC scientists to begin developing complex workflows
that run on a single cluster and which are managed by Condor DAGMan. To
run workflows across LSC clusters running Condor and leverage geographically
distinct resources as part of a single workflow the LSC has investigated using
Condor-only solutions such as Condor Flocking [36].

The Linux clusters at PSU and LSU, however, use the Portable Batch Sys-
tem (PBS) [15] for managing batch jobs, and since these resources represent
a significant fraction of the resources available to LSC scientists it is impor-
tant that the workflows be able to also leverage those resources. In addition
a majority of the resources available outside the LDG use a tool other then
Condor for managing compute jobs. While recent development work from the
Condor group involves providing access to non-Condor managed resources
directly from a Condor-only environment, the workflow management work
described here has focused on using a blended approach that involves tools
beyond Condor and Condor DAGMan.

1.3.5 LIGO Data Grid client package

LIGO Data Grid users install the LDG client package on their workstation.
The LDG client package is also built on top of the VDT but only includes a
subset of the client tools and libraries. No Grid services are deployed as part
of the client package. In addition to the client tools from the VDT a number
of client tools specific for use in creating and managing LIGO workflows are
included in the client package. The most significant of these tools are the
LSCdataFind and LSCsegFind tools used for data discovery across the LIGO
Data Grid.

1.4 Constructing Workflows with the Grid/LSC User
Environment

In the previous section we described the hardware and middleware infras-
tructure available to LSC scientists to analyze LIGO data. In this section, we
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describe the Grid/LSC User Environment (Glue), a toolkit developed to allow
construction of gravitational-wave data analysis workflows. These workflows
can be executed on LSC Linux clusters using the Condor DAGMan workflow
execution tool or planned and executed on wider grids, such as the OSG, using
the Pegasus workflow planner, Condor DAGMan and Globus GRAM.

1.4.1 Overview of LIGO workflows

LIGO data analysis is often referred to as “embarrassingly parallel” meaning
that, although huge quantities of data must be analyzed over a vast parameter
space of possible signals, parallel analysis does not require interprocess com-
munication. Analysis can be broken down into units that perform specific tasks
which are implemented as individual programs, usually written in the C pro-
gramming language or the Matlab processing language/environment. Work-
flows may be parallelized by splitting the full parameter space into smaller
blocks, or parallelizing over the time intervals being analyzed. The individ-
ual units are chained together to form a data analysis pipeline. The pipeline
starts with raw data from the detectors, executes all stages of the analysis and
returns the results to the scientist. The key requirements that the software
used to construct and execute the pipelines must satisfy are:

1. Ensure that all data is analyzed and the various steps of the workflow are
executed in the correct sequence.

2. Automate the execution of the workflow as much as possible.
3. Provide a flexible pipeline construction toolkit for testing and tuning work-

flows.
4. Allow easy, automated construction of complex workflows to analyze large

amounts of data.
5. Have a simple reusable infrastructure which is easy to debug.

In order to satisfy the first two requirements, we implement a data analysis
pipeline as a directed acyclic graph (DAG) that describes the workflow (the
order that the programs must be called to perform the analysis from beginning
to end). A DAG description of the workflow can then be submitted to a
batch processing system on a computing resource, or to a workflow planner.
The pipeline construction software must maintain an internal representation
of the DAG which can then be written out in the language which a batch
processing system or a workflow planner can understand. By abstracting the
representation of the workflow internally, the workflow may be written out
using different syntaxes, such as a Condor DAGMan input file or the XML
syntax (known as DAX) used by the Pegasus workflow planner. To simplify
the construction of DAGs for gravitational wave data analysis, the LSC has
developed the Grid/LSC User Environment or Glue; a collection of modules,
written in the Python language, developed especially for LSC scientists to
help build workflows.
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The components of a DAG are its nodes and edges. The nodes are the
individual analysis units and the edges are the relations between the nodes
that determine the execution order. Each node is assumed to be an instance of
a job that performs a specific task in the workflow. Glue contains three basic
abstract classes that represent DAGs, jobs and nodes. The DAG class provides
methods to add nodes and write out the workflow in various formats. The job
class provides methods to set the name of the executable and any options or
arguments common to all instances of this job in the DAG. The node class,
which inherits from the job class, provides methods to set arguments specific
to a node, such the start and stop time to be analyzed, or the required input
files. The node class also has a method to add parent nodes to itself. The edges
of the DAG are constructed by sucessive calls to add parent for the nodes
in the workflow. The executables to be run in the DAG read their arguments
from the command line, and read and write their input from the directory
they are executed in. This constraint is enforced to allow portability to grid
environments, discussed below. Glue also knows about other LIGO-specific
concepts, such as science segments (time epochs of LIGO data suitable for
analysis), and the methods that are used to split these segments into blocks,
or sub-units of science segments used to parallelize workflows. By providing
iterators for these classes, it is simple to loop over segments and blocks in the
construction of a workflow.

To address the specific needs of different analysis tasks, the user writes
a pair of classes that describe the task to glue: a job class and a node class
that inherit from the base classes. The user may extend or override the base
methods to allow the pipeline construction scripts to set options particular
to the task being described. In this way, the components of the workflow are
abstracted, and it is straightforward to write pipeline scripts that construct
complex workflows. The Glue method of constructing data analysis pipelines
has been used in the binary inspiral analysis, the search for gravitational
wave bursts from cosmic strings, the excess power burst analysis, and in the
stochastic gravitational wave background analysis. Fig 1.3 shows how Glue is
used in workflow construction, with metadata and analysis parameters taken
as input, and different workflow styles written as output. Below we give an
example of a script to construct a simple workflow, and Sec. 1.5 describes how
this is used in practice for the inspiral analysis pipeline.

1.4.2 Constructing a workflow with Glue

In this example, an LSC scientist wishes to analyze data from a single LIGO
detector through a program called GWSearch, which analyzes data in blocks
of duration 2048 seconds. Fig. 1.4 shows the Python code necessary to con-
struct this workflow using Glue. The user has written a pair of classes which
describe the job and nodes for the GWSearch program, as described in the
previous section, and the script imports them along with the pipeline gen-
eration module from Glue. The user has requested a list of times from the
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Raw฀Data
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Pipeline฀Generation฀Script

Glue฀Pipeline฀Modules
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DAG฀File
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DAX฀File

LDR฀Data฀Location
Service
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Fig. 1.3: The Glue pipeline modules are used by LSC scientists use to write
pipeline generation scripts. Pipeline scripts take as input analysis parameters
and metadata describing the raw data, and output workflows as DAGMan
DAG files or Pegasus DAX files which can be used to execute the pipeline.
If Glue is generating a Pegasus DAX, the pipeline modules can query the
LDR data location service to obtain LFNs for the input data, as described in
Sec. 1.4.4.

segment database that are suitable for analysis and stored them in a text file
named segments.txt. This file contains a list of start and stop times in GPS
seconds, which may vary in length between several seconds and many hours.
The user’s pipeline script creates a representation of these intervals using the
Glue ScienceData class. The segments are parsed from the file by the read

method, which is told to discard any segments shorter than 2048 seconds. The
segments are then split into blocks of length 2048 seconds by the make chunks

method.
To construct a workflow, the script first creates a representation of the

workflow itself using the CondorDAG class. Instances of the LSCDataFindJob

and GWSearchJob classes are then created to describe the programs that will
be used in the workflow. Next the script iterates over all segments in the data
class and constructs a node in the workflow that performs an LSCdataFind job
to find the data for each segment. There is then a second loop over the 2048
second blocks within each segment, and a node to execute the GWSearch pro-
gram on each block. A dependency is created between the LSCdataFind and
the GWSearch jobs by using the add parent method of the GWSearch nodes.
This ensures that the GWSearch jobs do not execute until the LSCdataFind
job is complete. Finally a relation is created between the LSCdataFind jobs,
so that only one job executes at a time; this is a technique used in real work-
flows to reduce the load on the server. The final workflow constructed by this
example is shown in Fig. 1.5 for a segment file which contains segments of
lengths 6144, 4192 and 4192 seconds.
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from glue import pipeline

import gwsearch

data = pipeline.ScienceData()

data.read(’segments.txt’,2048)

data.make chunks(2048)

dag = pipeline.CondorDAG(’myworkflow’)

datafind job = pipeline.LSCDataFindJob()

datafind job.add option(’data-type’,’raw’)

previous df = None

gwsearch job = analysis.GWSearchJob()

for seg in data:

df = pipeline.LSCDataFindNode()

df.set start(seg.start())

df.set end(seg.end())

for chunk in seg:

insp = gwsearch.GWSearchNode()

insp.set start(chunk.start())

insp.set end(chunk.end())

insp.add parent(df)

if previous df:

df.add parent(previous df)

previous df = df

dag.write dag()

Fig. 1.4: Example code showing the construction of a workflow using Glue.
The input data times are read from the file segments.txt. For each interval in
the file, an LSCdataFind job is run to discover the data and also a sequence of
inspiral jobs are run to analyze the data. The workflow is written to a Condor
DAG file called myworkflow.dag which can be executed using DAGMan.

1.4.3 Direct execution using Condor DAGMan

Once the script to generate an analysis pipeline has been written, the result-
ing workflow must be executed on an LSC computing cluster. As described
previously, most of the LSC clusters run the Condor batch processing sys-
tem. The write dag method of the Glue DAG class creates a DAG in Condor
DAGMan format, as well as the necessary Condor submit files to execute the
jobs. DAGs for LSC data analysis range in size from a few tens of nodes to
over 100, 000 nodes. The DAG written by the pipeline script is submitted to
Condor, which ensures that all the nodes are executed in the correct sequence.
If any node fails, for example due to transient errors on cluster nodes, a res-
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Fig. 1.5: The workflow constructed by the sample code shown in Fig 1.4. In
this case there are three segments used as input, the first of which contains
three 2048 second blocks, and the second and third contain two 2048 second
blocks. The resulting workflow has ten nodes.

cue DAG is created containing only the nodes that failed, or were unable to
execute due to failures. This rescue DAG can be resubmitted to Condor and
in this was LSC scientists can ensure that all data has been correctly and
completely analyzed.

1.4.4 Planning for grids with Pegasus

To complete a search for gravitational waves, it is necessary to run many
large-scale Monte Carlo simulations with simulated signals added to the data.
The results of these simulations are used to measure the efficiency and tune
the parameters of the search. This requires a great deal of computing power
and Glue has been extended to write workflows in the abstract DAG (DAX)
format so they can be planned for grid execution with Pegasus.

When running data on the Grid, it is no longer guaranteed that the LIGO
data is present on the computing cluster that the job will execute on. Glue
has been modified so that when it is instructed to write a DAX it does not
add any requested LSCdataFind nodes to the workflow. Instead it queries the
LDR data discovery service to find the logical file names (LFNs) of the input
data needed by each node and adds this information to the DAX. When the
workflow is planned by Pegasus on a given list of potential grid sites, it queries
the Globus RLS servers deployed on the LIGO Data Grid to determine the
physical file names or URLs of the input data. Pegasus then adds transfer
nodes to the workflow to stage data to sites that do not have the input data,
and uses local replicas of the data on those sites that do already have the
necessary input data available. In addition to the LFNs of the input data, Glue
also writes the LFNs of all intermediate data products in the DAX so that
Pegasus may plan the workflow across multiple sites. One of the key features
of Glue is that this is transparent to the user. Once they have written their
workflow generation script, they may simply add a command line switch that
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calls the write dax method, rather than write dag, and Glue will produce a
DAX description of the workflow suitable for use with Pegasus.

1.5 The Inspiral Analysis Workflow

In the previous sections we have described the infrastructure of the LIGO
Data Grid and the construction of workflows using Glue. In this section, we
describe the use of these tools to implement the search for compact binary
inspiral in LIGO data, with practical examples of the workflow.

The signal from a true gravitational wave should be present in all the
LIGO detectors. It should occur at the same time in the two detectors at
the Hanford observatory, and no later than the light travel time of 10 ms
at the Livingston observatory. The actual time delay between observatories
varies, depending where on the sky the signal originates. Triggers are said to be
coincident if they have consistent start times. The triggers must also be in the
same waveform template and may be required to pass additional tests, such as
amplitude consistency. The triggers that survive all coincidence tests are the
output of the inspiral analysis pipeline, and are known as event candidates.
Further manual follow-up analysis is used to determine if the triggers are truly
due to gravitational waves.

If one detector is more sensitive than the other two detectors, as was
the case in the second LIGO science run, we may only wish to analyze data
from the less sensitive detectors when there is a trigger in the most sensitive
detector. If the detectors are equally sensitive, as is presently the case, we may
wish to demand that a trigger from the matched filter is present in all three
detectors before computing computationally-expensive signal-based vetoes.

1.5.1 Components of the inspiral analysis

The inspiral workflow is divided into blocks that perform specific tasks, which
are summarized in Table 1.1. Each task is implemented as a separate program
written in the C programming language. The core of the workflow, and the
most computationally-intensive task, is the computation of the matched filter
signal-to-noise ratio and a time-frequency test, known as the χ2 veto [23,
24]. There are several other components of the workflow, however, which we
describe briefly here. A detailed description of the components may be found
in [26].

Data from the three LIGO detectors must first be discovered, and then
split into blocks of length 2048 seconds for analysis by the inspiral program.
The workflow uses the LSCdataFind program to discover the data, and the
methods of the Glue pipeline module described above to subdivide the data
into blocks. For each block, and for each detector, a template bank must be
generated for the matched filtering code. The template bank is a discrete sub-
set of the continuous family of waveforms that belong to the parameter space.



16 Authors Suppressed Due to Excessive Length

ComponentDescription

tmpltbank Produces a bank of waveform parameters for use by the matched
filtering code. The bank is chosen so that the loss of signal-to-noise
ratio between a signal anywhere in the desired parameter space
and the nearest point in the bank is less than some specified value,
which is typically 3%.

inspiral For each template in a bank, compute the matched filter and χ2

veto algorithms on a given block of data. Generates a list of inspiral
triggers, which are times when the matched filter signal-to-noise
ratio and the value of the χ2 veto exceed user-defined thresholds.

trigbank Converts a list of triggers coming from the inspiral program into
a template bank that is optimized to minimize the computational
cost in a follow-up stage.

inca Performs several tests for consistency between triggers produced by
the inspiral program from analyzing data from two detectors.

Table 1.1: The components of the inspiral analysis workflow.
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Fig. 1.6: The output of the matched filter in the presence of a simulated signal.
The signal in injected into the data at time t = 0. The signal-to-noise ratio
generated by the filter peaks at the time of the injected signal.

The placement of the templates in the bank is determined by the mismatch

of the bank which is the maximum fractional loss of signal-to-noise ratio that
can occur by filtering a true signal with component masses m1,m2 with the
“nearest” template waveform for a system with component masses m′

1
,m′

2
.

The construction of an appropriate template bank is discussed in [39,40].
The bank is then read in by the inspiral program which reads in the de-

tector data and computes the output of the matched filter for each template
in the bank. In the presence of a binary inspiral, the signal-to-noise ratio ρ of
the matched filter will peak, as shown in Fig. 1.6. The inspiral program may
also compute the χ2 time-frequency veto, which tests that the signal-to-noise
ratio has been accumulated in a manner consistent with an inspiral signal,
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and not the result of a “glitch” or other transient in the detector data. If the
value of the signal-to-noise and χ2 veto pass defined thresholds at any given
time, the inspiral code outputs a trigger for this time with the parameter of
the template and filter output. These triggers must then be confronted with
triggers from other detectors to look for coincidences.

The trigbank program can convert a list of triggers from the inspiral pro-
gram into a template bank that is optimized to minimize the computational
cost of a follow-up stage. We describe the optimization in detail in section
1.5.2. The inspiral coincidence analysis program, or inca, performs several
tests for consistency between triggers produced by inspiral output from ana-
lyzing data from two or more detectors and generates event candidates.

1.5.2 Inspiral workflow applications

The second LIGO science run

In LIGO’s second science run (S2) we performed a triggered search for pri-
mordial binary black holes and neutron stars [19,20]. Since we require that a
trigger occur simultaneously and consistently in at least two detectors located
at different sites in order for it to be considered as a detection candidate,
we save computational effort by analyzing data from the Livingston detector
(the most sensitive detector at the time) first and then performing follow-up
analyses of Hanford data only when specific triggers are found. We describe
the tasks and their order of execution in this triggered search as our detection
pipeline (workflow).

Figure 1.7 shows the workflow in terms of these basic tasks. Epochs of
simultaneous Livingston-Hanford operation are processed differently depend-
ing on which interferometer combination is operating. Thus, there are several
different sets of data: L1 ∩ (H1 ∪ H2) is when the Livingston detector L1 is
operating simultaneously with either the 4 km Hanford detector H1 or the
2 km Hanford detector H2 (or both)—this is all the data analyzed by the
S2 inspiral analysis—while L1 ∩ H1 is when L1 and H1 are both operating
operating, L1 ∩ (H2 − H1) is when L1 and H2 but not H1 are operating, and
L1 ∩ H1 ∩ H2 is when all three detectors are operating. A full L1 template
bank is generated for the L1 ∩ (H1 ∪ H2) data and the L1 data is filtered
with inspiral. Triggers resulting from these filter operations are then used to
produce triggered banks for followup filtering of H1 and/or H2 data. However,
if both H1 and H2 are operating then filtering of H2 is suspended until coinci-
dent L1-H1 triggers are identified by inca. The workflow used to execute this
pipeline is generated by a script called inspiral pipe, which is written using
the Glue library described in the previous section. The script is given the list
of times suitable for analysis and generates a Condor DAG which is used to
execute the pipeline. Fig. 1.8 shows a small subset of the workflow created by
the pipeline generation script.
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Fig. 1.7: Structure of the S2 Triggered Search Pipeline

The fifth LIGO science run

As the complexity of the analysis pipeline increases, and the amount of data to
be analyzed grows, so does the size of the inspiral workflow. To illustrate this,
we give a brief description of the binary neutron star search in the fifth LIGO
science run (S5). The S5 run is presently under way (as of April 2006) and
will record a year of coincindent data from the LIGO detectors. We will not
describe the S5 inspiral pipeline in detail here, suffice it to say that the analysis
uses a different workflow topology to the second science run. To analyze a small
subset of S5 consisting of 1564 hours of data for binary neutron star inspirals
requires a workflow with 44, 537 nodes. To execute this workflow required 3000
CPU days on the LIGO Caltech cluster, which consists of 1000 2.2GHz Dual
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Fig. 1.8: A subset of the workflow used to analyze data from the second LIGO
science run for binary inspirals. The full workflow has 6986 nodes.

Core AMD Opteron Processors. A complete analysis of this data will require
approximately 3–6 additions executions of the workflow.

1.5.3 Using Pegasus to plan inspiral workflows

Since the inspiral pipeline workflows are produced using Glue, it is trivial to
create Pegasus abstract DAX descriptions of the workflow (see Chapter ??).
To run the inspiral analysis on the Penn State LSC cluster, which uses PBS
as the scheduler rather than Condor, a DAX is created which describes the
workflow. Using this method we conducted a Monte Carlo-based computation
that analyzed 10% of the data from the fourth LIGO science run (S4), a
total of 62 hours of data. The DAX created by the inspiral pipeline script
contained 8, 040 nodes with 24, 082 LFNs listed as input files, 7, 582 LFNs
listed as intermediate data products generated by the workflow and 458 final
data products. Once the DAX is planned by Pegasus, the executable concrete
DAG used to execute the workflow had 12, 728 nodes, which included the jobs
necessary to stage the input data to the remote cluster and transfer the output
back to the users local system. Execution of the workflow took 31 hours on
the PSU cluster, described in section 1.3.3.

Pegasus has also been used to parallelize inspiral workflows across multiple
grid sites. For a demonstration at the SC 2004 conference a typical LIGO
inspiral analysis workflow was planned using Pegasus to run across the LSC
Linux clusters at Caltech and UWM as well as a Linux cluster operated by
the CCT at LSU. The effort demonstrated:

1. Running a LIGO inspiral analysis workflow internally within the LIGO
Data Grid.

2. Running a LIGO inspiral analysis workflow externalally to the LIGO Data
Grid on the LSU resource.
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3. Running across multiple types of cluster batch systems (Condor at Caltech
and UWM and PBS at LSU).

4. Running at sites where LIGO data was pre-staged using the LIGO Data
Replicator (the LSC sites).

5. Running at sites where LIGO data needed to be staged to the compute
resource as part of the workflow (the LSU Linux cluster).

All of the work planned by Pegasus and executed across the grid sites ran to
completion and all of the output was staged back to the machine from which
the workflow was launched.

1.6 Concluding remarks

The workflow tools described in this chapter provide an extensible architecture
for rapid workflow development and deployment and continue to be used and
extended by the LIGO Scientific Collaboration. There are areas of the current
framework which need to be strengthened, however, which we discuss in this
section.

A key challenge is the better integration of the pipeline development tools
and workflow planning middleware. The LSC has successfully used the Pega-
sus workflow planner to leverage computing power at remote grid sites, but
there is still a substantial burden on the scientific end-user to integrate this
into the execution of a workflow. There is a need to develop the interfaces
between data management, planning and batch processing tools so that the
use of large, distributed, grid computing resources appears to be as simple to
the end-user as submitting a DAG to a single LDG cluster running Condor.

Gravitational wave detectors generate large data sets which are need to be
accessed by various elements of the analysis workflows. In order to transpar-
ently execute jobs at remote locations, it is important to have seamless man-
agement of jobs and data transfer. In the work described above, Pegasus has
been used to provide data staging to remote sites using GridFTP. Additional
development will be needed to take advantage of grid storage management
technologies, such as dCache [32], and to accomodate any storage constraints
that may be placed by non-LDG computing centers.

LIGO workflows also typically consist of a mixture of computationally
intensive and short running jobs. This information is not presently taken into
account when planning a workflow. The Glue environment could be extended
to provide additional job metadata to the workflow planner to allow it to
make better use of available resources. For example, the user may only wish
to run long running jobs on remote grid sites, and execute short follow-up
jobs locally. Furthermore, only minimal information about the grid on which
the workflow is to executed is presently incorporated at the workflow planning
stage. Metadata services need to be better integrated into the workflow design
and implementation to allow efficient planning and execution.
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Finally, the user interfaces to all of these computing resources must be
simplified if they are to become truly powerful scientific tools. Users must
easily be able to monitor the activity of their jobs using simple tools like the
Unix command top, they must be easily able access their data products or
input data sets, and they must be able to prototype and deploy application
workflows with ease. From the perspective of the user–an application scientist–
quick and easy access to this information is of paramount importance.
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