

A Case Study on Value-based Requirements Tracing

Matthias Heindl Stefan Biffl
Institute of Software Technology and Interactive Systems

Vienna University of Technology
Favoritenstraße 9-11, A-1040 Vienna, Austria

{heindl, biffl}@qse.ifs.tuwien.ac.at
ABSTRACT
Project managers aim at keeping track of interdependencies
between various artifacts of the software development lifecycle,
to find out potential requirements conflicts, to better understand
the impact of change requests, and to fulfill process quality
standards, such as CMMI requirements. While there are many
methods and techniques on how to technically store require-
ments traces, the economic issues of dealing with requirements
tracing complexity remain open. In practice tracing is typically
not an explicit systematic process, but occurs rather ad hoc with
considerable hidden tracing-related quality costs. This paper
reports a case study on value-based requirements tracing
(VBRT) that systematically supports project managers in tailor-
ing requirements tracing precision and effort based on the pa-
rameters stakeholder value, requirements risk/volatility, and
tracing costs. Main results of the case study were: (a) VBRT
took around 35% effort of full requirements tracing; (b) more
risky or volatile requirements warranted more detailed tracing
because of their higher change probability.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – software quality
management (SQA)

General Terms
Management, Measurement, Documentation, Economics, Ex-
perimentation, Verification.

Keywords
Requirements tracing, value-based software engineering, case
study, empirical evaluation.

1. INTRODUCTION
Software development includes the production of various types
of artifacts, e.g., requirements specification documents, architec-
ture descriptions, source code, and test cases. These artifacts
provide different views on the system at different points of time.
It is obvious that these artifacts do not exist in isolation from
each other. Instead, they are related to and affect each other,
e.g., if one requirement in the requirements specification docu-
ment changes, other documents often have to be changed in

order to preserve consistency. Furthermore, these artifacts typi-
cally evolve to some extent concurrently during development.
Requirements tracing is the ability to follow the life of a re-
quirement in a forward and backward direction [8]. In the soft-
ware development context, requirements tracing has important
benefits, e.g., capturing traces in weekly intervals during devel-
opment can support developer teams in keeping an overview on
which requirement is implemented where in the source code.
Project managers aim at keeping track of interdependencies
between various artifacts of the software development lifecycle
to find out potential requirements conflicts, to better understand
the impact of change requests, and to fulfill process quality
standards, such as CMMI requirements [17].
In literature approaches like [4, 12, 18] support requirements
tracing activities like identification of requirement conflicts,
change management and impact analysis, release planning, pro-
gram comprehension, model consistency checking, and testing
(verification and validation). However, identifying and main-
taining trace dependencies leads to additional effort that can get
prohibitively expensive with increasing number of requirements
and increasing tracing precision. In practice, tracing is typically
not an explicit systematic process, but occurs rather ad hoc with
considerable hidden tracing-related quality costs.
Methods, tools and approaches of requirements tracing reported
in literature [13, 20] provide technical models about how to
store identified traces. Most tools aim to automate requirements
tracing, but tracing automation is still complex and error prone.
Furthermore, automation alone cannot really reduce efforts of
requirements tracing. Thus, requirements tracing may seem too
costly for routine use in practice. A major reason is that existing
approaches make no difference between requirements that are
very valuable to trace and requirements that are much less valu-
able. Tracing value depends on parameters like stakeholder im-
portance, risk or volatility of the requirement, and the necessary
tracing costs. Thus, there is the need for requirements tracing
approaches that take these parameters into consideration, such as
value-based requirements tracing (VBRT).
Systematic full tracing, where every requirement is traced with
the same precision independent of its value, provides benefits in
saving time in implementing error reports or change requests
after the project has been finished. In this case the costs for new-
coming maintenance personnel to re-discover knowledge about
interdependencies in the system would usually be much higher
than for identifying and storing trace dependencies during de-
velopment with the original developers present. It seems easier
to identify traces during development than later after project
completion when a change request occurs.
Capturing all requirements traces can get complex and expen-
sive very fast, e.g., imagine a software development project with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC-FSE’05, September 5–9, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-014-9/05/0009...$5.00.

60

only 18 requirements but more than 4000 traces to store and
maintain. In comparison to full tracing, VBRT promises in a
typical project significant reduction of tracing costs without
losing its benefits.
The VBRT approach provides a technical model and an eco-
nomic model for requirements tracing, depending on criteria like
number of requirements, value of requirements, risk of require-
ments, number of artifacts, number of traces, precision of traces,
size of artifacts, cost/effort of trace identification and mainte-
nance, and value of traces. Figure 1 illustrates that traces can
have different levels of precision, e.g., traces in code at method,
class, or package level. Traces exist between all kind of artifacts,
e.g. design, code, test cases. Thus, VBRT can help to perform
cost-efficient requirements tracing within given budget limita-
tions.

Figure 1. Requirements Tracing Overview.

Project stakeholders like customers, project managers, and qual-
ity managers do not put equal value on each requirement. Value-
based software engineering approaches such as release planning
[21] relate value differences to project decisions and practice.
Similar to the requirements themselves requirement traces are
not equally important. However, existing approaches treat each
trace the same way and do not consider these value differences.
With limited resources the project team has to decide capturing
which traces seems most worthwhile.
The VBRT approach consists of 5 steps: requirements defini-
tion, requirements prioritization, requirements packaging, re-
quirements linking, and evaluation. VBRT reduces tracing ef-
forts by prioritizing requirements. Requirements prioritization
uses the input parameters stakeholder value, requirements
risk/volatility, and tracing costs to decide which requirements
are valuable enough to trace and which are not.
A main contribution of this paper is a case study where we ap-
plied VBRT to a real-life project and report initial case study
results, e.g., tracing-related costs. The focus of this paper was on
traces between requirements and other artifacts, especially code
pieces (vertical traceability), while horizontal traceability is part
of further work.
In this paper we evaluated the VBRT approach in a real-life
project setting and compared costs and benefits of VBRT to ad
hoc tracing and full tracing. The case study results suggest that
VBRT can be an attractive tracing alternative for typical soft-

ware development projects, because it provides “traditional”
benefits of tracing and minimizes tracing efforts at the same
time.
The remainder of the paper is organized as follows: section 2
summarizes related work on requirements tracing; section 3
introduces the VBRT process and formulates research questions.
Section 4 outlines the case study and presents results. Section 5
discusses these results. Finally section 6 concludes and describes
further work.

2. RELATED WORK
This section presents related work on motivation for require-
ments tracing in software quality standards, need for tracing in
practice, and on overview on traceability techniques as context
of value-based requirements tracing.

2.1 Requirements Tracing in Quality Stan-
dards
There are many formal definitions of requirements in literature,
e.g., Karlsson [14] defines a requirement as a current or future
need that may be fulfilled. Requirements traceability can im-
prove system quality, because it makes knowledge about the
designed system independent from people, e.g., from the devel-
opment team that has originally implemented the system, and
therefore eases maintenance and change request implementa-
tions.
Many standards for systems development such as the U.S. De-
partment of Defense (DoD) standard 2167A mandate require-
ments traceability practice. [19]. Requirements traceability is an
issue for an organization to reach CMM level 3. Most organiza-
tions work on CMM level 1 or 2. In an assessment for reaching
maturity level 3 there are questions concerning requirements
tracing: whether requirements traces are applied to design and
code and whether requirements traces are used in the test phases.

2.2 Need for Requirements Tracing
Two characteristics of software projects lead to the necessity of
requirements traceability:
First, customers usually define requirements at the beginning of
a software project. Therefore, a project manager has to use veri-
fication and validation (V&V) approaches, e.g., acceptance test-
ing [11], throughout the project in order to ensure that the de-
veloped artefacts and products meet these customer require-
ments.
Second, changing requirements, rather than stable ones, are the
norm in systems development [10]. Requirements are hardly
ever stable, because the customers’ situation may change and
that is why also requirements may change during or after a soft-
ware project. That means that requirements are prone to
changes. Since many artefacts come up during a software pro-
ject, a requirement change may have effects on many different
artefacts.
The need for verification and validation and the instability of
requirements force to trace requirements somehow. For instance,
there are two situations, where some form of requirements trac-
ing (RT) is essential:
(1) Acceptance testing: At the end of the software project the
customers and the project manager perform a V&V step where

61

they have to decide if the developed software system meets the
requirements initially defined by the customers. Usually they
make this decision by performing an acceptance test where the
functions and the external behaviour of the software product are
compared against the specified requirements.
(2) Change request: Very often initially defined requirements
change during the development process and even change after
the project has been finished. Usually, the customer proposes
such changes in the form of change requests or error reports.
The project manager then has to decide if the proposed change
request should be implemented or not. Therefore, he has to
compare efforts and costs necessary to implement a change re-
quest against the value generated by change request implementa-
tion. In other words, he has to understand the technical impact
of a change to be able to estimate change effort.
For both kinds of situations it is helpful to have knowledge
about dependencies between requirements and all kinds of work
products. This knowledge, as provided by requirements trace-
ability (RT) techniques, can support the project manager in mak-
ing decisions like the ones described above and can help in-
crease system quality.
Current literature contains ample publications about the need for
traceability, e.g., in Gotel and Finkelstein [8]. Watkins and Neal
[22] report how requirements traceability aids project managers
in: accountability, verification, consistency checking of models,
identification of conflicting requirements, change management
and maintenance, and cost reduction.
Accountability. During internal and external audits, the project
will have a better success rate if the data is available for auditors
and you can prove that a requirement was successfully validated
by associated test cases [22]. Project managers have a better
handle on costs, and customers are assured of getting the prod-
uct they requested. Thus customer confidence and satisfaction is
enhanced.
Verification. RT helps to verify that software requirements have
been allocated both to design and code and to test cases and
procedures for verification. This ensures that only required func-
tions are designed into the product; as well as that all require-
ments have associated design components and qualifications test
cases. Traceability ensures customer satisfaction by providing a
documented means by which to prove to the customer that all of
the stated requirements are met and that the job is completed
[19]. By using traceability to acceptance test plans for every
validated requirement, including derived requirements, the pro-
ject manager can prove to the customer that the system com-
pletely meets their needs [19].
Consistency checking of models. Different models, e.g., use
cases, state charts, sequence diagrams, and class diagrams, rep-
resent a set of perspectives on a software system. Since require-
ments traces store information about dependencies between
different artifacts or models, and requirements, requirements
traceability can provide support in checking consistency of a
given set of models [4].
Identification of conflicting requirements. Very often require-
ments affect each other, e.g., a quality requirement affects a
functional requirement. In other cases requirements do not only
affect each other, they even conflict. By means of requirements

traceability approaches, e.g., see Egyed and Grünbacher [5, 6],
these cooperating or conflicting requirements can be identified.
Change Management/Maintenance. For each change, it is easier
to determine what related elements of the design are affected.
This helps to keep documentation up to date as the implementa-
tion progresses. In addition, managers can identify test proce-
dures that should be re-run in order to verify the change. This
knowledge helps save test resources. There are many papers
about how to manage change within development processes and
how to determine impacts of changes, e.g., Harker and Eason
[10].
Cost reduction. Traceability allows allocating product require-
ments early in the development lifecycle. The cost of waiting
until the integration and system test phase to correct defects (in
untraceable components) may be as much as 30 times higher
than defect correction in the earlier development phases [1].

2.3 Traceability Techniques and Approaches
Gotel and Finkelstein mention some basic techniques for RT,
namely cross referencing schemes [7], key phrase dependencies
[12], templates, RT matrices, hypertext [13], integration docu-
ments [15], and constraint networks [3]. These techniques differ
in the quantity and diversity of information they can trace be-
tween, in the number of interconnections between information
they can control, and in the extent to which they can maintain
requirements traces when faced with ongoing changes to re-
quirements. There are also tools to semi-automate requirements
tracing [4, 18].
These techniques provide technical support to perform require-
ments tracing, but do not consider value and cost as argued in
value-based software engineering [1, 2].

3. VALUE-BASED REQUIREMENTS
TRACING (VBRT)
The goal of the value-based requirements tracing process is to
identify traces based on prioritized requirements and thus to
identify which traces are more important and valuable than oth-
ers. The following subsections provide a VBRT process over-
view, simple cost-benefit model, and research question.

3.1 VBRT Process Overview
Figure 2 depicts process activities, actors, and deliverables of
VBRT. In an iterative life cycle the VBRT process represents
one cycle of developing and refining the value-based traceability
system.
The VBRT process consists of five distinct steps: (1) require-
ments definition, (2) requirements prioritization, (3) packaging
of requirements, (4) linking of artifacts, and (5) evaluation.
During (1) requirement definition the project manager or re-
quirements engineer analyzes the software requirements specifi-
cation and identifies atomic requirements. The requirements
engineer then assigns a unique identifier to every requirement.
The result is a list of requirements and their IDs.
During (2) requirements prioritization all stakeholders assess
the requirements and estimate the value, risk, and effort of each
requirement. The result of this step is an ordered list of require-
ments where the requirements are ranked on three priority levels
[16].

62

(3) Requirements packaging is an optional process step that
allows a group of architects to identify clusters of requirements.
These clusters are needed to develop and refine an architecture
from a given set of requirements. Grünbacher and Egyed [9]
provide an overview on a generic intermediate architecture
model based on requirements.
During (4) requirements linking the project team establishes
traceability links between requirements and artifacts. Important
requirements are traced in more detail than less important re-
quirements. Therefore, we use 3 levels of tracing intensity. The
result of this step is an overall traceability plan.
During (5) Evaluation the project manager can uses traces for
certain purposes, e.g., to estimate the impact of change for cer-
tain requirements.

Resources

Requirement
Definition

Figure 2. VBRT Process Overview.

3.2 Cost-benefit Model for VBRT
Tracing techniques typically provide only technical support to
perform requirements tracing but do not take value and cost
considerations into account.
Complete tracing needs often prohibitive effort and duration in a
software project. The question arises, how much effort for trac-
ing is appropriate to provide significant savings during usage of
traces in a project. We want to optimize the cost-benefit of trac-
ing and trace analyses. We assume that value-based require-
ments tracing can help to find a subset of traces that saves pro-
portionally more cost than it loses benefit.

The costs and benefits of requirements tracing depend on the
following parameters.
Project context:

• Number of artifacts to be traced; the higher the number of
artifacts, the higher is the effort to create traces between
them. It depends on the trace applications (e.g., require-
ments conflicts identification, change impact analysis, con-
sistency checking, verification) which artifacts should be
considered for tracing.

• Number of requirements in a software development project;
Due to n2 complexity of requirements tracing (potential
traces between all n artifacts), the effort explodes with in-
creasing number of requirements. That is one of the main
problems of requirements traceability. VBRT is an ap-
proach to get a grip on the tracing effort problem.

• Value of requirements that is the importance of each re-
quirement to the stakeholders (e.g., on a three-point-scale);
We suppose that high-value requirements need more de-
tailed tracing than low-value requirements, because they
represent the core functionality of the system and trace in-
formation of the latter is more important than trace infor-
mation of low-value requirements.

• Risk of requirements, that is the volatility of each require-
ment (e.g., on a three-point-scale); It seems to be worth-
while to trace risky/volatile requirements in more detail,
because during trace applications like change impact analy-
sis, these traces are needed more frequently than traces to
stable requirements.

Tailoring parameters:

• Number of traces; the higher the number of requirements
and artifacts to be traced, the higher is the number of poten-
tial traces to identify and maintain;

• Precision of traces, e.g., traces between requirements and
code could be at lines of code level, method level, class
level, or package level [4, 5];

• Complexity/Size of trace objects, e.g., if a code class is
extremely big, then tracing at method level would provide a
higher value than tracing at class level. If the class is very
small and contains only one method, then tracing at class
level provides nearly the same value as tracing at method
level.

Cost and benefit:

• Cost/Effort for tracing, e.g., more precise traces are more
expensive to identify than less precise ones. Reducing the
number of traces, e.g., by omitting tracing of less important
requirements, also has an effect on costs and efforts.

• Value of traces in context of a specific application, e.g.,
change impact analysis, identification of requirements con-
flicts, etc. For example, in context of change impact analy-
sis, using traces reduces costs and time for locating code
pieces to be changed.

We compare three tracing alternatives in this paper. The first
alternative is ad hoc tracing. The project team does not create
and maintain any kind of traces during development, but

63

searches documentation for relationships when needed. This
variant has hidden efforts for search and rework risk.
The second alternative is full tracing. The project team does not
make differences between requirements and traces each re-
quirement with the same effort and precision. It makes a differ-
ence in this variant whether the project team identifies traces
during development or after the project (ex post). The latter
approach seems to be considerably more expensive than the
first, as the project team has often to re-discover system details.
As described above, full tracing provides certain benefits in
comparison with ad hoc tracing, but there is still a potential for
improvement or optimization, e.g., full tracing wastes efforts for
tracing requirements that do not really need to be traced with
that level of precision. Thus, the criterion for optimization is
which requirements should be traced at which level of precision.
VBRT addresses this issue by providing a requirements prioriti-
zation step where requirements are assigned to one of three pre-
cision levels. For example, a ratio of requirements per precision
level of 10%:30%:70% or 20%:40%:40% would provide a con-
siderable effort reduction. Thus, VBRT tailors tracing efforts
down to manageable size without losing too much of the bene-
fits of full tracing.
The scope and prioritization of requirements is important as not
all requirements do have similar value and trace sets are usually
not complete due to effort constraints and duration of trace crea-
tion in the software development process. Therefore, the ques-
tion arises which traces are most worthwhile to create and main-
tain in a software project.
One aspect is the value of a trace set for the stakeholders, an-
other is the risk of change volatility of a trace, and finally the
cost of creating and maintaining traces. We performed a re-
quirements prioritization step in our case study based on the
prioritization approach by Ngo-The and Ruhe [16] in order to
identify most important requirements, medium important re-
quirements and less important requirements.

3.3 Research Question
In context with the VBRT process, this work deals with the fol-
lowing research question:

• RQ: To what extent can VBRT reduce requirements tracing
efforts (economy of requirements tracing)?

We assume that VBRT reduces tracing efforts by omitting iden-
tification of unimportant traces through requirements prioritiza-
tion. We measure the tracing effort in person hours to evaluate
this research question.
We assume that traces differ in their value depending on re-
quirements’ value, costs, and risks (volatility). We evaluate this
question by analyzing the results of the prioritization step, where
requirements are assigned to precision levels. The most valu-
able, most costly, and most risky (volatile) requirements should
be traced on the highest precision level.
To gather data to answer this research question, we performed a
case study at Siemens Austria. Focus of the case study was to
apply the VBRT process in a small project that allows compar-
ing full tracing and VBRT effort and discussion of empirical
data with development experts. The case study should be a basis
for extrapolation of tracing and cost-benefit parameters to a
typical larger project.

4. CASE STUDY APPLICATION OF
VBRT
The case study project “public transport on demand” is about an
improved and more efficient public transportation system in
rural areas supported with modern information technologies.
The challenge is to stop further deterioration of public transpor-
tation access in rural areas with a new traffic model. The basic
element in the system is a public transportation service provider
centre (PTSPC). The passenger can ask the PTSPC via SMS,
Internet or Call Center for transportation on a route within the
service area. The passenger has to provide input parameters like
starting point, destination, arrival or departure time, maximal
amount of transfers, and maximal acceptable travel time. If the
location of the start or the destination has no scheduled stop
within walking distance, the system will arrange a feeder service
to or from the stop. Passengers can ask the PTSPC for route
information and prices; they can also directly buy their tickets.
The PTSPC is thus able to calculate the best possible route and
the price of the requested trip. Figure 3 illustrates the target
traffic communication model: A customer orders a route with his
handy via call center, the PTSPC calculates a route consisting of
transport mode options, stops, and pickup times. Finally, the
customer receives a SMS with the route information.

Figure 3. Communication example from case study project.

The PTSPC ensures that all orders are executed properly. The
PTSPC also arranges for a follow-up acknowledgement between
the feeder system and the buses. All vehicles of the feeder ser-
vice and all the buses are equipped with location and communi-
cation devices. Therefore, the PTSPC knows the locations of all
the vehicles in the system and can communicate with their driv-
ers. The PTSPC operator is thus able to notify the drivers and
arrange for appropriate actions to be taken in the case of major
unexpected deviations from schedule.
The type and size of the project was suitable for us to apply the
VBRT approach in a software development project with realistic
yet manageable trace options. The project consisted of 46 re-
quirements, which seemed to be the right magnitude to evaluate
the VBRT approach, because the number of requirements was
neither too high nor too little. The following artifacts existed
when we started the case study:

• Software requirements specification: The specification
contained the description of functional requirements. Non-
functional requirements, e.g., quality, performance, reliabil-

64

ity, were not described and therefore excluded from our
case study.

• Architecture description and high-level design: These arti-
facts described the building blocks of the desired system.

• Prototype: The prototype was a partial implementation of
the requirements in the software requirements specification.

The following subsections describe the VBRT process steps in
context of the case study.

4.1 Requirements Definition
The prerequisite for requirements definition is a software re-
quirements specification. This software requirements specifica-
tion is written in plain text and most of the functional require-
ments are modeled as use cases. The software requirements
specification contains 46 functional requirements. The main task
of this process step for the investigator was to review the soft-
ware requirements specification and to extract each use case title
into an excel list.
Results of requirements definition
One person needed approximately 3.5 hours to generate the
requirements list from a textual software requirement specifica-
tion.

4.2 Requirements Prioritization
When we performed the case study the project team consisted of
three project members: the project manager, the quality man-
ager, and one additional project member. These three persons
performed the prioritization step. The project manager had to
assess the value, risk, and effort of each requirement. All other
project members had to assess the value only (stakeholder value
proposition). Table 1 illustrates a part of the project manager’s
prioritization sheet and table 2 depicts a part of the standard
prioritization sheet for all other project members. In order to
support the understanding of each requirement, the working
sheets contained short descriptions of every requirement and
every requirement description contained a link to the relevant
chapter of the software requirements specification. The project
manager assessed value, risk, and costs of each requirement,
whereas the rest of the project team assessed just the value of
each requirement (on a scale with high importance +, medium
importance 0, and low importance -).

Table 1. Prioritization sheet for the project manager
Requirements Value Risk Effort

Req1. Registration, Login, Logout - - 0

Req2. Change user profile via internet 0 0 0

Req3. Order a route via internet + + +

Req4. Pre-configure a route + 0 0

Req5. Order a route via SMS + - 0

Req6. Order a route via call center + + +

Table 2. Prioritization sheet for all other project members

Requirements Value

Req1. Registration, Login, Logout +

Req2. Change user profile via internet 0

Req3. Order a route via internet +

Req4. Pre-configure a route +

Req5. Order a route via SMS +

Req6. Order a route via call center +

Based on the three project members’ assessments, we calculated
a general result table. We counted the number of +, 0 and - from
the value assessment. Based on these counts, we calculated the
overall stakeholder value classification, SV (see table 3).
The classifications of risk R and effort E, performed by the pro-
ject manager, resulted in the classification RE, reflecting the
overall risk/effort situation for every requirement, ranging from
‘--‘ very low to ‘++’ very high. Both the stakeholder value clas-
sification, SV, and the risk/effort situation, RE, were input to
determine a priority level L, ranging from 1 – high priority – to
3 – low priority (see table 3). The prioritization approach is
described in [16] in detail.
Results of requirements prioritization
The project manager assessed value, risk, and effort for each
requirement, whereas other project members assessed only the
value. The duration of the prioritization step took per person
between 40 and 60 minutes. The assessing project members did
not have to cooperate but performed their assessment individu-
ally. Table 3 depicts the overall assessment of the requirements
list.

Table 3. Stakeholder requirements prioritization results

List of requirements Value R E RE SV L

 + 0 -

Req1. Registration, Login, Log-
out

2 0 1 - 0 - + 2

Req2. Change user profile via
internet 0 3 0 0 0 0 0 2

Req3. Order a route via internet 2 1 0 + + ++ + 1

Req4. Pre-configure a route 2 0 1 0 0 0 + 2

Req5. Order a route via SMS 2 1 0 - 0 - + 2
Req6. Order a route via call
center 3 0 0 + + ++ + 1

Req7. Change the user profile
via call center 1 2 0 - - -- 0 3

Req8. Administration of orders
via internet 3 0 0 + + ++ + 1

Req9. The driver may see order
details of his orders 2 1 0 0 0 0 + 2

Req10. Data transfer between
taxis and the central dispatcher 1 2 0 - + 0 0 2

The columns value +, 0, and - contain the number of votes, e.g.,
2 project members voted for Req1 to be important (+), and one
project member voted for Req1 to be unimportant (-). The col-
umns R and E contain the project manager’s assessment of risk

65

and efforts for each requirement. The column RE contains the
combination of R and E; column S contains the combination of
the value assessments. Finally, column L contains the assign-
ment of each requirement to one of three priority levels, e.g.,
Req1 is assigned to level 2 (medium importance) and Req3 is
assigned to level 1 (high importance). The prioritization step is
described in Ruhe [16] in detail.
The VBRT prioritization step has the following characteristics:
Prioritization is short. In the case study the average duration for
the stakeholders’ prioritization was 50 minutes. The number of
requirements in each priority level seems to be suitable. The
distribution of requirements to the three priority levels was ap-
proximately 1:6:2, that means out of 9 requirements 1 require-
ment was priority level 1, 6 requirements were priority level 2,
and 2 requirements were priority level 3.

4.3 Requirements Packaging
After the project team classified each requirement on one prior-
ity level, the next optional step is about generating an architec-
ture proposal by means of an intermediate model [9]. This re-
quirements packaging step is not described in detail because it is
optional and not directly within the focus of this paper.

4.4 Requirements Linking
Requirements on priority level 1 are traced in more detail than
requirements on priority levels 2 and 3. This graduation of in-
tensity reduces the overhead for tracing unimportant require-
ments and provides only really necessary information about
dependencies between requirements and artifacts.
In this case study the investigator performed the linking step.
The investigator started from the user interface of a prototype
and tested one requirement after the other. At the same time, he
investigated which code pieces were invoked (methods at prior-
ity level 1, classes at priority level 2, and packages at priority
level 3). He did this investigation by inspecting the code manu-
ally. So, the investigator did not perform the linking step con-
currently to developing but ‘ex post’.
Level 1 linking is the most expensive linking, because the inves-
tigator had to link each requirement to every method invoked
during its “performance”. The investigator developed a trace-
ability matrix containing the requirements as columns and code
methods as rows. If, for example, method A participates in the
implementation of requirement B, then the cell where the row of
method A crosses the column of requirement B contains an ‘X’.
Each method identifier contains the package name, the class
name and the method name, each separated by a period. After
the investigator finished level 1 linking, he continued and did
the same for precision levels 2 (class level) and 3 (package
level).
Results of requirements linking
The effort to create trace links into code at method level is rather
high (ca. 45 min per requirement), but, on the other hand, it
seems to provide the most useful information with respect to
traceability.
Linking into code at class level does not need very much effort
(ca. 10 min per requirement). The usefulness of this information
depends on class size. For small to medium classes, the level of
detail of this information is sufficient to locate the code relevant

to a certain requirement. For large classes, e.g., implementing
dozens of methods, level 2 linking gives only little support.
Linking into code at package level is done very quickly but does
not provide very useful information. Linking at package level
therefore is sufficient only for unimportant requirements.
In the case study, requirement linking was performed ex post;
therefore it was harder to get an insight into the system. If the
linking is done during the project, efforts should be reduced.
The third type of tracing concerns requirements on the lowest
precision level 3 (package level). The case study pointed out that
tracing at package level can be generally left out, because the
resulting traceability matrix provides only very coarse informa-
tion.

4.5 General Case Study Results
As mentioned above, tracing into code at method level provides
more precise information than tracing at class or package level.
Unfortunately, the effort for tracing into detailed code is usually
very high. The case study pointed out that focusing on the most
important requirements reduces efforts in comparison with trac-
ing all requirements at method level in the case study. The total
effort for VBRT requirements linking was 770 minutes. That
means, it took some 13 hours to establish a VBRT requirements
traceability system for a software project with 46 requirements.
In comparison, tracing all requirements at method level would
have taken 2070 minutes (some 35 hours). Thus, VBRT used
around 35% of the effort to establish a full requirements trace-
ability system.
Another interesting point is the usability of VBRT in compari-
son with ad hoc tracing. The project manager of our case study
recognized requirements traceability as additional, time consum-
ing, and expensive effort. In the case study the investigator iden-
tified traces ex-post and had problems to get into implementa-
tion details, whereas the developers during implementation do
not have this problem. So, the case study suggests that capturing
traceability information in early phases of the software devel-
opment lifecycle is much easier than capturing traceability in-
formation in later phases. We want to evaluate this hypothesis in
further work.
Another issue is the level of detail or precision of tracing. Due to
effort and budget constraints it is often impossible to trace each
requirement at highest level of detail. Value-based approaches
[1, 2] allow tailoring efforts according to requirements’ priority.
In context with requirements traceability, we interpreted this as
to use trace types of variable precision. For example, we used
three different trace types to trace the requirements into code,
namely method traces, class traces, and package traces. The first
trace type allows tracing requirements into code at method level,
the second trace type allows tracing requirements into code at
class level, and the third trace type allows tracing requirements
into code at package level. This reflects a level of precision and
also effort necessary to create these traces, e.g., tracing into
methods is more expensive than tracing into classes.
It is common knowledge that generally tracing requirements into
code at method level provides more detailed and usable informa-
tion than tracing into class and package level. This is especially
true for code that consists of very long source code classes, be-
cause the latter often contain methods implementing different
parts of functionality. So the information “requirement A is

66

implemented by methods 1 and 2” is more useful than the in-
formation “requirement A is implemented in class X”, because
there could possibly be many more methods in class X that do
not relate to requirement A.
This higher quality of information has its price in effort neces-
sary to create these traces. For instance, the case study presented
in this paper pointed out that tracing a requirement into code at
method level needed one person for 45 minutes on average to
create this trace. Tracing the same requirement into code at class
level took only 10 minutes. Tracing the same requirement into
code at package level took only 2 minutes, but these traces have
very little benefit, because the resulting traceability information
is much too coarse, whereas tracing at class level turned out to
be sufficient when source code classes are short and clear.
Another question was how “risk” of requirements have an im-
pact on the detail of tracing. Most risky requirements are prone
to changes and also need many cycles of adjustment during the
process. Thus, it is important to understand the impact of re-
quirement changes on system design and other development
artifacts with high precision. This implies that tracing of most
risky requirements with high precision has a high benefit, be-
cause these traces are needed very often, e.g., during change
impact analysis. Furthermore, tracing of risky requirements must
be both cheap and fast to allow unobtrusive trace analyzes dur-
ing software development. Tracing risky requirements also sup-
ports the design principle of dividing volatile and less volatile
requirements in the design structure.

5. DISCUSSION
The high effort of requirements tracing seems to be a main rea-
son why project teams do not use requirements tracing in prac-
tice. Most automation approaches alone do not suffice to tailor
down tracing efforts to a manageable size, because they do not
reduce complexity of tracing, e.g., the number of traces.
The case study results pointed out that the VBRT approach al-
lows to reduce tracing efforts without losing significant re-
quirements tracing benefits. In comparison to full tracing, VBRT
took only 35% effort. Thus, VBRT is a good step towards solv-
ing requirements tracing problems like high efforts and high
complexity.
Furthermore the case study showed that identification of traces
early in the project lifecycle is easier than in later phases. In later
phases, e.g., in the operation phase, the rework to get into pro-
gram details again is considerably higher. This is generally a
good argument for requirements tracing, because capturing
traces during development is economically much more worth-
while than on the occasion of change requests etc, when the
actors do not know implementation details and spend lots of
effort to understand the latter.
The prioritization step of the VBRT approach is a suitable
means to identify which requirements are more valuable to trace
than others. This prioritization is based on requirement parame-
ters like value, risk, and costs and results in reduced efforts,
because less important requirements are traced with less efforts
and more valuable requirements are traced with more detail. Of
course, the prioritization of requirements by the stakeholders is
subjective, because it is based on the stakeholder value proposi-
tion.

In the case study there were approximately 10% of all require-
ments in precision/priority level 1, 60% in level 2, and 30% in
level 3.
The case study pointed out that all requirements that the stake-
holder assessed as high risks (on a scale ranging from high risk,
medium risk, to low risk) were assigned to the highest priority
level. Thus, we traced them with highest precision. The high risk
of these requirements is synonymous with the high volatility of
these requirements. That means that requirements with a high
probability of change are very valuable to trace.
Based on the case study results, a comparable larger software
development project is likely to have the characteristics illus-
trated in table 4 that depicts strengths and weaknesses of ad hoc
tracing, full tracing, and value-based requirements tracing. In the
right-most column the optimistic case assumes very little need
for extra traces, while the pessimistic case assumes a need for
extensive traces to support project activities on the critical path.
The overall cost comes from pro-active trace creation and reac-
tive work on tracing when actually needed. We assume the over-
all tracing-related effort for full tracing in larger projects to be
on average approximately 5% of the total project costs as part of
quality assurance activities, such as testing or inspection, where
traces are a perquisite for a sound quality assurance plan. Ad
hoc tracing is likely to cause on average similar but hidden
costs, while the cost variation in projects may be very high.
At first sight, ad hoc tracing seems to be the cheapest alterna-
tive, as there are no costs for trace identification and mainte-
nance. In projects where requirements changes are very likely
this alternative might become very costly, because the project
team or maintenance personnel have to do “tracing” ad hoc. The
later these change requests happen, the more costly tracing gets
during development. Further, tracing efforts on activities that are
on the critical path for project or maintenance task completion
will effectively delay the overall finish. Omitting tracing at that
point incurs a high risk of lower-quality solutions and/or erosion
of system design [1, 5].

Table 4. Comparison of tracing alternatives

 Proactive
effort to iden-
tify and
maintain
traces

Additional
effort and
delay in case
of a change
request (reac-
tive)

Overall trac-
ing cost in %
of total pro-
ject costs
(optimistic to
worst case)

Ad hoc Trac-
ing

Low (0) Extremely
high

0% to 20%

Full Tracing High Low 5% to 15%

VBRT Medium Low 2% to 7%

The second alternative is full tracing. Its effort for trace identifi-
cation and maintenance is high, because every requirement is
traced with the same precision, although many requirements do
not need to be traced. Thus, effort is wasted with this variant on
many less important requirements, which makes it rather unat-
tractive for practitioners. The general benefit of requirements
tracing is the lower delay and lower additional effort in case of a
change request.

67

The third alternative is VBRT. The effort to identify and main-
tain traces is less than half of full traces and the additional effort
in case of change requests is low. Thus, VBRT provides similar
value as full tracing, but is much cheaper. Based on our assump-
tions for a typical project and case study results, the overall trac-
ing effort in a large project with VBRT is likely to be fewer than
3% of the total project costs. This reduction makes tracing ad-
visable in practice, especially after making the hidden costs of
ad hoc tracing visible.
Tracing effort depends in practice mostly on the parameters:
number of traces, level of detail of traces, change rate of traces
at the occasions when tracing is done, e.g., weekly to have a
current picture; or, at milestones when artifacts reach a stable
state. The number of traces depends on the system artifacts and
their size and complexity; the change rate on project context.
However, the project manager can control the level of detail of
traces and the occasions when tracing gets conducted.
The accurate estimation of tracing effort in general software
engineering projects is very difficult as these efforts are often
hidden as part of engineering and quality assurance tasks. How-
ever, based on a an analysis of the tasks of quality assurance and
the amount of effective tracing work involved, we can as initial
estimate assume that tracing will consume around a third of
quality assurance effort in projects with good quality assurance
support. Based on this assumption and typical quality assurance
efforts in software development and maintenance projects, the
effort estimates in Figure 4 for trace identification during the
project and as reaction to change requests seem reasonable. The
case study showed that prioritization of requirements by the
stakeholders is an effective approach that can lead to a reduction
of tracing effort in practice between 30% and 70%. However,
the overall savings in a project context depend, of course, on
many factors, e.g., how well the system documentation is organ-
ized and the overall complexity of the system artifacts. VBRT
aims to reduce the inevitable effort for tracing to a level that
makes effective tracing more attractive to practitioners.
Validity of results: The purpose of the case study presented in
this paper was to investigate the impact of full tracing vs. VBRT
on effort and benefits. Thus the case study size was chosen to
allow conducting both full tracing and VBRT in a reasonable
amount of time. However, the case study project setting is typi-
cal in the company and allows reasonable insight into the feasi-
bility of the VBRT process in this environment. We see the em-
pirical investigation as an initial study that supports planning
further empirical studies with larger projects. As with any em-
pirical study the external validity of only one study can not be
sufficient for general guidelines, but needs careful examination
in a range of representative settings.

6. CONCLUSION AND FURTHER WORK
In software development projects there are interdependencies
between all kinds of artifacts, e.g. requirements, design, source
code, test cases. Requirements tracing is the ability to follow the
life of a requirement in a forward and backward direction [8]
and helps project managers and project teams to make this inter-
dependencies transparent. Capturing these interdependencies
(traces) explicitly brings benefits for identification of require-
ments conflicts, change impact analysis, release planning etc.,
but the high complexity and necessary effort of tracing makes
requirements tracing too costly for use in practice. Existing

methods, tools and approaches of requirements tracing in litera-
ture provide only technical models about how to store identified
traces and do not take this economic issue into consideration.
In this paper we evaluated the VBRT approach in a real-life
project setting and compared costs and benefits of VBRT with
ad hoc tracing and full tracing. For the purpose of evaluation,
the project team performed the VBRT process steps. We then
analyzed the results and compared it with ad hoc tracing and full
tracing. Main results of the case study were: (a) VBRT took
around 35% effort compared to full tracing; (b) more risky re-
quirements need more detailed tracing. The case study results
illustrate that VBRT is an attractive tracing alternative for typi-
cal software development projects in comparison with ad hoc
tracing and full tracing, because it provides “traditional” benefits
of tracing and thereby minimizes tracing efforts.
For a more general evaluation of VBRT and to evaluate the cost
difference of VBRT and full tracing in the face of changing
requirements we plan multiple case studies with a systematic
range of projects. We will address the question which level of
detail is optimal to trace requirements into code, e.g. class or
method level. Software engineering standards demand require-
ments traceability but do not state the required level of detail.
Further case studies will explore the cost-quality trade-off of
tracing at different levels of detail. Automation approaches for
requirements tracing are also a future topic in context of VBRT.
We want to use the trace analyzer tool [6] to explore the cost-
quality trade-offs between automated tracing at method level and
class level.
Another focus will lie on improvement of requirements prioriti-
zation in order to optimize the value of VBRT. There are many
more relevant requirement attributes than value, risk, and effort
that are interesting in context with prioritizing requirements for
requirements tracing, e.g., architectural relevance, stability. An-
other open question is how VBRT can support horizontal trace-
ability, because this paper focused on vertical traceability.
A third focus will lie on developing automated support assisting
engineers in exploring and using the automatically derived trace
dependencies. One idea is to integrate requirements traceability
approaches into existing development environments, so that the
developer can implement code and store traceability information
simultaneously.
Requirements tracing is important to keep track of the interde-
pendencies between requirements and other artifacts and to sup-
port project teams and software maintenance personnel in sev-
eral tasks, e.g. change impact analysis, requirements conflict
identification, consistency checking. VBRT is a promising ap-
proach to alleviate the problem of high effort of requirements
tracing in a practical and comprehensible way.

7. ACKNOWLEDGEMENTS
We want to thank our project partners at Siemens Austria PSE
for their time and support during the case study.

8. REFERENCES
[1] B. Boehm, “Value-Based Software Engineering”, ACM

Software Engineering Notes, 28(2), March 2003
[2] B. Boehm, L.G. Huang, “Value-Based Software Engi-

neering: A Case Study”, IEEE Computer, 36(3), 33-41,
2003

68

[3] J. Bowen, P. O’Grady, L. Smith, “A Constraint Pro-
gramming Language for Life-cycle Engineering”, Arti-
ficial Intelligence in Engineering, vol. 5, no. 4, pp. 206-
220, 1990

[4] A. Egyed, “A Scenario-Driven Approach to Traceabil-
ity”, Proceedings of the 23rd International Conference
on Software Engineering (ICSE), Toronto, Canada,
May 2001, pp. 123-132

[5] A. Egyed, “A Scenario-Driven Approach to Trace De-
pendency Analysis”, IEEE Transactions on Software
Engineering, 2003, pp. 116-132

[6] A. Egyed, P. Grünbacher, „Automating Requirements
Traceability: Beyond the Record & Replay Paradigm“,
Proceedings 17th International Conference on Auto-
mated Software Engineering, ASE 2002, pp. 163-171.
Edinburgh, IEEE Computer Society

[7] M.W. Evans, “The Software Factory”, John Wiley and
Sons, 1989

[8] O. C. Z. Gotel, A. C. W. Finkelstein, „An analysis of
the requirements traceability problem“, 1st Interna-
tional Conference on Requirements Engineering, pp.
94-101, 1994

[9] P. Grünbacher, A. Egyed, N. Medvidovic, “Reconciling
Software Requirements and Architectures with Inter-
mediate Models”, Software and System Modeling (So-
SyM), Vol. 3, no. 3, Springer, pp. 235-253, 2004,
ISSN: 1619-1366

[10] S.D.P. Harker, K.D. Eason, “The Change and Evolu-
tion of Requirements as a Challenge to the Practice of
Software Engineering”, IEEE, 1992

[11] P. Hsia, J. Gao, J. Samuel, D. Kung, Y. Toyoshima, C.
Chen, „Behavior-based Acceptance Testing of Software
Systems: A Formal Scenario Approach”, IEEE, 1994

[12] J. Jackson, ”A Keyphrase Based Traceability Scheme”,
IEE Colloquium on Tools and Techniques for Main-
taining Traceability during Design, 1991, pp.2-1-2/4

[13] H. Kaindl, “The Missing Link in Requirements Engi-
neering”, ACM SigSoft Software Engineering Notes,
vol. 18, no. 2, pp. 30-39, 1993

[14] J. Karlsson, “Software Requirements Prioritizing”, Pro-
ceedings of the 2nd International Conference on Re-
quirements Engineering (ICRE’96), Colorado Springs,
Colorado, April 15-18, 1996

[15] M. Lefering, “An Incremental Integration Tool between
Requirements Engineering and Programming in the
Large”, Proceedings of the IEEE International Sympo-
sium on Requirements Engineering, San Diego, Cali-
fornia, Jan. 4-6, pp. 82-89, 1993

[16] A. Ngo-The, G. Ruhe, “Requirements Negotiation un-
der Incompleteness and Uncertainty”, Proceedings of
the Fifteenth International Conference on Software En-
gineering and Knowledge Engineering, San Francisco
Bay (SEKE ’03), July, pp. 586-593, 2003

[17] M.C. Paulk, B. Curtis, M.B. Chrissis, C.V. Weber,
“Capability Maturity Model for Software”, Version 1.1,
Technical Report, CMU-SEI-93-TR-024, February
1993

[18] F.A.C. Pinheiro, J. A.Goguen, “An Object-Oriented
Tool for Tracing Requirements”. IEEE Software 13(2),
1996, 52-64.

[19] B. Ramesh, T.Powers, C. Stubbs, M. Edwards, “Im-
plementing Requirements Traceability: A Case Study”,
IEEE, 1995

[20] B. Ramesh, M. Jarke, “Toward Reference Models for
Requirements Traceability”, IEEE Transactions on
Software Engineering, Vol. 27, No. 1, pp. 58-93, Janu-
ary 2001

[21] G. Ruhe, D. Greer, “Quantitative Studies in Software
Release Planning under Risk and Resource Con-
straints”, International Symposium on Empirical Soft-
ware Engineering (ISESE ‘03), pp. 262-271

[22] R. Watkins, M. Neal, “Why and how of Requirements
Tracing”, IEEE Software, vol. 11, no. 7, pp. 104-106,
July 1994

69

