A catalogue of quasars and active nuclei: 13th edition*

M.-P. Véron-Cetty and P. Véron
Observatoire de Haute Provence, CNRS, 04870 Saint-Michel l'Observatoire, France
e-mail: [mira.veron;philippe.veron]@oamp.fr

Received 3 February 2010 / Accepted 29 March 2010

Abstract

Aims. This catalogue is aimed at presenting a compilation of all known AGN in a compact and convenient form, and we hope that it will be useful to all workers in this field. Methods. Like the twelfth edition, it includes position and redshift, as well as photometry (U, B, V) and 6 cm and 20 cm flux densities, when available. Results. The present version contains 133336 quasars, 1374 BL Lac objects, and 34231 active galaxies (including 16517 Seyfert 1 s), almost doubling the number listed in the 12 th edition. We also give a list of all known lensed and double quasars.

Key words. quasars: general - galaxies: Seyfert - BL Lacertae objects: general

1. Introduction

The first catalogue of quasars was published in 1971 by De Veny et al. It contained 202 objects. The number of known quasars has since steadily increased until the year 2000 (see Table 1). The release of both the 2 dF catalogue (Croom et al. 2001, 2004) and the first four data releases (Abazajian et al. 2003, 2004, 2005; Adelman-McCarthy et al. 2006) of the "Sloan Digital Sky Survey" (Fan et al. 1999) has dramatically increased the number of known quasars justifying the 10th, 11th, and 12th editions of the present catalogue. The recent publication of the last three data releases (5th, 6th, and 7th) (Adelman-McCarthy et al. 2007, 2008; Abazajian et al. 2009) of the SDSS, which has again almost doubled the number of known quasars, made a new edition timely.

This edition contains quasars with measured redshift known to us prior to July 1, 2009. As in the preceding editions, we do not give any information about absorption lines or X-ray properties. But we give the absolute magnitude for each object and, when available, the 20 and 6 cm flux densities. This catalogue should not be used for any statistical analysis as it is not complete in any sense, except that it is, we hope, a complete survey of the literature.

2. Description of the catalogue

We have arbitrarily defined a quasar as a starlike object or as an object with a starlike nucleus with broad emission lines that is brighter than absolute magnitude $M_{B}=-22.25^{1}$ (we describe

[^0]Table 1. Increase with time of the number of known QSOs, BL Lacs, and Seyfert 1s.

QSO	BL Lac	Seyfert 1	Reference
202			De Veny et al. (1971)
2251		190	Véron-Cetty \& Véron (1984)
2835	73	236	Véron-Cetty \& Véron (1985)
3473	84	258	Véron-Cetty \& Véron (1987)
4169	117	358	Véron-Cetty \& Véron (1989)
6225	162	575	Véron-Cetty \& Véron (1991)
7383	171	695	Véron-Cetty \& Véron (1993)
8609	220	888	Véron-Cetty \& Véron (1996)
11358	357	1111	Véron-Cetty \& Véron (1998)
13214	462	1711	Véron-Cetty \& Véron (2000)
23760	608	2765	Véron-Cetty \& Véron (2001)
48921	876	6762	Véron-Cetty \& Véron (2003)
85221	1122	9628	Véron-Cetty \& Véron (2006)
133336	1374	16517	Present edition

the cosmology used below). The quasars are listed in Table_QSO. A sample page is shown in Fig. 1. Clearly, some objects would move from Table_QSO to Table_AGN and vice versa if other values for H_{0}, q_{0}, and the spectral index were used or if an accurate B apparent magnitude was available for all objects. The variability may have a similar effect, as may the size of the diaphragm used for the measurement, because the contribution of the underlying galaxy for low-z quasars may not be negligible.

In Table_BL, we list all confirmed, probable, or possible BL Lac objects with or without a measured redshift, without consideration of their absolute magnitude. As better spectra are becoming available, broad emission lines have been detected in a number of objects formerly classified as BL Lac, and they were usually moved to Table_QSO.

Table_AGN lists "active galaxies": Seyfert 1s, Seyfert 2s, and Liners fainter than $M_{B}=-22.25$. Several galaxies with a nuclear H II region are also included (167), the reason being that they were called AGN in the past and were later reclassified, so

Name	Alpha				Delta			S	6	S21		Z		v	B-V	U-B	Mabs	References			Alpha			Delta		
	J2000																				Alpha ${ }^{\text {B1950 }}$ (${ }^{\text {delta }}$					
FIRST J00000-0202	0	0	1.3	- 2	2	0	R			0.001	2530	1.356		19.64			-24.6			179	23	57	27.5	2	18	42
:2QZ J000001-3036	0	0	1.4	-30	36	27	\bigcirc					1.143		*20.10		-0.80	-23.7		539	539	23	57	27.4	-30	53	9
:2QZ J000001-3122	0	0	1.7	-31	22	26	0					1.331		*20.69		-0.99	-23.5		539	539	23	57	27.7	-31	39	8
XMM J00000-2511	0	0	2.7	-25	11	37	0					1.314	S1	R21.			-22.6			751	23	57	28.8	-25	28	19
-MS 23574-3520	0	0	2.8	-35		33	\bigcirc		2242			0.508		017.0			-25.0	1403		2242	23	57	28.8	-35	20	15
-2QZ J000005-2725	0	0	5.6	-27	25	10	\bigcirc					1.930		*19.43		-1.07	-25.5		537	537	23	57	31.6	-27	41	52
:SDSS J00001+0030	0	0	6.6	0	30	55	\bigcirc				2068	1.823		20.37	0.24	-0.88	-24.1		2068	2068	23	57	32.8	0	14	13
:SDSS J00001+0016	0	0	8.2	0	16	35	0				2068	1.837		20.03	0.32	-0.79	-24.4		2068	2068	23	57	34.4	0	0	7
:SDSS J00001+1517	0	0	9.3	15	17	54	0					1.199		19.65	0.35	-0.68	-23.9		3	3	23	57	35.6	15	1	12
:SDSS J00001+1356	0	0	9.4	13	56	18	\bigcirc					2.240		18.63	0.43	-0.56	-26.1		2068	2068	23	57	35.7	13	39	36
-PSS J0000+2357	0	0	9.4	23	57	16						4.030		R18.93			-27.4			620	23	57	35.8	23	40	34
:SDSS J00001-1027	0	0	9.4	-10	27	52	\bigcirc					1.844		19.11	0.20	-0.65	-25.5		,	3	23	57	35.6	-10	44	34
-2QZ J000009-3116	0	0	9.7	-31	16	48	\bigcirc					1.727		*19.05		-0.65	-25.6		539	539	23	57	35.7	-31	33	30
:2QZ J000009-3055	0	0	9.9	-30	55	30	\bigcirc					1.787		*19.12		-1.19	-25.6		537	537	23	57	35.9	-31	12	12
GB6 23576+3039	0	0	10.1	30	56	0	R	0.049	883	0.086	483	1.801		I19.3			-24.5			1640	23	57	36.5	30	39	18
:2QZ J000010-3159	0	0	10.2	-31	59	50	\bigcirc					1.638		*20.44		-0.16	-24.1		537	537	23	57	36.2	-32	16	32
:2QZ J000011-3138	0	0	11.7	-31	38	40	\bigcirc					2.680		*20.27		-0.61	-25.6		539	539	23	57	37.7	-31	55	22
:PB 5669	0	0	12.0	0	2	24	\bigcirc					0.479		18.06	0.13	-0.58	-23.6		3	50	23	57	38.2	0	14	18
:SDSS J00002-0032	0	0	12.3	0	32	20	-				2068	1.436		20.34	0.31	-0.88	-23.7		2068	2068	23	57	38.5	0	49	2
:SDSS J00002+1410	0	0	13.2	14	10	34	-					0.949		19.29	0.24	-0.59	-23.9		3	3	23	57	39.5	13	53	52
Q 2357-024	0	0	13.6	- 2	10	20	\bigcirc			0.002	483	*1.45		19.4			-25.0	2677		2677	23	57	39.8	- 2	27	2

Fig. 1. Sample page of the catalogue.
we consider it useful to keep track of these reclassifications to avoid further confusion.

Seyfert 1s have broad Balmer and other permitted lines, and Seyfert 2s have Balmer and forbidden lines of the same width. Osterbrock $(1977,1981)$ divided the Seyfert 1s into five subgroups: Seyfert $1.0,1.2,1.5,1.8$, and 1.9 on the basis of the appearance of the Balmer lines. Seyfert 1.0s are "typical" members of the class, as described by Khachikian \& Weedman (1971, 1974), while Seyfert 1.5s are objects intermediate between typical Seyfert 1s and Seyfert 2s, with an easily apparent narrow $\mathrm{H} \beta$ profile superimposed on broad wings. The classes Seyfert 1.2 and 1.8 are used to describe objects with relatively weaker and stronger narrow $\mathrm{H} \beta$ components, intermediate between Seyfert 1.0 and 1.5 and Seyfert 1.5 and 2 respectively. In Seyfert 1.9, broad $\mathrm{H} \beta$ cannot be detected with certainty by mere visual inspection of the spectra although the broad $\mathrm{H} \alpha$ emission is clearly seen. We have adopted the more quantitative classification introduced by Winkler (1992):

S1.0 $5.0<R$
S1.2 $2.0<R<5.0$
S1.5 $0.33<R<2.0$
S1.8 $\quad R<0.33$
broad component visible in $\mathrm{H} \alpha$ and $\mathrm{H} \beta$
S1.9 broad component visible in $\mathrm{H} \alpha$ but not in $\mathrm{H} \beta$
S2 no broad component visible
where R is the ratio of the total $\mathrm{H} \beta$ to the [OIII] $\lambda 5007$ fluxes. Several objects have been found to show extreme spectral variability, changing from Seyfert 1.8 or 1.9 to Seyfert 1.0. In some cases these changes are consistent with changes in the reddening towards the BLR, while in others they are probably caused by real changes in ionizing flux (Goodrich 1989a, 1995; Tran et al. 1992b). In some Seyfert 2s, a broad $\mathrm{Pa} \beta$ line has been detected, indicating a highly reddened broad line region (Goodrich et al. 1994). We call these objects S1i. Several Seyfert 2s have the spectra of Seyfert 1s in polarized light (Antonucci \& Miller 1985; Miller \& Goodrich 1990; Tran et al. 1992a). We call them S1h. Typical full widths at half-maximum of the Balmer lines in Seyfert 1 s lie in the range $2000-6000 \mathrm{~km} \mathrm{~s}^{-1}$; however, there is a group of active galactic nuclei with all the properties of Seyfert 1s, but with unusually narrow Balmer lines (Osterbrock \& Pogge 1985; Goodrich 1989b). They are defined as having the broad component of the Balmer lines narrower than $2000 \mathrm{~km} \mathrm{~s}^{-1}$

FWHM (Osterbrock 1987) and we call them S1n. Liners (as defined by Heckman 1980) are called S3. If broad Balmer lines are observed, they are called S3b. If these broad Balmer lines are only seen in polarized light, they are called S3h.

When viewed through the absorbing dusty torus, Seyfert 1 galaxies and QSOs have the same optical appearance; however, they differ by their hard X-ray luminosity. It has become customary to call type 2 QSOs (or Q2s) the high luminosity narrow line objects rather than Seyfert 2. Treister et al. (2005) call QSO2s narrow line objects with $L_{0.5-10 \mathrm{kev}}>10^{42} \mathrm{erg} \mathrm{s}^{-1}\left(H_{0}=\right.$ $70 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$) or $>10^{42.3} \mathrm{erg} \mathrm{s}^{-1}$ if $H_{0}=50 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$, while Derry et al. (2003) have more conservatively defined QSO2s as having an intrinsic, hard ($2-10 \mathrm{keV}$) X-ray luminosity higher than $10^{44.3} \mathrm{erg} \mathrm{s}^{-1}$ (for $H_{0}=50 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$).

In Table_AGN, 9887 objects have no classification. Most of them were originally classified as QSOs but turned out to be fainter than $M_{B}=-22.25$ and were therefore moved to this table. They should be called S1s. Table_reject lists the objects that once were believed to be AGN and are now known to be either stars or normal galaxies.

Table_QSO contains 133336 objects, Table_BL, 1374, Table_AGN, 34 231, and Table_reject, 178. The catalogue is believed to contain all known quasars, BL Lac objects, and Seyfert 1 s . It should also contain all objects that have been unambiguously classified as Seyfert 2s, but the distinction between Seyfert 2 s , Liners, starburst galaxies, and objects with composite spectra is sometimes difficult, and so some of these objects may have been omitted.

Description of Table_QSO, Table_BL and Table_AGN:

1) Columns 1 and 2 give the most common name of the object. For the meaning and the sources of the designations see Hewitt \& Burbidge (1987), Fernandez et al. (1983), and Kesteven \& Bridle (1977). For the sources discovered by the ROSAT X-ray satellite, we used the following acronyms: RXS for the sources appearing in the All-Sky Bright Source Catalogue (Voges et al. 1999), 1WGA for the sources published in the WGACAT catalogue (White et al. 1994), and RX for the others. When the name is preceded by an *, the object has not been explicitly associated with a radio source.
2) Columns 3 to 10 give the best available J2000 optical or radio coordinates. The J2000 positions have been converted from the B1950 positions using the matrix given by Aoki et al. (1983). An O or an R following the coordinates means that the position is either an optical or a radio position measured with an accuracy better than one arcsec. An A means that it is only an approximate
position that may be wrong by several arc minutes. No reference is given for the source of the positions.
3) Colums 11 to 14 give the 6 and 20 cm flux densities (in Jy) with references to the literature. When several measurements are available, we took one of them arbitrarily. When a reference is given for the 6 cm flux density but the value of the flux density itself is left blank and there is an * in Col. 1, only an upper limit is available, and this upper limit is not much greater than 1 mJy . When there is no * in Col. 1, the reference refers to a detection but at a wavelength other than 6 cm .

The 20 cm flux densities were taken mainly from the NRAO VLA Sky Survey (NVSS) (Condon et al. 1998) and the FIRST survey (Becker et al. 1995; White et al. 1997). The NVSS covers the sky north of $\delta(\mathrm{J} 2000.0)=-40^{\circ}$. It contains 1814748 discrete sources stronger than $S \sim 2.5 \mathrm{mJy}$. The resolution was $45^{\prime \prime} F W H M$. The rms uncertainties in α and δ vary from $\leq 1^{\prime \prime}$ for the sources stronger than 15 mJy to $7^{\prime \prime}$ at the survey limit. The FIRST survey was carried out with the VLA. It covers an area of $9033 \mathrm{deg}^{2}$ to a sensitivity limit of $\sim 1 \mathrm{mJy}$. It contains 811118 sources. Source positions are good to better than $1^{\prime \prime}$. The beam size was 5 "'4.
4) Columns 15 and 16 give the redshift as published. An * in front of the redshift means that it has been estimated from a low dispersion slitless spectrum and is less accurate or even plainly wrong, since the emission lines may have been misidentified easily. We have given only those values described as probable in the original sources and not the possible values.
5) In Col. 17 an attempt has been made to classify the objects as Q, Q2, Q?, S1, S1.0, S1.2, S1.5, S1.8, S1.9, S1i, S1h, S1n, S2, S3, S3b, S3h, S, S?, or H2. Q is for quasars, while Q? indicates an object that has been classified as a quasar in one of the SDSS data release but whose nature appears quite uncertain upon visual inspection of the SDSS spectrum. Low-redshift quasars are classified as S1 when a good spectrum shows that they are similar to Seyfert 1 galaxies.

In Table_BL, we find in this column:

BL	for a confirmed BL Lac object.
BL?	for a probable BL Lac
blank	for a possible BL Lac.
$?$	for a questionable BL Lac
HP	for a highly polarized object.

6) Columns 18 to 21 show the $V, B-V$ and $U-B$ photoelectric or photographic magnitude and colours when available (an $*$ in front of the magnitude indicates that the colours and the magnitude are photographic). The column labelled "V" gives the V magnitude when $B-V$ is also given; if this is not the case, this column usually gives the B magnitude unless it is preceded by a V, an R, or an I, indicating a visible, a red, or an infrared magnitude, respectively. For a few objects, the O magnitude, measured on the blue Palomar Sky Survey plates or the UK Science Research Council SRC-J Survey plates, believed to be accurate within ± 0.2 mag., has been extracted from the APS database (Pennington et al. 1993). For some other objects, we give the O magnitude, extracted from the USNO-A2 catalogue (Monet et al. 1996) or the Cambridge Automated Plate Measuring Machine (APM) catalogue (Irwin et al. 1994), recalibrated by E. Flesch (private communication), and these magnitudes are flagged with an O. The O and Johnson B magnitudes are related by $B-O=-(0.27 \pm 0.06) \times(B-V)$ (Evans 1989).

For the SDSS objects we give $V, B-V$, and $U-B$ computed from u^{\prime}, g^{\prime}, and r^{\prime} by the following equations ${ }^{2}$ (Jester et al. 2005):
$V=g^{\prime}-0.52 \times\left(g^{\prime}-r^{\prime}\right)-0.03$
$B-V=0.62 \times\left(g^{\prime}-r^{\prime}\right)+0.15$
$U-B=0.75 \times\left(u^{\prime}-g^{\prime}\right)-0.81$.
In the other cases, the magnitude given is an estimate as found in the original publications. These magnitudes are generally quite inaccurate and inhomogeneous; they are most often m_{pg} or B magnitudes instead of the Johnson V magnitude. Much care should be taken when using them for any purpose. Even when a photoelectric V magnitude is given, it is not very meaningful since most quasars are variable. On the other hand, the colours of quasars vary little, so the listed colours should be accurate ${ }^{3}$. Again, it should be noted that some of the listed colours are photographic, hence less accurate; moreover, in each catalogue of photoelectric measurements, the faintest objects measured are affected by relatively large errors. This too should not be overlooked. For bright galaxies in Table_AGN, when photoelectric $U B V$ photometry is available, we chose the magnitudes and colours measured in the smallest possible diaphragm (preferentially 16 arcsec), as we are interested in the nucleus rather than in the galaxy itself.

Figure 2 is a plot of $B-V$ and $U-B$ vs. z for 104328 QSOs, most of them from the SDSS catalogue. There is a good correlation between these quantities. However there are a number of discrepant points, many of which due to errors in the SDSS redshift or photometry. For example, the small cluster of points near $z=3.3$ and $U-B=-0.5$ comes from the misidentification of Mg II $\lambda 2800$ for Ly α.
7) Column 22. To compute the absolute magnitudes M_{B}, we used a flat cosmology with $H_{0}=71 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}, \Omega_{\mathrm{M}}=0.29$ and $\Omega_{\Lambda}=0.71$ (see for instance Perlmutter et al. 1999; or Riess et al. 2004), assuming an optical spectral index α (defined as $S \propto v^{-\alpha}$) equal to 0.3 (Francis et al. 1991) ${ }^{4}$, as:
$M_{B}=B+5-5 \times \log D-k+\Delta m(z)$,
where D is the luminosity distance as defined by Riess et al. (2004):
$D=c / H_{0} \times(1+z) \int_{0}^{z}\left[(1+z)^{3} \times \Omega_{\mathrm{M}}+\Omega_{\Lambda}\right]^{-0.5} \mathrm{~d} z$,
z is the redshift, $k=-2.5 \times \log (1+z)^{1-\alpha}$ the k correction, $\Delta m(z)$ is a correction to k considering that the spectrum of quasars is not strictly a power law of the form $S \propto v^{-\alpha}$, but is affected by emission lines and by the Ly α forest depleting the continuum to the blue of $\operatorname{Ly} \alpha$ (see Table 2 for the values of $\Delta m(z)$ for $z<5.0$. For higher values of z, we arbitrarily used $\Delta m(z)=3.60)$. These corrections were computed in a similar way to Wisotzky (2000) using the mean emission line strengths available at the time (1986). These values are in reasonable agreement with those of this last author who gives these corrections for $z<2.2$.

The O, V, R, and I magnitudes were transformed into the B system by using $\langle B-O\rangle=-0.11,\langle B-V\rangle=0.40,\langle B-R\rangle=0.57$, and $\langle B-I\rangle=1.1$, respectively for low z QSOs.

[^1]

Fig. 2. Plot of $B-V$ and $U-B$ vs. z for 104328 QSOs, most of them from the SDSS catalogue.

Table 2. Values of $\Delta m(z)$ vs. z used for $z=0.0$ to 5.0.

z	$\Delta m(z)$	z	$\Delta m(z)$	z	$\Delta m(z)$
0.0	0.00	1.7	-0.15	3.4	0.79
0.1	0.00	1.8	-0.15	3.5	0.93
0.2	0.00	1.9	-0.14	3.6	1.13
0.3	0.00	2.0	-0.12	3.7	1.15
0.4	-0.06	2.1	-0.14	3.8	1.17
0.5	-0.11	2.2	-0.20	3.9	1.35
0.6	-0.11	2.3	-0.02	4.0	1.50
0.7	-0.09	2.4	0.00	4.1	1.65
0.8	-0.04	2.5	0.04	4.2	1.80
0.9	0.00	2.6	0.09	4.3	1.95
1.0	-0.01	2.7	0.19	4.4	2.15
1.1	-0.04	2.8	0.27	4.5	2.45
1.2	-0.05	2.9	0.34	4.6	2.70
1.3	-0.05	3.0	0.40	4.7	2.95
1.4	-0.05	3.1	0.48	4.8	3.20
1.5	-0.09	3.2	0.57	4.9	3.40
1.6	-0.14	3.3	0.67	5.0	3.60

8) The next three columns (23 to 25) give the reference for the finding chart, the photometry, and the redshift, respectively. In many cases, the last reference in Table_AGN is that of the classification of the object (as a Seyfert or otherwise); in these cases, the redshift can usually be found in Palumbo et al. (1983).
9) The B1950 position (Cols. 26 to 32).

Since the discovery in 1979 by Walsh et al. of the first gravitationally lensed quasar, Q $0957+561$, many such objects (88) and physical pairs with separation less than $10^{\prime \prime}$ (47) have been found. They are listed in Tables 3 and 4, respectively. Mortlock et al. (1999) stress the difficulty sometimes encountered in distinguishing lensed quasars from physical pairs.

3. The large quasar astrometric catalogue (LQAC)

Souchay et al. (2009) have recently published a catalogue of 113666 "quasars" by compiling a number of published optical and radio catalogues. As a result this is not, stricktly speaking, a quasar catalogue because several of the included objects (2921) have no optical identification or measured redshift. The optical

Table 3. Gravitationally lensed quasars.

Name	Short B1950 position	$z_{\text {quasar }}$	$z_{\text {lens }}$	sep(${ }^{\prime \prime}$)	Ref.
HE 0047-1756	0047-17	1.67	0.408	1.44	78,87
PKS 0132-097	0132-09	2.216	0.764	0.7	14, 18, 68
UM 673	0142-10	2.719		2.2	60
CTQ 414	0156-43	1.294	0.317	1.2	46,101
B2 0218+35	$0218+35$	0.936		0.33	15
HE 0230-2130	0230-21	2.162	0.522	2.0	72, 87
Q J0240-343	0238-34	1.406		6.1	62
SDSS J02465-0825	0244-08	1.684		1.04	85
PKS 0411+05	0411+05	2.639	0.958	2.2	34, 64
HE 0435-1223	0435-12	1.689	0.456	2.6	73, 80
HE 0512-3329	0512-33	1.565	0.931	0.6	12
B 0712+472	0712+47	1.339		1.27	8
SDSS J07402+2926	$0737+29$	0.980		2.6	84
SDSS J07468+4403	$0743+44$	1.998		1.08	89
MG 0751+2716	$0748+27$	3.200	0.350	0.8	64
SDSS J08063+2006	$0803+20$	1.540		1.50	13,102
HS 0810+25	$0810+25$	1.500		0.25	55
SDSS J08192+5356	$0816+54$	2.237	0.294	4.04	99
SDSS 08202+0812	0817+08	2.024	0.803	2.3	103
HS 0818+1227	$0818+12$	3.115		2.1	16
CLASS B0827+525	$0827+52$	2.064		2.8	31
APM 08279+5255	0827+52	3.87		0.4	35
SDSS J08322+0404	0829+04	1.115		2.0	94
SDSS 09035+5028	$0900+50$	3.584	0.388	2.8	28
RX J0911.4+0551	$0908+06$	2.800		0.8	1
SBS 0909+532	$0909+53$	1.377	0.830	1.11	30, 39
1WGA J09212+4528	$0917+45$	1.66	0.31	6.93	51
SDSSp J09249+0219	$0922+02$	1.524	0.393	1.8	26, 87, 88
FBQS J0951+2635	0948+26	1.24		1.1	56
BRI 0952-01	0952-01	4.43		0.95	43
Q 0957+561	0957+56	1.414	0.355	6.1	11,65
SDSS J10014+5027	0958+50	1.838		2.86	83
FIRST J10044+1229	$1001+12$	2.65		1.54	32
RXS J10045+4112	$1001+41$	1.734	0.680	14.6	76,100
Q 1009-0252	1009-02	2.74	0.871	1.55	21,87
J 13.03	1015-20	2.55		0.84	61
SDSS J10211+4913	$1018+49$	1.720		1.14	74
IRAS F10214+4724	$1021+47$	2.286	0.896		57
SDSS J10292+2623	$1026+26$	2.197		22.5	92
B 1030+074	$1030+07$	1.535		1.56	8
SDSS J10353+0752	$1032+08$	1.215		2.7	84
HE 1104-1805	1104-18	2.303	0.729	3.0	37, 70
PG 1115+080	$1115+08$	1.722	0.311	2.3	63, 66
HE 113-0641	1113-06	1.235		0.67	97
SDSS J11202+6711	$1117+67$	1.494		1.5	84
UM 425	1120+01	1.465		6.5	44
SDSS J11249+5710	$1122+57$	2.311		2.2	84
1RXS J11319-1231	1129-12	0.658	0.295	4.2	58
SDSS J11381+6807	$1135+68$	0.769		2.6	84
SDSS J11380+0314	$1135+03$	2.442		1.44	100
TEX 1152+199	$1152+19$	1.019	0.439	1.6	52
SDSS J11552+6346	$1152+64$	2.89	0.176	1.8	75
CSO 1270	$1203+43$	1.789	0.748	2.90	83
Q 1208+1011	$1208+10$	3.803		0.45	41
SDSS J12167+3529	$1214+35$	2.012		1.5	94

Table 3. continued.

Name	Short B1950 position	$z_{\text {quasar }}$	$z_{\text {lens }}$	sep($\left(^{\prime \prime}\right)$	Ref.
SDSS J12261-0006	$1223+00$	1.121	1.24	100	
SDSS J12511+2935	$1248+29$	0.802	0.410	1.79	95
SDSS J12543+2235	$1251+22$	3.626		1.56	99
SDSS J12583+1657	$1255+17$	2.701		1.28	99
SDSS J13139+5151	$1311+52$	1.875		1.24	96
SDSS J13226+1052	$1320+11$	1.716		2.0	94
SDSS J13323+0347	$1329+04$	1.445		1.14	90
Q 1333+0133	$1333+01$	1.577		1.6	81
SDSS J13531+1138	$1350+11$	1.629		1.41	13
87GB 1359+1527	$1359+15$	3.235		1.7	52
SDSS J14002+3134	$1357+31$	3.317		1.74	99
SDSS J14064+6126	$1404+61$	2.134		1.98	89
H 1413+117	$1413+11$	2.546		1.4	40
HST J14176+5226	$1415+52$	3.4		3.2	5
B 1422+231	$1422+23$	3.62	0.339	1.3	53,63
SDSS J15087+3328	$1506+33$	0.878		2.9	84
SBS 1520+530	$1520+53$	1.855	0.717	1.6	3,4
SDSS J15247+4409	$1523+44$	1.210		1.7	94
Q 1600+434	$1600+43$	1.61		1.38	27
PMN J1632-0033	$1630-00$	3.424		1.46	69
FIRST J1633+3134	$1631+31$	1.516		0.66	48
KP 1634.9+26.7	$1634+26$	1.961		3.8	59
SDSSp J16507+4251	$1649+42$	1.541		1.16	49
MC 1830-211	$1830-21$	2.507	0.885	0.60	36,38
TEX 1835-345	$1835-34$	2.78		1.0	67
MG 2019+1127	$2016+11$	3.273		3.4	33
WFI J2026-4536	$2022-45$	2.237		1.4	77
WFI J2033-4723	$2030-47$	1.661	0.658	2.5	77,87
87GB 20451+2632	$2045+26$	1.28	0.867	1.9	9
Q 2138-431	$2138-43$	1.641		4.5	19
HE 2149-2745	$2149-27$	2.033		1.7	71
Q 2237+0305	$2237+03$	1.695	0.039	1.8	24
SDSS J23431-0050	$2340-01$	0.788		1.4	98

References. (1) Bade et al. (1997); (2) Brotherton et al. (1999); (3) Burud et al. (2002); (4) Chavushyan et al. (1997); (5) Crampton et al. (1996); (6) Crotts et al. (1994); (7) Djorgovski et al. (1987); (8) Fassnacht \& Cohen (1998); (9) Fassnacht et al. (1999); (10) Faure et al. (2003); (11) Garrett et al. (1992); (12) Gregg et al. (2000); (13) Inada et al. (2006); (14) Gregg et al. (2002); (15) Grundahl \& Hjorth (1995); (16) Hagen \& Reimers (2000); (17) Hagen et al. (1996); (18) Hall et al. (2002); (19) Hawkins et al. (1997); (20) Hewett et al. (1989); (21) Hewett et al. (1994); (22) Hewett et al. (1998); (23) Hewitt et al. (1987); (24) Huchra et al. (1985); (25) Impey et al. (2002); (26) Inada et al. (2003); (27) Jackson et al. (1995); (28) Johnston et al. (2003); (29) Junkkarinen et al. (2001); (30) Kochanek et al. (1997); (31) Koopmans et al. (2000); (32) Lacy et al. (2002); (33) Lawrence et al. (1984); (34) Lawrence et al. (1995); (35) Ledoux et al. (1998); (36) Lidman et al. (1999); (37) Lidman et al. (2000); (38) Lovell et al. (1998); (39) Lubin et al. (2000); (40) Magain et al. (1988); (41) Magain et al. (1992); (42) Mason et al. (2000); (43) McMahon et al. (1992); (44) Meylan \& Djorgovski (1989); (45) Meylan et al. (1990); (46) Morgan et al. (1999); (47) Morgan et al. (2000); (48) Morgan et al. (2001); (49) Morgan et al. (2003); (50) Muñoz et al. (1998); (51) Muñoz et al. (2001); (52) Myers et al. (1999); (53) Patnaïk et al. (1992); (54) Pelló et al. (1996); (55) Reimers et al. (2002); (56) Schechter et al. (1998); (57) Serjeant et al. (1995); (58) Sluse et al. (2003); (59) Steidel \& Sargent (1991); (60) Surdej et al. (1987); (61) Surdej et al. (1997); (62) Tinney (1995); (63) Tonry (1998); (64) Tonry \& Kochanek (1999); (65) Tytler \& Fan (1992); (66) Weymann et al. (1980); (67) Winn et al. (2000); (68) Winn et al. (2002a); (69) Winn et al. (2002); (70) Wisotzki et al. (1993); (71) Wisotzki et al. (1996); (72) Wisotzki et al. (1999); (73) Wisotzki et al. (2002); (74) Pindor et al. (2006); (75) Pindor et al. (2004); (76) Inada et al. (2003); (77) Morgan et al. (2004); (78) Wisotzki et al. (2004); (79) Green et al. (2004); (80) Morgan et al. (2005); (81) Oguri et al. (2004); (82) Green et al. (2002); (83) Oguri et al. (2005); (84) Hennawi et al. (2006); (85) Inada et al. (2005); (86) Heidt et al. (2003); (87) Ofek et al. (2006); (88) Eigenbrod et al. (2006); (89) Inada et al. (2007); (90) Morokuma et al. (2007); (91) Djorgovski et al. (2007); (92) Inada et al. (2006); (93) Ellison et al. (2007); (94) Oguri et al. (2008); (95) Kayo et al. (2007); (96) Ofek et al. (2007); (97) Blackburne et al. (2008); (98) Jackson et al. (2008); (99) Inada et al. (2009); (100) Inada et al. (2008); (101) Faure et al. (2009); (102) Sluse et al. (2008); (103) Jackson et al. (2009); (104) Myers et al. (2008).
catalogues used are the first five data releases of the SDSS catalogue (Adelman-McCarthy et al. 2007) and the 2 dF (Croom et al. 2004) and two compilations: HB (Hewitt \& Burbidge 1993) and VV06 (Véron-Cetty \& Véron 2006). The VV06 catalogue includes all HB quasars with, however, for many objects a more
accurate optical position than those quoted in the much older HB. We cross-correlated two subsamples of the LQAC catalogue, one containing the objects included in HB, the other one those not appearing in this catalogue, looking for pairs separated by less than $300^{\prime \prime}$. We found 1011 such pairs with a redshift

Table 4. Quasar pairs (for the references in Col. 5, see Table 2).

Name	Sort B1950 position	z	sep(${ }^{\prime \prime}$)	Ref.
LBQS 0015+02	0015+02	2.469	2.2	25
Q 0023+171	0023+17	0.945	4.8	23
SDSS J00480-1051	0045-11	1.557	3.6	84
CT 344	0103-27	0.848	0.3	29
PHL 1222	0151+04	1.910	3.3	45
SDSS J02451-0113	0242-01	2.46	4.5	84
SDSS J02483+0009	0245-00	1.645	6.9	84
CTQ 839	0250-33	2.24	2.1	47
PKS 0537-44	0537-44	0.89	4.0	86
SDSS J07479+4318	0744+43	0.50	9.2	84
SDSS J09591+5449	0955+55	1.95	3.9	84
SDSS J10287+3929	1025+39	1.89	7.5	84
SDSS J10348+0701	$1032+07$	1.25	3.1	84
2QZ J105644-0059	1054-00	2.13	7.2	84
SDSS J11161+4118	$1113+41$	1.98	13.0	93
SDSS J11202+6711	$1117+67$	1.494	1.5	74
Q 1145-071	1145-07	1.34	4.2	7
SDSS J11583+1235	$1155+12$	0.596	3.6	104
HS 1216+5032	$1216+50$	1.450	8.9	17,79
SDSS J12257+5644	$1223+57$	2.38	6.0	84
SDSS J12599+1241	$1257+12$	2.19	3.6	84
SDSS J13033+5100	$1301+51$	1.68	3.8	84
SDSS J1320+3056	$1318+31$	1.595	4.7	104
SDSS J13372+6012	$1335+60$	1.73	3.1	84
RRS IV 26,27	$1343+26$	2.030	9.5	6
SDSS J13494+1227	$1347+12$	1.72	3.0	84
SDSS J14050+4447	$1403+45$	2.23	7.4	84
SDSS J14098+3919	$1407+39$	2.08	6.8	84
SDSS J1418+2441	$1416+24$	0.572	4.5	104
SDSS J1426+0719	$1423+07$	1.312	4.3	104
SDSS J14279-0121	1425-01	2.30	6.2	84
SDSS J1430+0714	$1427+07$	1.246	5.4	104
Q 1429-008	1429-00	2.076	5.1	10, 20, 91
SDSS J1458+5448	$1456+55$	1.913	5.1	104
SDSS J15306+5304	$1529+53$	1.53	4.1	84
SDSS J16002+0000	$1557+00$	1.010	1.8	74
SDSS J1606+2900	$1604+29$	0.763	3.4	104
RX J16290+3724	$1627+37$	0.923	4.3	42
SDSS J1635+2911	$1633+29$	1.582	4.9	104
Q J1643+31	$1641+32$	0.586	2.3	2
SDSS J17232+5904	$1722+59$	1.60	3.7	84
SDSS J21289-0617	2126-06	2.07	8.3	84
Q 2153-2056	2153-20	1.845	7.8	22
SDSS J22144+1326	$2212+13$	2.00	5.8	84
MGC 2214+3550	$2212+35$	0.877	3.0	50
SDSS J23365-0107	2334-01	1.285	1.7	14
Q 2345+007	2345+00	2.15	7.1	54, 82

difference over 0.05 , and 533 with a redshift difference smaller than or equal to this value. The plot of the $\Delta \alpha, \Delta \delta$ values for the 1011 pairs shows an almost uniform distribution, suggesting that these pairs are mostly made of two distinct objects. On the other hand, a similar plot for the 533 pairs having nearly the same redshift shows a strong concentration toward the centre of the plot, indicating that most of them are in fact duplications of the same object at two different positions.

[^2]Aeronautics and Space Administration, and the University of Minnesota. We are very grateful to E. Flesch and F. Ochsenbein for checking and improving the catalogue.

References

Abazajian, K., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2003, AJ, 126, 2081
Abazajian, K., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2004, AJ, 128, 502
Abazajian, K., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2005, AJ, 129, 1755

Abazajian, K., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS, 182, 543
Adelman-McCarthy, J. K., Agüeros, M. A., Allam, S. S., et al. 2006, ApJS, 162, 38
Adelman-McCarthy, J. K., Agüeros, M. A., Allam, S. S., et al. 2007, ApJS, 172, 634
Adelman-McCarthy, J. K., Agüeros, M. A., Allam, S. S., et al. 2008, ApJS, 175, 297
Antonucci, R. R. J., \& Miller, J. S. 1985, ApJ, 297, 621
Aoki, S., Sôma, M., Kinoshita, H., \& Inoue, K. 1983, A\&A, 128, 263
Becker, R. H., White, R. L., \& Helphand, D. J. 1995, ApJ, 450, 559
Blackburne, J. A., Wisotzki, L., \& Schechter, P. L. 2008, AJ, 135, 374
Condon, J. J., Cotton, W. D., Greisen, E. W., et al. 1998, AJ, 115, 1693
Croom, S. M., Smith, R. J., Boyle, B. J., et al. 2001, MNRAS, 322, L29
Croom, S. M., Smith, R. J., Boyle, B. J., et al. 2004, MNRAS, 349, 1397
Crotts, A. P. S., Bechtold, J., Fang, Y., \& Duncan, R. C. 1994, ApJ, 437, L79
De Veny, J. B., Osborn, W. H., \& Janes, K. 1971, PASP, 83, 611
Derry, P. M., O’Brien, P. T., Reeves, J. N., et al. 2003, MNRAS, 342, L53
Eigenbrod, A., Courbin, F., Dye, S., et al. 2006, A\&A, 451, 747
Ellison, S. L., Hennawi, J. F., Martin, C. L., \& Sommer-Larsen, J. 2007, MNRAS, 378, 801
Evans, D. W. 1989, A\&AS, 78, 249
Fan, X., Strauss, M. A., Schneider, D. P., et al. 1999, AJ, 118, 1
Faure, C., Alloin, D., Gras, S., et al. 2003, A\&A, 405, 415
Faure, C., Anguita, T., Eigenbrod, A., et al. 2009, A\&A, 496, 361
Fernandez, A., Lortet, M.-C., \& Spite, F. 1983, A\&AS, 52, 4
Francis, P. J., Hewett, P. C., Foltz, C. B., et al. 1991, ApJ, 373, 465
Garrett, M. A., Walsh, D., \& Carswell, R. F. 1992, MNRAS, 254, P27
Goodrich, R. W. 1989a, ApJ, 340, 190
Goodrich, R. W. 1989b, ApJ, 342, 224
Goodrich, R. W. 1995, ApJ, 440, 141
Goodrich, R. W., Veilleux, S., \& Hill, G. J. 1994, ApJ, 422, 521
Green, P. J., Kochanek, C., Sieginowska, A., et al. 2002, ApJ, 571, 721
Grundahl, F., \& Hjorth, J. 1995, MNRAS, 275, L67
Hall, P. B., Richards, G. T., York, D. G., et al. 2002, ApJ, 575, L51
Heckman, T. M. 1980, A\&A, 87, 152
Hewett, P. C., Webster, R. L., Harding, M. E., et al. 1989, ApJ, 326, L61
Hewitt, A., \& Burbidge, G. 1987, ApJS, 63, 1
Hewitt, A., \& Burbidge, G. 1993, ApJS, 87, 451
Inada, N., Oguri, M., Falco, E. E., et al. 2008, PASJ, 60, L27
Inada, N., Oguri, M., Shin, M.-S., et al. 2009, AJ, 137, 4118
Irwin, M., Maddox, S., \& McMahon, R. 1994, Spectrum, 2, 14
Jackson, N., Ofek, E. O., \& Oguri, M. 2008, MNRAS, 387, 741
Jackson, N., Ofek, E. O., \& Oguri, M. 2009, MNRAS, 398, 1423
Jester, S., Schneider, D. P., Richards, G. I., et al. 2005, AJ, 430, 873
Kayo, I., Inada, N., Oguri, M., et al. 2007, AJ, 134, 1515
Kesteven, M. J. L., \& Bridle, A. H. 1977, J. Roy. Astron. Soc. Canada, 71, 21
Khachikian, E. E., \& Weedman, D. W. 1971, Astrophysics, 7, 231
Khachikian, E. E., \& Weedman, D. W. 1974, ApJ, 192, 581
Ledoux, C., Theodore, B., Petitjean, P., et al. 1998, A\&A, 339, L77
Lidman, C., Courbin, F., Kneib, J.-P., et al. 2000, A\&A, 364, L62
Lovell, J. E. J., Jauncey, D. L., Reynolds, J. E., et al. 1998, ApJ, 508, L51
Lubin, L. M., Fassnacht, C. D., Reahead, A. C. S., Blandford, R. D., \& Kundic, T. 2000, AJ, 119, 451

McMahon, R., Irwin, M., \& Hazard, C. 1992, Gemini, 36, 1
Magain, P., Surdej, J., Swings, J.-P., Borgeest, U., \& Kayser, R. 1988, Nature, 334, 325

Magain, P., Surdej, J., Vanderriest, C., Pirenne, B., \& Hutsemekers, D. 1992, A\&A, 253, L13
Meylan, G., \& Djorgovski, S. 1989, ApJ, 338, L1
Meylan, G., Djorgovski, S., Weir, N., \& Shaver, P. 1990, The Messenger, 59, 47
Miller, J. S., \& Goodrich, R. W. 1990, ApJ, 355, 456
Monet, D., Bird, A., Canzian, B., et al. 1996, USNO-A2.0, US Naval Observatory, Washington D. C.
Mortlock, D. J., Webster, R. L., \& Francis, P. J. 1999, MNRAS, 309, 836
Myers, A. D., Richards, G. T., Brunner, R. J., et al. 2008, ApJ, 678, 635
Ofek, E. O., Maoz, D., Rix, H.-W., Kochanek, C. S., \& Falco, E. E. 2006, ApJ, 641, 70
Ofek, E. A., Oguri, M., Jackson, N., Inada, N., \& Kayo, I. 2007, MNRAS, 382, 412
Oguri, M., Inada, N., Castander, F. J., et al. 2004, PASJ, 56, 399
Oguri, M., Inada, N., Clocchiatti, A., et al. 2008, AJ, 135, 520
Osterbrock, D. E. 1977, ApJ, 215, 733
Osterbrock, D. E. 1981, ApJ, 249, 462
Osterbrock, D. E. 1987, Lecture Notes in Physics, 307, 1
Osterbrock, D. E., \& Pogge, R. W. 1985, ApJ, 297, 166
Palumbo, C. G. C., Tanzella-Nitti, G., \& Vettolani, G. 1983, Catalogue of radial velocities of galaxies (Gordon \& Breach)
Pelló, R., Miralles, J. M., Le Borgne, J.-F., et al. 1996, A\&A, 314, 73
Pennington, R. L., Humphreys, R. M., Odewahn, S. C., Zumach, W., \& Thurmes, P. M. 1993, PASP, 105, 521

Perlmutter, S., Aldering, G., Knop, R. A., et al. 1999, ApJ, 517, 565
Riess, A. G., Strolger, L.-G., Tonry, J., et al. 2004, ApJ, 607, 665
Serjeant, S., Lacy, M., Rawlings, S., King, L. J., \& Clements, D. L. 1995, MNRAS, 276, L31
Sluse, D., Courbin, F., Eigenbrod, A., \& Meylan, G. 2008, A\&A, 492, L39
Souchay, J., Andrei, A. H., Barache, C., et al. 2009, A\&A, 494, 799
Surdej, J., Swings, J.-P., Magain, P., Courvoisier, T. J.-L., \& Borgeest, U. 1987, Nature, 329, 695
Tonry, J. L. 1998, AJ, 115, 1
Tran, H. D., Miller, J. S., \& Kay, L. E. 1992a, ApJ, 397, 452
Tran, H. D., Osterbrock, D. E., \& Martel, A. 1992b, AJ, 104, 2072
Treister, E., Castander, F. J., Maccarone, T. J., et al. 2005, ApJ, 621, 104
Véron-Cetty, M.-P., \& Véron, P. 1984, ESO Scientific Report, No. 1
Véron-Cetty, M.-P., \& Véron, P. 1985, ESO Scientific Report, No. 4
Véron-Cetty, M.-P., \& Véron, P. 1987, ESO Scientific Report, No. 5
Véron-Cetty, M.-P., \& Véron, P. 1989, ESO Scientific Report, No. 7
Véron-Cetty, M.-P., \& Véron, P. 1991, ESO Scientific Report, No. 10
Véron-Cetty, M.-P., \& Véron, P. 1993, ESO Scientific Report, No. 13
Véron-Cetty, M.-P., \& Véron, P. 1996, ESO Scientific Report, No. 17
Véron-Cetty, M.-P., \& Véron, P. 1998, ESO Scientific Report, No. 18
Véron-Cetty, M.-P., \& Véron, P. 2000, ESO Scientific Report, No. 19
Véron-Cetty, M.-P., \& Véron, P. 2001, A\&A, 374, 92
Véron-Cetty, M.-P., \& Véron, P. 2003, A\&A, 412, 399
Véron-Cetty, M.-P., \& Véron, P. 2006, A\&A, 455, 773
Voges, W., Aschenbach, B., Boller, T., et al. 1999, A\&A, 349, 389
Walsh, D., Carswell, R. F., \& Weymann, R. J. 1979, Nature, 279, 381
White, N. E., Giommi, P., \& Angelini, L. 1994, IAU Circ., 6100
White, R. L., Becker, R. H., Helphand, D. J., \& Gregg, M. 1997, ApJ, 475, 479
Winkler, H. 1992, MNRAS, 257, 677
Winn, J. N., Lovell, J. E. J., Chen, H.-W., et al. 2002a, ApJ, 564, 143
Wisotzki, L. 2000, A\&A, 353, 861

[^0]: * The catalogue (Table_QSO, Table_BL, Table_AGN and Table_reject) and the list of references are only available in electronic form at the CDS via anonymous ftp to
 cdsarc.u-strasbg.fr (130.79.128.5) or via
 http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/518/A10 or at the Observatoire de Haute Provence (http://www. obs-hp.fr/ catalogues/veron2_13/veron2_13.html).
 ${ }^{1}$ We use $M_{B}=-22.25$ instead of -23.0 as in the previous editions of this catalogue to take the change in the value of H_{0} used into account: 71 vs. $50 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$.

[^1]: 2 These relationships were derived for QSOs with $z<2.1$. For higher redshift objects, the uncertainties on the computed colours are expected to be larger.
 ${ }^{3}$ Indeed this is only true if the measurements in the various colours are simultaneous or quasi simultaneous, but this is almost always the case.
 ${ }^{4}$ Assuming $\alpha=0.3$ may not give the best possible estimate of the k correction (Wisotzki 2000).

[^2]: Acknowledgements. This research has made use of the APS catalogue of POSS I database which is supported by the National Science Foundation, the National

