Title

A Catalogue of Three-Level Fractional Factorial Designs

Permalink

https://escholarship.org/uc/item/5mw49491

Author

Hongquan Xu
Publication Date
2011-10-25

A Catalogue of Three-Level Fractional Factorial Designs

Hongquan Xu
Department of Statistics, University of California, Los Angeles, CA 90095-1554, U.S.A. (e-mail: hqxu@stat.ucla.edu)

January 1, 2004

Abstract

A common problem experimenters face is the choice of fractional factorial designs. Minimum aberration designs are commonly used in practice. There are situations in which other designs meet practical needs better. A catalogue of designs would help experimenters choose the best design. Based on coding theory, new methods are proposed to efficiently classify and rank fractional factorial designs. A collection of three-level fractional factorial designs with $27,81,243$ and 729 runs is given. This extends the work of Chen, Sun and Wu (1993), who gave a collection of fractional factorial designs with $16,27,32$ and 64 runs.

2000 Mathematics Subject Classifications: 62K15, 94B05.

Key words: clear effect, linear code, minimum aberration, moment aberration, resolution.

Running title: Three-level fractional factorial designs

1 Introduction

Fractional factorial (FF) designs are widely used in various experiments. A common problem experimenters face is the choice of FF designs. When the experimenter has little or no information on the relative sizes of the effects, he would normally choose a minimum aberration design because it has good overall properties. The minimum aberration criterion (Fries and Hunter, 1980), an extension of the maximum resolution criterion (Box and Hunter, 1961), has been used explicitly or implicitly in the construction of design tables in National Bureau of Standards (1957), Box, Hunter and Hunter (1978, Table 12.15), Wu and Hamada (2000, Tables 4A and 5A) and Montgomery (2001, Tables 8-14). The reader is referred to Wu and Hamada (2000) for rich results on minimum aberration designs and extensive references.

When the experimenter has knowledge of the importance of certain main effects and interactions, he might use a design that guarantees the clear estimation of important effects. For example, in a robust parameter experiment, the experimenter would want to estimate the interactions between control factors and noise factors. There are many cases where minimum aberration designs cannot meet the practical need but other designs can. Different situations call for different designs. A catalogue of designs would help experimenters choose the best design. A collection of FF designs with $16,27,32$ and 64 runs was given by Chen, Sun and Wu (1993, hereafter CSW).

The main purpose of this paper is to extend the work of CSW for three-level FF designs. We provide a catalogue of FF designs with $27,81,243$ and 729 runs and up to 20 factors. A complete catalogue of 27 -run FF designs is given. For 81, 243 and 729 runs, there are too many designs to be all included. We carefully choose designs so that the catalogue covers all interesting designs with different properties. Previously, Connor and Zelen (1959) gave a collection of three-level FF designs up to 10 factors and Franklin (1984) gave minimum aberration designs up to 12 factors. A complete catalogue of designs with 27 runs was first given by CSW. Our new catalogue provides more information on the estimation of main effects and interactions.

The extension is not straightforward because the computation is challenging. The original algorithm of CSW failed to construct the complete set of FF designs with 81 runs. We take a coding theory approach and propose new methods to efficiently classify and rank designs. Then we modify their algorithm to construct the catalogue of FF designs with 81, 243 and 729 runs.

In Section 2, we review some basic concepts and definitions for three-level FF designs. We introduce the coding theory approach in Section 3 and the construction method in Section 4. Tables of designs with 27, 81, 243 and 729 runs are given in Section 5 with comments. Concluding remarks are given in Section 6.

2 Basic concepts and definitions

We explain some basic concepts through examples. Table 1 shows two FF designs of 27 runs and five factors, represented as two 27×5 matrices, where each row corresponds to a run (i.e., treatment combination) and each column a factor. They are three-level FF designs as each column takes on three different values: $0,1,2$. Label the five columns as A, B, C, D, and E and let $x_{1}, x_{2}, \ldots, x_{5}$ denote the levels of the five columns. The first design (i.e., the left design) is constructed as follows: write down all possible $3^{3}=27$ level combinations for the first three columns and then define the

Table 1: Two designs of 27 runs and 5 factors

Run	A	B	C	D	E	Run	A	B	C	D	E
1	0	0	0	0	0	1	0	0	0	0	0
2	0	0	1	1	0	2	0	0	2	0	0
3	0	0	2	2	0	3	0	0	1	0	0
4	0	1	0	1	2	4	0	1	1	2	2
5	0	1	1	2	2	5	0	1	0	2	2
6	0	1	2	0	2	6	0	1	2	2	2
7	0	2	0	2	1	7	0	2	2	1	1
8	0	2	1	0	1	8	0	2	1	1	1
9	0	2	2	1	1	9	0	2	0	1	1
10	1	0	0	1	1	10	1	0	1	2	1
11	1	0	1	2	1	11	1	0	0	2	1
12	1	0	2	0	1	12	1	0	2	2	1
13	1	1	0	2	0	13	1	1	2	1	0
14	1	1	1	0	0	14	1	1	1	1	0
15	1	1	2	1	0	15	1	1	0	1	0
16	1	2	0	0	2	16	1	2	0	0	2
17	1	2	1	1	2	17	1	2	2	0	2
18	1	2	2	2	2	18	1	2	1	0	2
19	2	0	0	2	2	19	2	0	2	1	2
20	2	0	1	0	2	20	2	0	1	1	2
21	2	0	2	1	2	21	2	0	0	1	2
22	2	1	0	0	1	22	2	1	0	0	1
23	2	1	1	1	1	23	2	1	2	0	1
24	2	1	2	2	1	24	2	1	1	0	1
25	2	2	0	1	0	25	2	2	1	2	0
26	2	2	1	2	0	26	2	2	0	2	0
27	2	2	2	0	0	27	2	2	2	2	0

last two columns by

$$
\begin{equation*}
x_{4}=x_{1}+x_{2}+x_{3} \quad(\bmod 3), \quad x_{5}=x_{1}+2 x_{2} \quad(\bmod 3) \tag{1}
\end{equation*}
$$

Symbolically, we write $D=A B C$ and $E=A B^{2}$. From (1), by using modulus 3 arithmetic, we obtain

$$
\begin{array}{ll}
x_{1}+x_{2}+x_{3}+2 x_{4}=0 \quad(\bmod 3), & 2 x_{1}+2 x_{2}+2 x_{3}+x_{4}=0 \quad(\bmod 3), \\
x_{1}+2 x_{2}+2 x_{5}=0 \quad(\bmod 3), & 2 x_{1}+x_{2}+x_{5}=0 \quad(\bmod 3) \tag{2}\\
x_{1}+2 x_{3}+x_{4}+x_{5}=0 \quad(\bmod 3), & 2 x_{1}+x_{3}+2 x_{4}+2 x_{5}=0 \quad(\bmod 3), \\
x_{2}+2 x_{3}+x_{4}+2 x_{5}=0 \quad(\bmod 3), & 2 x_{2}+x_{3}+2 x_{4}+x_{5}=0 \quad(\bmod 3)
\end{array}
$$

Equivalently, we write

$$
\begin{equation*}
I=A B C D^{2}=A^{2} B^{2} C^{2} D=A B^{2} E^{2}=A^{2} B E=A C^{2} D E=A^{2} C D^{2} E^{2}=B C^{2} D E^{2}=B^{2} C D^{2} E \tag{3}
\end{equation*}
$$

where I is the identity element and $A B C D^{2}, A^{2} B^{2} C^{2} D$, etc. are called defining words. Each word represents a contrast with 2 degrees of freedom. Words $A B C D^{2}$ and $A^{2} B^{2} C^{2} D$ represent the same contrast because their corresponding equations $x_{1}+x_{2}+x_{3}+2 x_{4}=0 \quad(\bmod 3)$ and $2 x_{1}+2 x_{2}+2 x_{3}+x_{4}=0 \quad(\bmod 3)$ are equivalent. To avoid ambiguity, the convention is to set the first nonzero coefficient to be 1 . Then (3) reduces to

$$
\begin{equation*}
I=A B C D^{2}=A B^{2} E^{2}=A C^{2} D E=B C^{2} D E^{2} \tag{4}
\end{equation*}
$$

which is called the defining contrast subgroup for the design. This design has one word of length three and three words of length four. The resolution is III because the shortest word has length 3 .

For a three-level design, a main effect has two degrees of freedom. A two-factor interaction (2fi) $A \times B$ has 4 degrees of freedom and can be decomposed into two orthogonal components $A B$ and $A B^{2}$, each representing a contrast of 2 degrees of freedom. A three-factor interaction $A \times B \times C$ has 8 degrees of freedom and four orthogonal components $A B C, A B C^{2}, A B^{2} C$, and $A B^{2} C^{2}$.

The defining contrast subgroup completely specifies the aliasing pattern. For example, multiplying (3) by A and letting $A^{3}=I$ yields

$$
A=A^{2} B C D^{2}=B^{2} C^{2} D=A^{2} B^{2} E^{2}=B E=A^{2} C^{2} D E=C D^{2} E^{2}=A B C^{2} D E^{2}=A B^{2} C D^{2} E
$$

Adopting the previous convention gives

$$
A=A B^{2} C^{2} D=B C D^{2}=A B E=B E=A C D^{2} E^{2}=C D^{2} E^{2}=A B C^{2} D E^{2}=A B^{2} C D^{2} E
$$

This equation implies that the main effect A is aliased with 8 interaction components but not with any other main effects. Therefore, the main effect A is estimable if two-factor or higher order interactions are negligible. Similarly, the main effect C has the following aliasing pattern:

$$
C=A B C^{2} D^{2}=A B D^{2}=A B^{2} C E^{2}=A B^{2} C^{2} E^{2}=A D E=A C D E=B D E^{2}=B C D E^{2} .
$$

The main effect C is not aliased with any other main effects or 2 fi's; therefore, the main effect C is estimable if three-factor or higher order interactions are negligible.

The following concept of clear effects is due to Wu and Chen (1992) and Wu and Hamada (2000, Section 5.4) although Connor and Zelen (1959) used the term "measurable" effects earlier. A main effect or 2 fi component is clear if it is not aliased with any other main effects or 2 fi components. The 2 fi , say $a \times b$, is called clear if both of its components, $a b$ and $a b^{2}$, are clear. Assuming that three-factor or higher order interactions are negligible, clear effects are estimable. One can verify that for the first design in Table 1, the clear effects are C, D and $C D$.

Some useful rules regarding clear effects and resolutions are (i) in any resolution III design, all main effects are estimable if 2 f's or higher-order interactions are negligible; (ii) in any resolution IV design, all main effects are clear; (iii) in any resolution V design, all main effects and all 2fis are clear.

Now look at the second design in Table 1. The defining contrast subgroup is

$$
I=A B D=A B^{2} E^{2}=A D^{2} E=B D^{2} E^{2}
$$

All four words have length 3; therefore, the resolution is III. It has one clear main effect (C) and four clear 2fi's $(A \times C, B \times C, C \times D$ and $C \times E)$. Note that C does not appear in any word.

An important issue is the choice of designs such as the two designs in Table 1. Both designs have the same resolution III. The minimum aberration criterion (defined next) would choose the first design because it has one word of length three while the second design has four words of length three. Indeed, the first design is the minimum aberration design. Therefore, the first design is often recommended especially when the experimenter considers all factors being equally important. On the other hand, if the experimenter knows in advance that one factor and some 2fi's involving that factor is important, then the second design is recommended because it has more clear 2fi's. See CSW for further discussions.

In general, an s^{n-k} FF design is an $N \times n$ matrix, which has $N=s^{n-k}$ runs, n factors, each at s levels. There are $n-k$ independent columns and other k columns are related to the
$n-k$ independent columns through defining words. All defining words and the identity element I together form the defining contrast subgroup. The words $W, W^{2}, \ldots, W^{s-1}$ represent the same contrast and therefore they are viewed as the same. There are $\left(s^{k}-1\right) /(s-1)$ distinct words. Let A_{j} be the number of distinct words of length j. The vector $\left(A_{1}, \ldots, A_{n}\right)$ is called the wordlength pattern. The resolution is the shortest wordlength. The minimum aberration criterion (Fries and Hunter, 1980) is to sequentially minimize A_{j} for $j=1, \ldots, n$.

For an s^{n-k} FF design, the defining contrast subgroup has $\left(s^{k}-1\right) /(s-1)$ different words, which raises some computational issues when k is large (e.g., $k>10$). For example, for a $3^{20-16} \mathrm{FF}$ design, there are $21,523,360$ words. It is quite inefficient and sometimes impractical to compute the wordlength pattern and find clear effects via counting all words in the defining contrast subgroup. In the next section, we propose alternative ways to compute the wordlength pattern and find clear effects based on coding theory.

3 A coding theory approach

3.1 Linear codes

The connection between FF designs and linear codes was first observed by Bose (1961). For an introduction to coding theory, see MacWilliams and Sloane (1977), van Lint (1999) and Hedayat, Sloane and Stufken (1999, chap. 4).

For a prime power s, let $G F(s)$ be the finite field of s elements. An s^{n-k} FF design D is a linear code of length n and dimension $n-k$ over $G F(s)$, called an $[n, n-k]$ code. The defining contrast subgroup of D corresponds to the dual code D^{\perp}, an $[n, k]$ linear code that consists of all row vectors $\left(u_{1}, \ldots, u_{n}\right)$ over $G F(s)$ such that $\sum_{i=1}^{n} u_{i} v_{i}=0$ for all $\left(v_{1}, \ldots, v_{n}\right)$ in D.

The Hamming weight of a vector $\left(u_{1}, \ldots, u_{n}\right)$ is the number of nonzero components u_{i}. Let $B_{i}(D)$ and $B_{i}\left(D^{\perp}\right)$ be the number of rows with Hamming weight i in D and D^{\perp}, respectively. The vectors $\left(B_{0}(D), B_{1}(D), \ldots, B_{n}(D)\right)$ and $\left(B_{0}\left(D^{\perp}\right), B_{1}\left(D^{\perp}\right), \ldots, B_{n}\left(D^{\perp}\right)\right)$ are called the weight distributions of D and D^{\perp}.

The weight distributions of D and D^{\perp} are related through the MacWilliams identities and Pless power moment identities, two fundamental results in coding theory.

Lemma 1. For an $s^{n-k} F F$ design D and $j=0,1, \ldots, n$,

$$
\begin{equation*}
B_{j}\left(D^{\perp}\right)=s^{-(n-k)} \sum_{i=0}^{n} P_{j}(i ; n, s) B_{i}(D), \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
B_{j}(D)=s^{-k} \sum_{i=0}^{n} P_{j}(i ; n, s) B_{i}\left(D^{\perp}\right) \tag{6}
\end{equation*}
$$

where $P_{j}(x ; n, s)=\sum_{i=0}^{j}(-1)^{i}(s-1)^{j-i}\binom{x}{i}\binom{n-x}{j-i}$ are the Krawtchouk polynomials.
Lemma 2. For an s^{n-k} FF design D and positive integers t

$$
\begin{equation*}
\sum_{i=0}^{n} i^{t} B_{i}(D)=s^{n-k} \sum_{i=0}^{n} Q_{t}(i ; n, s) B_{i}\left(D^{\perp}\right) \tag{7}
\end{equation*}
$$

where $Q_{t}(i ; n, s)=(-1)^{i} \sum_{j=0}^{t} j!S(t, j) s^{-j}(s-1)^{j-i}\binom{n-i}{j-i}$ and $S(t, j)=(1 / j!) \sum_{i=0}^{j}(-1)^{j-i}\binom{j}{i} i^{t}$ is a Stirling number of the second kind. When $t<n$, the summation $\sum_{i=0}^{n}$ in the right hand of (7) can be changed to $\sum_{i=0}^{t}$.

The equations (5) and (6) are known as the MacWilliams identities. The equation (7) is known as the Pless power moment identities after Pless (1963).

The wordlength pattern of D is proportional to the weight distribution of the dual D^{\perp} as follows:

$$
A_{i}(D)=B_{i}\left(D^{\perp}\right) /(s-1) \text { for } i=1, \ldots, n,
$$

As a result, the wordlength pattern can be computed through MacWilliams identities (5). In the following we introduce another convenient approach due to $\mathrm{Xu}(2001,2003)$ that uses the Pless power moment identities (7).

3.2 Minimum moment aberration criterion

For an $N \times n$ matrix and positive integers t, define power moments

$$
\begin{equation*}
K_{t}=N^{-2} \sum_{i=1}^{N} \sum_{j=1}^{N}\left(\delta_{i j}\right)^{t}, \tag{8}
\end{equation*}
$$

where $\delta_{i j}$ is the number of coincidences between the i th and j th rows. For an s^{n-k} FF design, (8) can be simplified as $K_{t}=N^{-1} \sum_{i=1}^{N}\left(\delta_{i j}\right)^{t}$, where j can be any row number between 1 and N. Note that a FF design contains the vector of zeros. Let C_{i} be the number of rows with i zero components. The vector ($C_{0}, C_{1}, \ldots, C_{n}$) are called the coincidence distribution. Then (8) becomes

$$
\begin{equation*}
K_{t}=N^{-1} \sum_{i=1}^{n} i^{t} C_{i} . \tag{9}
\end{equation*}
$$

By applying the Pless power moment identities (7), Xu (2001, 2003) showed that the power moments K_{t} are linear combinations of A_{1}, \ldots, A_{t} as follows.

Theorem 1. For an $s^{n-k} F F$ design and positive integers t,

$$
\begin{equation*}
K_{t}=\sum_{i=0}^{t} c_{t}(i ; n, s) A_{i} \tag{10}
\end{equation*}
$$

where $c_{t}(i ; n, s)=(s-1) \sum_{j=0}^{t}(-1)^{j}\binom{t}{j} n^{t-j} Q_{j}(i ; n, s)$ for $i=0,1, \ldots, t, Q_{j}(i ; n, s)$ is defined in Lemma 2, $A_{0}=1 /(s-1)$ and $A_{i}=0$ when $i>n$. In addition, the leading coefficient of A_{t} in (10) is $c_{t}(t ; n, s)=(s-1) t!/ s^{t}$.

Remark 1. The definition of K_{t} here differs from that in $\mathrm{Xu}(2001,2003)$. Nevertheless, it is evident that they are equivalent up to some constants.

For an s^{n-k} design, $K_{1}=n / s$ and $K_{2}=n(n+s-1) / s^{2}$ are constants because there are no words of length one or two (i.e., $A_{1}=A_{2}=0$). For $s=3$ and $t=3-6$, (10) becomes

$$
\begin{aligned}
K_{3}= & {\left[12 A_{3}+n\left(2+6 n+n^{2}\right)\right] / 27 } \\
K_{4}= & {\left[48 A_{4}+24(3+2 n) A_{3}+n\left(-6+20 n+12 n^{2}+n^{3}\right)\right] / 81, } \\
K_{5}= & {\left[240 A_{5}+240(2+n) A_{4}+60\left(-3+10 n+2 n^{2}\right) A_{3}+n\left(-30+10 n+80 n^{2}+20 n^{3}+n^{4}\right)\right] / 243, } \\
K_{6}= & {\left[1440 A_{6}+720(5+2 n) A_{5}+720\left(-1+6 n+n^{2}\right) A_{4}+120\left(-39+13 n+21 n^{2}+2 n^{3}\right) A_{3}\right.} \\
& \left.+n\left(42-320 n+270 n^{2}+220 n^{3}+30 n^{4}+n^{5}\right)\right] / 729 .
\end{aligned}
$$

Solving A_{3}, \ldots, A_{6} yields

$$
\begin{align*}
A_{3}= & {\left[27 K_{3}-n\left(2+6 n+n^{2}\right)\right] / 12 } \tag{11}\\
A_{4}= & {\left[27 K_{4}-18(3+2 n) K_{3}+n\left(6+8 n+6 n^{2}+n^{3}\right)\right] / 16 } \tag{12}\\
A_{5}= & {\left[81 K_{5}-135(2+n) K_{4}+45\left(15+4 n+2 n^{2}\right) K_{3}\right.} \\
& \left.-n\left(60-110 n-25 n^{2}-10 n^{3}-2 n^{4}\right)\right] / 80 \tag{13}\\
A_{6}= & {\left[729 K_{6}-(3645+1458 n) K_{5}+1215\left(11+3 n+n^{2}\right) K_{4}-135\left(165+80 n+6 n^{2}+4 n^{3}\right) K_{3}\right.} \\
& \left.+n\left(2148+3010 n+1485 n^{2}+175 n^{3}+30 n^{4}+10 n^{5}\right)\right] / 1440 \tag{14}
\end{align*}
$$

Example 1. Consider the first design in Table 1. It is easy to verify that $C_{0}=4, C_{1}=6, C_{2}=14$, $C_{3}=2, C_{4}=0$, and $C_{5}=1$. Definition (9) gives $K_{3}=11, K_{4}=113 / 3, K_{5}=1355 / 9$ and $K_{6}=5995 / 9$. Then equations (11)-(14) yield $A_{3}=1, A_{4}=3, A_{5}=0$ and $A_{6}=0$. Note that equation (14) is valid although $n=5$ here.

Since the power moments K_{t} measure the similarity among runs (i.e., rows), it is natural that a good design should have small power moments. The smaller the K_{t}, the better the design. Xu
(2001, 2003) proposed the minimum moment aberration criterion which sequentially minimizes $K_{1}, K_{2}, \ldots, K_{n}$.

The following result relates minimum moment aberration and minimum aberration.

Theorem 2. Sequentially minimizing $K_{1}, K_{2}, \ldots, K_{n}$ is equivalent to sequentially minimizing A_{1}, A_{2}, \ldots, A_{n}. Therefore, minimum moment aberration is equivalent to minimum aberration.

The proof follows from the fact that the leading coefficient of A_{t} in (10) is a positive constant. In this paper we use the minimum moment aberration criterion to rank designs because the power moments are easier to compute than the wordlength patterns.

3.3 Power moments and clear effects

Here we introduce a simple method to find clear effects without using the defining contrast subgroup.
To determine whether the main effect of column j is clear, for $i=0, \ldots, n-1$, let \tilde{C}_{i} be the number of rows with $i+1$ zero elements and the j th element being zero. Define

$$
\begin{equation*}
\tilde{K}_{2}=\tilde{K}_{2}^{(j)}=N^{-1} \sum_{i=1}^{n-1} i^{2} \tilde{C}_{i} . \tag{15}
\end{equation*}
$$

Theorem 3. For an s^{n-k} FF design,

$$
\begin{equation*}
\tilde{K}_{2}^{(j)} \geq(n-1)(n+s-2) / s^{3} . \tag{16}
\end{equation*}
$$

The main effect of column j is clear if and only if the lower bound is achieved.

The proof is beyond this paper. Interested readers are referred to Xu (2001, Section 4.3), who derived some general identities relating power moments to split wordlength patterns. Theorem 3 can be verified from these identities. It is worth noting that this procedure works even if a design has duplicate columns.

Example 2. Consider the first design in Table 1. For $n=5$ and $s=3$, the lower bound in (16) is $8 / 9$. First consider column A. It is easy to verify that $\tilde{C}_{0}=2, \tilde{C}_{1}=4, \tilde{C}_{2}=2, \tilde{C}_{3}=0$, and $\tilde{C}_{4}=1$. Definition (15) gives $\tilde{K}_{2}=28 / 27$, which is greater than the lower bound; therefore, A is not clear. Next consider column C. It is easy to verify that $\tilde{C}_{0}=0, \tilde{C}_{1}=8, \tilde{C}_{2}=0, \tilde{C}_{3}=0$, and $\tilde{C}_{4}=1$. Definition (15) gives $\tilde{K}_{2}=8 / 9$, which is equal to the lower bound; therefore, C is clear.

To determine whether 2fi components $a b$ and $a b^{2}$ are clear, first replace the columns a and b with their interactions $a b$ and $a b^{2}$ and then follow the above procedure to check whether the new

Table 2: Generator matrix for 27-run designs

	$\mathbf{1}$	$\mathbf{2}$	3	4	$\mathbf{5}$	6	7	8	9	10	11	12	13
a	1	0	1	1	0	1	0	1	1	1	0	1	1
b	0	1	1	2	0	0	1	1	2	0	1	1	2
c	0	0	0	0	1	1	1	1	1	2	2	2	2

column $a b$ (or $a b^{2}$) is clear as a main effect. The 2fi component $a b$ (or $a b^{2}$) is clear if and only if the new column $a b$ (or $a b^{2}$) is clear as a main effect.

Example 3. Consider the first design in Table 1. To determine whether $C D$ and $C D^{2}$ are clear, first replace columns C and D by their interaction components $C D$ and $C D^{2}$. The resulting design is the second design in Table 1, where the third and fourth columns correspond to $C D$ and $C D^{2}$, respectively. First consider whether $C D$ (i.e., the third column in the second design) is clear. It is easy to verify that $\tilde{C}_{0}=0, \tilde{C}_{1}=8, \tilde{C}_{2}=0, \tilde{C}_{3}=0$, and $\tilde{C}_{4}=1$. Definition (15) gives $\tilde{K}_{2}=8 / 9$, which is equal to the lower bound; therefore, $C D$ is clear. Next consider whether $C D^{2}$ (i.e., the fourth column in the second design) is clear. It is easy to verify that $\tilde{C}_{0}=4, \tilde{C}_{1}=2, \tilde{C}_{2}=0$, $\tilde{C}_{3}=2$, and $\tilde{C}_{4}=1$. Definition (15) gives $\tilde{K}_{2}=4 / 3$, which is greater than the lower bound; therefore, $C D^{2}$ is not clear.

4 Construction method

To obtain the complete catalogue, we take a sequential approach as CSW did. We review CSW's construction method, point out some shortcomings of their method and then introduce our method.

4.1 Basic idea

Let $r=n-k, N=s^{r}$ and $m=(N-1) /(s-1)$. An $s^{n-(n-r)} \mathrm{FF}$ design can be viewed as n columns of an $N \times m$ matrix H, where H is a saturated FF design with N runs, m factors and s levels. Let G consist of all nonzero r-tuples $\left(u_{1}, \ldots, u_{r}\right)^{T}$ from $G F(s)$ in which the first nonzero u_{i} is 1 . Then H is formed by taking all linear combinations of the rows of G. For example, for $s=3$ and $r=3$, the generator matrix G and design matrix H are given in Tables 2 and 3, respectively.

Two designs are isomorphic if one can be obtained from the other by permuting the rows, the columns and the levels of each column.

Let D_{n} be the set of nonisomorphic designs with n columns. CSW constructed D_{n+1} from

Table 3: Design matrix for 27-run designs

Run	$\mathbf{1}$	$\mathbf{2}$	3	4	$\mathbf{5}$	6	7	8	9	10	11	12	13
1	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	1	1	1	1	1	2	2	2	2
3	0	0	0	0	2	2	2	2	2	1	1	1	1
4	0	1	1	2	0	0	1	1	2	0	1	1	2
5	0	1	1	2	1	1	2	2	0	2	0	0	1
6	0	1	1	2	2	2	0	0	1	1	2	2	0
7	0	2	2	1	0	0	2	2	1	0	2	2	1
8	0	2	2	1	1	1	0	0	2	2	1	1	0
9	0	2	2	1	2	2	1	1	0	1	0	0	2
10	1	0	1	1	0	1	0	1	1	1	0	1	1
11	1	0	1	1	1	2	1	2	2	0	2	0	0
12	1	0	1	1	2	0	2	0	0	2	1	2	2
13	1	1	2	0	0	1	1	2	0	1	1	2	0
14	1	1	2	0	1	2	2	0	1	0	0	1	2
15	1	1	2	0	2	0	0	1	2	2	2	0	1
16	1	2	0	2	0	1	2	0	2	1	2	0	2
17	1	2	0	2	1	2	0	1	0	0	1	2	1
18	1	2	0	2	2	0	1	2	1	2	0	1	0
19	2	0	2	2	0	2	0	2	2	2	0	2	2
20	2	0	2	2	1	0	1	0	0	1	2	1	1
21	2	0	2	2	2	1	2	1	1	0	1	0	0
22	2	1	0	1	0	2	1	0	1	2	1	0	1
23	2	1	0	1	1	0	2	1	2	1	0	2	0
24	2	1	0	1	2	1	0	2	0	0	2	1	2
25	2	2	1	0	0	2	2	1	0	2	2	1	0
26	2	2	1	0	1	0	0	2	1	1	1	0	2
27	2	2	1	0	2	1	1	0	2	0	0	2	1

D_{n} by adding an additional column. For each design in D_{n}, there are $m-n$ ways to add a column to produce a design with $n+1$ columns. Let \tilde{D}_{n+1} be the set of these designs. Obviously, $\left|\tilde{D}_{n+1}\right|=(m-n)\left|D_{n}\right|$. CSW showed that D_{n+1} is a subset of \tilde{D}_{n+1}. However, some designs in \tilde{D}_{n+1} are isomorphic and therefore it is necessary to eliminate these redundant designs to construct D_{n+1}.

To identify nonisomorphic designs, CSW divided all designs into different categories according to their wordlength patterns and letter patterns. The letter pattern counts the frequency of the letters contained in the words of different lengths (Draper and Mitchell, 1970). Obviously, designs in different categories are not isomorphic. However, designs in the same category are not necessarily isomorphic; see Chen and Lin (1991) for a counter example. For designs in the same category, CSW applied a complete isomorphism check procedure to determine whether two designs are isomorphic. The complete isomorphism check considers all possible ways of choosing independent columns and relabeling letters and words.

We observe that the use of wordlength patterns and letter patterns is not efficient in identifying nonisomorphic designs for three-level FF designs. A close examination on the complexity shows that letter pattern check might be more time consuming than complete isomorphism check. Indeed, for $s^{n-(n-r)}$ designs, the complexity of wordlength pattern and letter pattern check is $O\left(n s^{n-r}\right)$ while the complexity of complete isomorphism check is $O\left(n\binom{n}{r}!!(s-1)^{r}\right)$. The former is much larger than the latter when n is large (for fixed $s>2$ and r).

Our algorithm differs from CSW's in the ways how designs are categorized. We divide all designs into different categories according to their coincidence distributions and moment projection patterns (to be defined next). The use of coincidence distributions is equivalent to the use of wordlength patterns in terms of distinguishing designs but is more efficient in terms of computation. The use of moment projection patterns is proven to be more efficient than the use of letter patterns in terms of both distinguishing designs and computation. For designs in the same category, we apply the complete isomorphism check as CSW did.

4.2 Moment projection patterns

The idea of moment projection patterns comes from some recent work on the isomorphism check of nonregular designs. It is quite often that nonregular designs have the same (generalized) wordlength pattern but different projection properties. The approach taken here is inspired by Clark and Dean (2001) and Ma, Fang, and Lin (2001), who proposed algorithms for identifying nonisomorphic
designs by examining some properties of their projection designs. See also Xu and Deng (2002) for a related procedure.

For an $s^{n-(n-r)}$ FF design, consider projection designs. For each projection design, we can compute the power moments as in (9) for any t. For given $p(1 \leq p \leq n)$, there are $\binom{n}{p}$ projection designs with p columns. The frequency distribution of K_{t}-values of these projection designs is called the p-dimensional K_{t}-value distribution. It is evident that isomorphic designs have the same p-dimenionsonal K_{t}-value distribution for all positive integers t and $1 \leq p \leq n$. Whenever two designs have different p-dimensional K_{t}-value distributions for some t and p, these two designs must be nonisomorphic.

In the implementation, we fix t arbitrarily at $t=10$ and let p take on values $n-1, n-2, \ldots, n-q$, where q is a pre-chosen number. The choice of t does not make a difference provided $t>5 \mathrm{in}$ most cases. The complexity of moment projection pattern check is $O\left(n^{q} s^{2 r}\right)$. Recall that the complexity of complete isomorphism check is $O\left(n\binom{n}{r} r!(s-1)^{r}\right)$ or $O\left(n^{r+1}\right)$ for fixed s and r. Therefore, we should choose $q \leq r$. We find the choice of $q=2$ or 3 works well for $s=3$ and $r=4,5,6$.

As an experimentation, we compared the real computer time on identifying all nonisomorphic 3^{15-11} designs from nonisomorphic 3^{14-10} designs with different choices of q. The algorithm took more than 67 hours with $q=0$ and about one hour ($62-66$ minutes) with $q=1,2,3$ on a 1 GHz Mac Xserve. The numbers clearly indicate that the use of moment projection pattern check speeds up the algorithm significantly. We note that with $q=3$, nonisomorphic designs have different coincidence distributions or moment projection patterns; therefore, the complete isomorphism check could be omitted and the time reduced to 14 minutes. Indeed, with $q=3$, all 81 -run designs have different coincidence distributions or moment projection patterns; therefore, the complete isomorphism check can be omitted.

5 A catalogue of selected designs

We apply the above construction method to obtain the complete collections of designs with 27 and 81 runs. The number of 243 -run and 729 -run designs is so large that our algorithm fails to produce all designs. Nevertheless, we have obtained the complete collections of 243 -run designs with resolution VI or higher and 729-run designs with resolution V or higher. Once all designs are obtained, we rank the designs according to the minimum moment aberration criterion. If two or more designs are equivalent under the minimum moment aberration criterion, which happens when
they have the same coincidence distribution (and wordlength pattern), their rankings are arbitrary. Then we compute the partial wordlength pattern $\left(A_{3}, A_{4}, A_{5}, A_{6}\right)$ according to (11)-(14) and find clear effects according to Section 3.3.

The catalogue shows the ranked design, selected columns, partial wordlength pattern (WLP), the number of clear main effects (C1), the number of clear 2fi's (C2), the number of clear 2fi components (CC), clear main effects (CME) and clear 2fi's if any. A 3^{n-k} FF design is labeled as $n-k . i$, where i denotes the rank under the minimum moment aberration criterion. The first design $n-k .1$ is always a minimum aberration (MA) 3^{n-k} design. An entry such as $a: b$ under the column of clear 2fi's represents the $a \times b$ interaction.

For 81, 243 and 729 runs, there are too many designs to be all included. The concept of admissibility (Sun, Wu and Chen, 1997) is useful in selecting designs of interest. For a given number of criteria, a design d_{1} is called to be inadmissible if there exists another design d_{2} such that d_{2} is better than or equal to d_{1} for all the criteria and strictly better than d_{1} for at least one of the criteria. Otherwise, d_{1} is admissible.

We use C1, C2 and CC to define the admissibility and compile a list of admissible designs with 81, 243 and 729 runs. When two or more admissible designs have the same $\mathrm{C} 1, \mathrm{C} 2$ and CC , only the design with lowest rank is given. In most cases, the first three designs ranked by the minimum moment aberration criterion are also given.

5.1 Designs of 27 runs

A 27-run FF design has up to 13 columns and Table 2 shows the generator matrix. The independent columns (in boldface) are 1, 2 and 5 .

Table 8 gives the complete collection of 27 -run designs. There is only one design for $1,2,11$ and 12 columns; therefore, no designs are given. A complete collection of 27 -run designs was previously given by CSW. Our rankings are exactly the same as theirs except that we include two more designs $3-0.2$ and 4-1.3. These two designs are degenerated and have only nine distinct runs, indicated by an asterisk in the table.

Table 8 provides more information than CSW's table. We include C1, C2, CC and the actual clear effects whereas CSW report only C2. It is interesting to note that design 5-2.2 has larger CC than other two designs and design 6-3.3 has larger CC than other three designs. These facts cannot be observed from CSW's table directly.

Observe that nonisomorphic designs have different wordlength patterns; therefore, wordlength

Table 4: Generator matrix for 81-run designs

	$\mathbf{1}$	$\mathbf{2}$	3	4	$\mathbf{5}$	6	7	8	9	10	11	12	13	$\mathbf{1 4}$	15	16	17	18	19	20
a	1	0	1	1	0	1	0	1	1	1	0	1	1	0	1	0	1	1	0	1
b	0	1	1	2	0	0	1	1	2	0	1	1	2	0	0	1	1	2	0	0
c	0	0	0	0	1	1	1	1	1	2	2	2	2	0	0	0	0	0	1	1
d	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
a	0	1	1	1	0	1	1	1	0	1	1	0	1	0	1	1	1	0	1	1
b	1	1	2	0	1	1	2	0	1	1	2	0	0	1	1	2	0	1	1	2
c	1	1	1	2	2	2	2	0	0	0	0	1	1	1	1	1	2	2	2	2
d	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2

pattern (indeed A_{3} alone) completely determines a 27 -run FF design. Since designs are constructed sequentially, we have the following interesting observation. If we arrange the columns in the following order:

$$
12584126111331012,
$$

then the first n columns form the MA $3^{n-(n-3)}$ design for $n=1, \ldots, 13$.
Example 4. Look at 3^{5-2} designs. The first design 5-2.1 in Table 8 has columns 1, 2, 5, 8, 4. This design has one word of length 3 and three words of length 4 ($\mathrm{WLP}=(1,3,0)$), two clear main effects ($\mathrm{C} 1=2$), no clear 2fi $(\mathrm{C} 2=0)$ and one clear 2fi component ($\mathrm{CC}=1$). Assign the five columns to factors A, B, C, D, and E. From the table, we find that C (column 5) and D (column 8) are clear, none of the 2 fi's are clear and one 2fi component is clear. The generator matrix in Table 2 can be used to determine the defining relations. Column 8 is the sum of columns 1,2 , and $5(\bmod 3)$; therefore, $D=A B C$. Column $4=$ column $1+2 \times$ column $2(\bmod 3)$; therefore, $E=A B^{2}$. This is indeed the first design in Table 1.

5.2 Designs of 81 runs

An 81-run FF design has up to 40 columns and Table 4 shows the generator matrix. The independent columns (in boldface) are 1, 2, 5 and 14 . We apply the algorithm to obtain the complete collection of designs up to 20 columns. This collection also completely classifies all designs with more than 20 columns. For example, a set of 21 columns corresponds to a unique set of 19 remaining columns (i.e, complementary design). Therefore, by taking the complementary of all designs with 19 columns, we obtain all designs with 21 columns.

Table 5 shows the number of nonisomorphic designs for $n=1-20$. Here we treat any 27 -run

Table 5: Number of nonisomorphic 81-run designs

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$\#$ of designs	1	1	2	4	6	12	23	47	94	201	402	807	1505	2659	4304	6472	8846	11127	12723	13358

design as a (degenerated) 81-run design; therefore, the number of nonisomorphic designs with n columns, $20<n<40$, is equal to the number of nonisomorphic designs with $40-n$ columns.

Table 9 lists selected 81-run designs for $n=5-20$ columns. It includes all designs with resolution IV or higher. There is only one resolution V design, namely design 5-1.1. Resolution IV designs exist for $n=5-10$ columns. The maximum resolution is III when $n \geq 11$.

In all cases, MA 81-run designs are unique up to isomorphism. From Table 9, we have the following result. For $n=3-11$, the first n columns of

$$
12514229243134393
$$

form an MA design; for $n=12-20$, the first n columns of

$$
125142292431325133761873512381516
$$

form an MA design. For $n=21-37$, MA designs can be determined via the complementary design theory (see Suen, Chen and Wu, 1997; Xu and Wu, 2001 and Xu, 2003). Previously, MA designs for $n \leq 10$ were given by Franklin (1984) and Wu and Hamada (2000, Table 5A.3). These designs are equivalent to MA designs given here.

It is interesting to note that designs with maximum C 2 (or CC) are often different from MA designs. For $n=6-10$, Maximum C2 (or CC) designs have resolution III while MA designs have resolution IV. For $n=10-14$, Maximum C2 designs have a special structure: Column 14 does not appear in any defining words; therefore, column 14 and any 2 fi's involving it are clear. For $n>15$, no design has clear effects (i.e., $C 1=C 2=C C=0$).

As Franklin (1984) noted, designs given by National Bureau of Standards (Connor and Zelen, 1959) may not have MA. Connor and Zelen (1959) chose resolution IV designs having maximum CC. From Table 9, we observe that there are two cases where MA designs are different from maximum CC resolution IV designs. They recommended design 7-3.2 (plan 27.7.3 in their notation) and design 8-4.2 (plan 81.8.3). These two designs have more clear 2fi components than the competing MA designs 7-3.1 and 8-4.1.

Table 6: Number of nonisomorphic 243-run designs with resolution IV or higher

n	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$\#$ of designs	5	8	19	46	137	356	844	1532	2020	1778	1019	337	90	20	9

5.3 Designs of 243 runs

A 243 -run FF design has up to 121 columns. Let $G=\left(y_{1}, y_{2}, \ldots, y_{121}\right)$ be the generator matrix whose columns are defined as

$$
y_{i}=\binom{x_{i}}{0}, y_{i+41}=\binom{x_{i}}{1}, y_{i+81}=\binom{x_{i}}{2}, \text { for } i=1, \ldots, 40,
$$

and $y_{41}=(0,0,0,0,1)^{T}$, where x_{i} is the i th column of the generator matrix for 81-run designs given in Table 4. The independent columns are 1, 2, 5, 14, and 41.

For 243 runs, resolution IV designs have at most 20 columns. Table 6 shows the number of nonisomorphic designs with resolution IV or higher for $n=6-20$. Note that any 81-run design with resolution IV or higher is a (degenerated) 243-run design.

Table 10 lists the selected 243 -run designs with resolution IV or higher for $n=6-20$ columns. Because all main effects are clear for resolution IV designs, C1 and clear main effects are omitted in the table.

The most interesting result is that MA 243 -run designs are not unique. There are two MA designs for $n=14,16,19$ and 20; nine MA designs for $n=17$; and five MA designs for $n=18$. For $n \leq 13$ or $n=15$, MA designs are unique.

For $n \leq 11$, MA designs have resolution V or VI; therefore, no resolution IV designs is given. For $n=7-11$, resolution V designs are unique. The MA 3^{11-6} design 11-6.1 is saturated for a model with all main effects and all 2 f 's. Any $7-11$ columns of this design form an MA design. For $n=12-15$, MA designs do not have maximum C 2 ; for $n=12-18$, MA designs do not have maximum CC.

Previously, Connor and Zelen (1959) gave designs for $n=6$-10 and Franklin (1984) gave MA designs for $n=7-11$. All these designs are isomorphic to MA designs given here.

Table 7: Number of nonisomorphic 729-nun designs with resolution V or higher

n	7	8	9	10	11	12	13	14
$\#$ of designs	4	6	11	22	37	38	6	1

5.4 Designs of 729 runs

A 729-run FF design has up to 364 columns. Let $G=\left(z_{1}, z_{2}, \ldots, z_{364}\right)$ be the generator matrix whose columns are defined as

$$
z_{i}=\binom{y_{i}}{0}, z_{i+122}=\binom{y_{i}}{1}, z_{i+243}=\binom{y_{i}}{2}, \text { for } i=1, \ldots, 121,
$$

and $z_{122}=(0,0,0,0,0,1)^{T}$, where y_{i} is the i th column of the generator matrix for 243 -run FF designs given in Section 5.3. The independent columns are 1, 2, 5, 14, 41, and 122.

For 729 runs, resolution V designs have at most 14 columns. Table 7 shows the number of nonisomorphic designs with resolution V or higher for $n=7-14$. Again, any 243 -run design with resolution V or higher is a (degenerated) 729-run design.

Table 11 lists the selected 729-run designs with resolution V or higher for $n=7-14$ columns. Because all main effects and 2fi's are clear for resolution V designs, C1, C2, CC and clear effects are omitted in the table.

For $n=7-14$, MA designs are unique. For $n=7-12$, there is one unique resolution VI design, i.e., the MA design. Previously, Connor and Zelen (1959) gave designs for $n=7-9$, and Franklin (1984) gave MA designs for $n=8-12$. All these designs are isomorphic to MA designs given here except for one case. For $n=8$, the design given in Connor and Zelen (1959) is isomorphic to design 8-2.2 which has resolution V while the MA design 8-2.1 has resolution VI.

6 Concluding remarks

Based on coding theory, we use minimum moment aberration and moment projection pattern to classify and rank FF designs, and use power moments to compute wordlength patterns and find clear effects. By modifying CSW's algorithm, we obtain complete collections of 3-level FF designs with 27 and 81 runs, 243 runs with resolution IV or higher and 729 runs with resolution V or higher. Selected designs of interest are given in Tables 8-11. For easy reference, the complete catalogue is available at the author's web site (http://www.stat.ucla.edu/~hqxu/). The online catalogue includes the actual clear 2fi components $a b$ and $a b^{2}$.

One interesting result is that 243 -run MA designs are not unique. This is the smallest case known so far where MA designs are not unique. Chen (1992) showed that MA 2^{n-k} designs are unique for $k=1,2,3,4$. The catalogue of CSW shows that MA designs are unique for 16,32 and 64 runs. One interesting question is whether 2-level MA designs are unique. The answer is negative. Bouyukliev and Jaffe (2001) showed that there are exactly seven [43, 7, 20] linear codes (that is, seven 2^{43-7} designs with resolution 20 or higher). According to their complete enumeration, MA 2^{43-7} designs have wordlength pattern $A_{20}=84, A_{24}=35, A_{28}=7, A_{36}=1$ and other $A_{i}=0$; and there are two nonisomorphic designs having this wordlength pattern.

Acknowledgments

This research was supported by NSF Grant DMS-0204009.

References

1. Bose RC (1961) On some connections between the design of experiments and information theory. Bull Inst Internat Statist 38:257-271
2. Bouyukliev I, Jaffe DB (2001) Optimal binary linear codes of dimension at most seven. Discrete Math 226:51-70
3. Box GEP, Hunter JS (1961) The 2^{k-p} fractional factorial designs. Technometrics 3:311-351, 449-458
4. Box GEP, Hunter WG, Hunter JS (1978) Statistics for experimenters. Wiley, New York
5. Chen J (1992) Some results on 2^{n-k} fractional factorial designs and search for minimum aberration designs. Ann Statist 20:2124-2141
6. Chen J, Lin DKJ (1991) On the identity relationship of 2^{k-p} designs. J Statist Plann Inference 28:95-98
7. Chen J, Sun DX, Wu CFJ (1993) A catalogue of two-level and three-level fractional factorial designs with small runs. Internat Statist Rev 61:131-145
8. Clark JB, Dean AM (2001) Equivalence of fractional factorial designs. Statist Sinica 11:537547
9. Connor WS, Zelen M (1959) Fractional factorial experiment designs for factors at three levels. National Bureau of Standards Applied Mathematics Series 54. US Government Printing Office, Washington, DC
10. Draper NR, Mitchell TJ (1970) Construction of a set of 512 -run designs of resolution ≥ 5 and a set of even 1024-run designs of resolution ≥ 6. Ann Math Statist 41:876-887
11. Franklin MF (1984) Constructing tables of minimum aberration p^{n-m} designs. Technometrics 26:225-232
12. Fries A, Hunter WG (1980) Minimum aberration 2^{k-p} designs. Technometrics 22:601-608
13. Hedayat AS, Sloane NJA, Stufken J (1999) Orthogonal arrays: theory and applications. Springer, New York
14. Ma CX, Fang KT, Lin DKJ (2001) On the isomorphism of fractional factorial designs. J Complexity 17:86-97
15. MacWilliams FJ, Sloane NJA (1977) The theory of error-correcting codes. North-Holland, Amsterdam
16. Montgomery DC (2001) Design and analysis of experiments. 5th ed. Wiley, New York
17. National Bureau of Standards (1957) Fractional factorial experiment designs for factors at two levels. Applied Mathematics Series 48. US Government Printing Office, Washington DC
18. Pless V (1963) Power moment identities on weight distributions in error correcting codes. Information Control 6:147-152
19. Suen C, Chen H, Wu CFJ (1997) Some identities on q^{n-m} designs with application to minimum aberration designs. Ann Statist 25:1176-1188
20. Sun DX, Wu CFJ, Chen Y (1997) Optimal blocking schemes for 2^{n} and 2^{n-p} designs. Technometrics 39:298-307
21. van Lint JH (1999) Introduction to coding theory. 3rd ed. Springer, New York
22. Wu CFJ, Chen Y (1992) A graph-aided method for planning two-level experiments when certain interactions are important. Technometrics 34:162-175
23. Wu CFJ, Hamada M (2000) Experiments: planning, analysis and parameter design optimization. Wiley, New York
24. Xu H (2001) Optimal factor assignment for asymmetrical fractional factorial designs: theory and applications. Ph.D. thesis, University of Michigan
25. Xu H (2003) Minimum moment aberration for nonregular designs and supersaturated designs. Statist Sinica 13:691-708
26. Xu H, Deng LY (2002) Moment aberration projection for nonregular fractional factorial designs. UCLA Statistics Electronic Publications, preprint 326 (http://preprints.stat.ucla.edu/)
27. $\mathrm{Xu} \mathrm{H}, \mathrm{Wu}$ CFJ (2001) Generalized minimum aberration for asymmetrical fractional factorial designs. Ann Statist 29:1066-1077

Table 8: Complete catalogue of 27-run designs

Design	Columns	WLP	C1	C2	CC	CME	Clear 2fi's
3-0.1	125	0	3	3	6	all	all
3-0.2*	123	1	0	0	3		
4-1.1	1258	01	4	0	6	all	
4-1.2	1253	10	1	3	9	5	1:5 2:5 5:3
4-1.3*	1234	40	0	0	0		
5-2.1	12584	130	2	0	1	58	
5-2.2	12583	211	0	0	10		
5-2.3	12534	400	1	4	8	5	1:5 2:5 5:3 5:4
6-3.1	1258412	2902	0	0	0		
6-3.2	125846	3631	0	0	0		
6-3.3	125836	4360	0	0	12		
6-3.4	125843	5332	0	0	3		
7-4.1	12584126	51598	0	0	0		
7-4.2	1258467	611154	0	0	0		
7-4.3	1258463	710129	0	0	0		
7-4.4	12584123	89914	0	0	0		
8-5.1	1258412611	8302432	0	0	0		
8-5.2	125841267	10233230	0	0	0		
8-5.3	125841263	11213038	0	0	0		
9-6.1	125841261113	12545496	0	0	0		
9-6.2	12584126113	15426996	0	0	0		
9-6.3	1258412673	163969106	0	0	0		
10-7.1	1258412611133	2172135240	0	0	0		
10-7.2	125841261137	2268138250	0	0	0		

Note: Designs with $1,2,11$ or 12 columns are unique and not listed.

Table 9: Selected 81-run designs for 5-20 columns

Design	Columns	WLP	C1	C2	CC	CME	Clear 2fi's
5-1.1	1251422	001	5	10	20	all	all
5-1.2	125148	010	5	4	14	all	1:14 2:14 5:14 14:8
5-1.3	125143	100	2	7	17	514	1:5 1:14 2:5 2:14 5:14 5:3 14:3
6-2.1	12514229	0220	6	4	18	all	1:14 1:22 5:14 5:22
6-2.2	12514817	0301	6	0	15	all	
6-2.3	12514224	1030	3	12	27	51422	1:5 1:14 1:22 2:5 2:14 2:22 5:14 5:22 5:4 14:22 14:4 22:4
7-3.1	1251422924	0561	7	0	15	all	
7-3.2	1251422918	0634	7	0	18	all	
7-3.3	1251422915	1363	4	3	21	25229	1:22 5:14 9:15
7-3.4	1251422910	1460	4	6	17	214229	1:14 1:22 5:14 5:22 14:10 22:10
7-3.7	1251422426	2092	1	15	36	14	1:5 1:14 1:22 1:26 2:5 2:14 2:22 2:26 5:14 5:4 14:22 14:4 14:26 22:4 4:26
7-3.8	125142294	2262	2	6	26	1422	1:14 1:22 5:14 5:22 14:4 22:4
7-3.16	125142243	4133	3	9	24	51422	1:5 1:14 1:22 2:5 2:14 2:22 5:4 14:4 22:4

Table 9: Continued

Design	Columns	WLP	C1	C2	CC	CME	Clear 2fi's
8-4.1	125142292431	010164	8	0	8	all	
8-4.2	125142292425	0111210	8	0	16	all	
8-4.3	125142291838	012816	8	0	16	all	
8-4.8	125142291035	26182	2	9	18	29	$\begin{aligned} & 1: 14 \quad 1: 22 \quad 1: 35 \quad 5: 14 \quad 5: 22 \quad 5: 35 \quad 14: 10 \\ & 22: 10 \quad 10: 35 \end{aligned}$
8-4.26	125142291528	441212	4	4	20	25229	1:22 2:28 5:14 9:15
8-4.29	12514229411	45149	2	4	29	1422	1:14 1:22 5:14 5:22
8-4.30	1251422946	46136	2	6	22	1422	1:14 1:22 5:14 5:22 14:4 22:4
8-4.33	12514224263	53917	1	12	25	14	$\begin{array}{lllllllllllllllllllll} 1: 5 & 1: 14 & 1: 22 & 1: 26 & 2: 5 & 2: 14 & 2: 22 & 2: 26 \\ 5: 4 & 14: 4 & 22: 4 & 4: 26 & & & \end{array}$
8-4.43	12514319432	80032	0	16	32		1:5 1:14 1:19 1:32 2:5 2:14 2:19 2:32 5:3 5:4 14:3 14:4 3:19 3:32 19:4 4:32
9-5.1	12514229243134	0183612	9	0	0	all	
9-5.2	1251422924313	1182728	6	0	7	5142292431	
9-5.3	1251422924257	1202036	6	0	9	1142292425	
9-5.7	1251422924256	2172334	4	0	12	14222425	
9-5.35	125142292446	4123025	3	0	13	142224	
9-5.48	125142291864	5102833	1	2	24	22	22:4 18:6
9-5.50	12514229241629	5112631	3	1	11	1524	5:29
9-5.55	1251422910238	5122726	0	9	27		$\begin{aligned} & 1: 14 \quad 1: 22 \quad 1: 23 \quad 5: 14 \quad 5: 22 \quad 5: 23 \quad 14: 10 \\ & 22: 10 \quad 10: 23 \end{aligned}$
9-5.58	1251422931310	5182423	2	2	17	1422	$14: 10 \quad 22: 10$
9-5.61	1251481761522	691854	0	0	36		
9-5.70	1251422910312	6152721	2	4	13	1422	1:14 1:22 14:10 22:10
9-5.86	125148412611	8302432	1	8	16	14	all 2fi's involving 14
10-6.1	1251422924313439	0307230	10	0	0	all	
10-6.2	125142292431343	2285765	5	0	1	51422931	
10-6.3	125142292431325	2304880	4	0	2	514924	
10-6.11	12514229243136	3304284	4	0	6	14222431	
10-6.57	12514229247124	5284868	3	0	9	142224	
10-6.104	125142292442111	7175488	1	0	22	14	
10-6.152	1251422915478	8214877	0	3	21		5:14 22:4 9:15
10-6.157	125142293131011	8344862	2	0	17	1422	
10-6.160	12514817615223	91545102	0	0	36		
10-6.182	12514229313106	10285167	2	2	13	1422	14:10 22:10
10-6.183	1251481741267	10294867	2	4	9	1417	14:6 14:7 17:6 17:7
10-6.197	12514841261113	12545496	1	9	18	14	all 2fi's involving 14
11-7.1	12514229243134393	342111132	4	0	0	514931	
11-7.2	12514229243132513	34884177	2	0	1	1424	
11-7.3	12514229242571218	35463195	2	0	1	1425	
11-7.23	1251422924313136	54777182	4	0	4	14222431	
11-7.248	12514229244211120	102795196	1	0	22	14	
11-7.302	125142292471243	104091154	3	0	5	142224	
11-7.340	12514229183841123	122484222	0	0	40		
11-7.392	1251422931310114	154899162	2	0	13	1422	
11-7.393	12514229313674	154995165	2	2	9	1422	14:4 22:4
11-7.400	125148412611133	2172135240	1	10	20	14	all 2fi's involving 14
12-8.1	1251422924313251337	472144354	0	0	0		
12-8.2	1251422924257121838	481108390	0	0	0		
12-8.3	1251422924313251338	569141375	0	0	0		
12-8.72	12514229243131367	873124364	4	0	4	14222431	
12-8.740	1251422918384112329	1636144444	0	0	48		
12-8.800	1251422931367124	2181171357	2	2	5	1422	14:4 22:4
12-8.801	12514229313101146	2276178364	2	0	9	1422	
12-8.806	1251484126111337	30108252546	1	11	22	14	all 2fi's involving 14
13-9.1	12514229243132513376	7102219690	0	0	0		
13-9.2	12514229242571218383	7105207696	0	0	0		
13-9.3	125142292431325133715	892249654	0	0	0		
13-9.209	1251422924313136712	12109198672	4	0	4	14222431	
13-9.1501	125142293136712410	30118306726	2	0	5	1422	
13-9.1504	12514841261113379	401624321092	1	12	24	14	all 2fi's involving 14
14-10.1	1251422924313251337618	101403341236	0	0	0		
14-10.2	1251422924257121838331	101413301236	0	0	0		
14-10.3	125142292431325133767	101443301209	0	0	0		
14-10.46	125142292431325136712	131473151200	2	0	1	1424	
14-10.2659	1251484126111337910	522347022028	1	13	26	14	all 2fi's involving 14
15-11.1	12514229243132513376187	131924952055	0	0	0		
15-11.2	12514229243132513376712	141984862009	0	0	0		
15-11.3	125142292431325133762330	151715641963	0	0	0		
15-11.4253	1251422924256351116332036	321385612012	0	0	12		
16-12.1	1251422924313251337618735	162567203288	0	0	0		
16-12.2	1251422924313251337618712	172587113275	0	0	0		
16-12.3	1251422924313251337618721	192327893201	0	0	0		
17-13.1	125142292431325133761873512	2033610145072	0	0	0		
17-13.2	125142292431325133761873516	2330611074952	0	0	0		
17-13.3	125142292431325133761873515	2430410964984	0	0	0		
18-14.1	12514229243132513376187351238	2443214047608	0	0	0		
18-14.2	12514229243132513376187351215	2839615187438	0	0	0		
18-14.3	125142292431325133715231634638	3036916027443	0	0	0		
19-15.1	1251422924313251337618735123815	33504205210884	0	0	0		
19-15.2	1251422924313251337618735121516	36480211210875	0	0	0		
19-15.3	1251422924313251337618735121536	37464220210600	0	0	0		
20-16.1		42603280815537	0	0	0		
20-16.2	125142292431325133715231634638718	44584285215608	0	0	0		
20-16.3	125142292431325133761873512381517	44584290015212	0	0	0		

Table 10: Selected 243-run designs with resolution IV or higher

Design	Columns	WLP	C2	CC	Clear 2fi's
6-1.1	125144163	0001	15	30	all
6-1.2	125144122	0010	15	30	all
7-2.1	12514416327	0031	21	42	all
8-3.1	1251441632772	0084	28	56	all
9-4.1	125144163277279	001812	36	72	all
10-5.1	12514416327727993	003630	45	90	all
11-6.1	12514416327727993114	006666	55	110	all
12-7.1	12514416327727993917	01474110	14	57	$\begin{array}{lllllll} \hline 1: 63 & 1: 79 & 2: 41 & 2: 63 & 2: 93 & 5: 72 & 5: 79 \\ 5: 93 & 14: 41 \\ 14: 72 & 41: 79 & 63: 27 & 63: 72 & 27: 79 & & \end{array}$
12-7.2	125144163277279944116	01566126	6	54	1:14 1:72 5:41 5:72 14:79 41:79
12-7.3	12514416327727994457	01569120	9	54	1:27 2:27 5:41 5:72 41:63 41:79 63:72 27:79 27:57
12-7.4	125144163277212913338	01572126	16	60	1:63 1:72 2:63 2:72 5:63 5:72 14:41 14:91 41:27 41:33 41:38 63:12 27:91 72:12 91:33 91:38
13-8.1	1251441632772799445739	024105222	4	42	5:41 5:72 27:79 27:57
13-8.2	1251441632772799391744	024108207	5	42	2:63 5:72 5:79 41:79 63:72
13-8.3	1251441632772799391765	024108207	3	39	2:93 5:72 14:41
13-8.346	125144163277212913310217	02896228	8	52	2:63 2:72 14:41 14:91 41:27 63:12 27:91 72:12
13-8.493	12514416327721291335217	02990231	6	53	14:41 14:63 41:33 63:12 27:91 91:33
13-8.936	125144163277212485773115	03183233	3	54	1:73 5:27 5:72
13-8.1398	125144163274597910520100	03475216	0	60	
14-9.1	125144163277279944573965	036155390	1	33	5:41
14-9.2	125144163277279944573987	036155390	1	32	27:57
14-9.3	125144163277279939174474	036158372	0	28	
14-9.76	1251441632772129133384450	038152402	8	40	1:63 1:72 14:41 14:91 41:38 63:12 72:12 91:38
14-9.367	1251441632772129133384448	040144399	4	44	14:41 14:91 41:38 91:38
14-9.631	12514416327721266447887104	041140390	3	46	1:27 14:41 63:27
14-9.834	12514416327721291331028930	042134408	2	49	14:91 27:91
14-9.2019	1251441632744910421178948	054100396	0	52	
15-10.1	125144163277279939174474117	050231635	0	15	
15-10.2	12514416327727994457396573	051226651	0	21	
15-10.3	12514416327727994457396592	051226651	0	22	
15-10.916	1251441632772129133102658917	058199680	1	41	72:12
15-10.1228	1251441632772126644788710494	059203642	2	39	1:27 63:27
15-10.1777	125144163274491042117893348	072162640	0	54	
16-11.1	1251441632772799445739657321	070334974	0	13	
16-11.2	1251441632772799445739659221	070334974	0	14	
16-11.3	12514416327727993917447411721	0713241006	0	12	
16-11.1018	12514416327449104211789333948	095252991	0	60	
17-12.1	1251441632772799391744741172148	0954501561	0	9	
17-12.2	12514416327721266441183873508720	0954501561	0	11	
17-12.3	122514416327727994492991207411717	0954501561	0	12	
17-12.4	12514416327727994492991207411721	0954501561	0	10	
17-12.5	1251441632772799444821113177487	0954501561	0	10	
17-12.6	1251441632772799391744742148109	0954501561	0	7	
17-12.7	12514416327721266441183873502099	0954501561	0	13	
17-12.8	1251441632772126644118387350107110	0954501561	0	9	
17-12.9	1251441632772799449299120742189	0954501561	0	12	
17-12.187	12514416327721266441183873941770	01014171615	0	24	
18-13.1	1251441632772799391744741172148101	01236182352	0	8	
18-13.2	1251441632772126644118387350872099	01236182352	0	7	
18-13.3	12514416327721266441183873508720107	01236182352	0	2	
18-13.4	12514416327721266441183873508720110	01236182352	0	8	
18-13.5	1251441632772799449299120741171789	01236182352	0	7	
18-13.78	125144163277279944575421877410965	01345942296	0	20	
19-14.1	1251441632772799391744741172148101109	01568373444	0	9	
19-14.2	1251441632742126644118387350872099107	01568373444	0	2	
19-14.3	1251441632772126644118385010411010711648	01608263433	0	0	
20-15.1	1251441632772799391744741172148101109113	019511164920	0	10	
20-15.2	1251441632772126644118387350872099107110	019511164920	0	0	
20-15.3	125144163277279939174474117214810110965	020111014857	0	10	

Note: All main effects are clear.

Table 11: Selected 729-run designs with resolution V or higher

Design	Columns	WLP
$7-1.1$	1251441122185	0000
$7-1.2$	125144112263	0001
$7-1.3$	125144112222	0010
$8-2.1$	125144112263149	0004
$8-2.2$	125144112218527	0012
$8-2.3$	125144112218523	0020
$9-3.1$	125144112263149201	00012
$9-3.2$	125144112263149166	0027
$9-3.3$	125144112218527206	0034
$10-4.1$	125144112263149201236	00030
$10-4.2$	12514411226314920136	00517
$10-4.3$	125144112263149166188	00614
$11-5.1$	125144112263149201236315	00066
$11-5.2$	12514411226314920123636	00939
$11-5.3$	1251441122631492013654	001233
$12-6.1$	125144112263149201236315336	000132
$12-6.2$	12514411226314920123631536	001581
$12-6.3$	12514411226314920123636105	002166
$13-7.1$	12514411226314916618878213354	003991
$13-7.2$	12514411226314920123636173115	004486
$13-7.3$	12514411226314916618854242105	004580
$14-8.1$	12514411226314916618854242105212	0070140

Note: All main effects and 2fis are clear.

