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Abstract. A common problem experimenters face is the choice of fractional factorial

designs. Minimum aberration designs are commonly used in practice. There are situa-

tions in which other designs meet practical needs better. A catalogue of designs would

help experimenters choose the best design. Based on coding theory, new methods are

proposed to efficiently classify and rank fractional factorial designs. A collection of

three-level fractional factorial designs with 27, 81, 243 and 729 runs is given. This ex-

tends the work of Chen, Sun and Wu (1993), who gave a collection of fractional factorial

designs with 16, 27, 32 and 64 runs.
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1 Introduction

Fractional factorial (FF) designs are widely used in various experiments. A common problem

experimenters face is the choice of FF designs. When the experimenter has little or no information

on the relative sizes of the effects, he would normally choose a minimum aberration design because

it has good overall properties. The minimum aberration criterion (Fries and Hunter, 1980), an

extension of the maximum resolution criterion (Box and Hunter, 1961), has been used explicitly or

implicitly in the construction of design tables in National Bureau of Standards (1957), Box, Hunter

and Hunter (1978, Table 12.15), Wu and Hamada (2000, Tables 4A and 5A) and Montgomery

(2001, Tables 8–14). The reader is referred to Wu and Hamada (2000) for rich results on minimum

aberration designs and extensive references.
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When the experimenter has knowledge of the importance of certain main effects and interactions,

he might use a design that guarantees the clear estimation of important effects. For example, in a

robust parameter experiment, the experimenter would want to estimate the interactions between

control factors and noise factors. There are many cases where minimum aberration designs cannot

meet the practical need but other designs can. Different situations call for different designs. A

catalogue of designs would help experimenters choose the best design. A collection of FF designs

with 16, 27, 32 and 64 runs was given by Chen, Sun and Wu (1993, hereafter CSW).

The main purpose of this paper is to extend the work of CSW for three-level FF designs. We

provide a catalogue of FF designs with 27, 81, 243 and 729 runs and up to 20 factors. A complete

catalogue of 27-run FF designs is given. For 81, 243 and 729 runs, there are too many designs

to be all included. We carefully choose designs so that the catalogue covers all interesting designs

with different properties. Previously, Connor and Zelen (1959) gave a collection of three-level FF

designs up to 10 factors and Franklin (1984) gave minimum aberration designs up to 12 factors. A

complete catalogue of designs with 27 runs was first given by CSW. Our new catalogue provides

more information on the estimation of main effects and interactions.

The extension is not straightforward because the computation is challenging. The original

algorithm of CSW failed to construct the complete set of FF designs with 81 runs. We take a

coding theory approach and propose new methods to efficiently classify and rank designs. Then we

modify their algorithm to construct the catalogue of FF designs with 81, 243 and 729 runs.

In Section 2, we review some basic concepts and definitions for three-level FF designs. We

introduce the coding theory approach in Section 3 and the construction method in Section 4.

Tables of designs with 27, 81, 243 and 729 runs are given in Section 5 with comments. Concluding

remarks are given in Section 6.

2 Basic concepts and definitions

We explain some basic concepts through examples. Table 1 shows two FF designs of 27 runs and

five factors, represented as two 27×5 matrices, where each row corresponds to a run (i.e., treatment

combination) and each column a factor. They are three-level FF designs as each column takes on

three different values: 0, 1, 2. Label the five columns as A, B, C, D, and E and let x1, x2, . . . , x5

denote the levels of the five columns. The first design (i.e., the left design) is constructed as follows:

write down all possible 33 = 27 level combinations for the first three columns and then define the
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Table 1: Two designs of 27 runs and 5 factors

Run A B C D E
1 0 0 0 0 0
2 0 0 1 1 0
3 0 0 2 2 0
4 0 1 0 1 2
5 0 1 1 2 2
6 0 1 2 0 2
7 0 2 0 2 1
8 0 2 1 0 1
9 0 2 2 1 1

10 1 0 0 1 1
11 1 0 1 2 1
12 1 0 2 0 1
13 1 1 0 2 0
14 1 1 1 0 0
15 1 1 2 1 0
16 1 2 0 0 2
17 1 2 1 1 2
18 1 2 2 2 2
19 2 0 0 2 2
20 2 0 1 0 2
21 2 0 2 1 2
22 2 1 0 0 1
23 2 1 1 1 1
24 2 1 2 2 1
25 2 2 0 1 0
26 2 2 1 2 0
27 2 2 2 0 0

Run A B C D E
1 0 0 0 0 0
2 0 0 2 0 0
3 0 0 1 0 0
4 0 1 1 2 2
5 0 1 0 2 2
6 0 1 2 2 2
7 0 2 2 1 1
8 0 2 1 1 1
9 0 2 0 1 1

10 1 0 1 2 1
11 1 0 0 2 1
12 1 0 2 2 1
13 1 1 2 1 0
14 1 1 1 1 0
15 1 1 0 1 0
16 1 2 0 0 2
17 1 2 2 0 2
18 1 2 1 0 2
19 2 0 2 1 2
20 2 0 1 1 2
21 2 0 0 1 2
22 2 1 0 0 1
23 2 1 2 0 1
24 2 1 1 0 1
25 2 2 1 2 0
26 2 2 0 2 0
27 2 2 2 2 0
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last two columns by

x4 = x1 + x2 + x3 (mod 3), x5 = x1 + 2x2 (mod 3). (1)

Symbolically, we write D = ABC and E = AB2. From (1), by using modulus 3 arithmetic, we

obtain

x1 + x2 + x3 + 2x4 = 0 (mod 3), 2x1 + 2x2 + 2x3 + x4 = 0 (mod 3),

x1 + 2x2 + 2x5 = 0 (mod 3), 2x1 + x2 + x5 = 0 (mod 3),

x1 + 2x3 + x4 + x5 = 0 (mod 3), 2x1 + x3 + 2x4 + 2x5 = 0 (mod 3),

x2 + 2x3 + x4 + 2x5 = 0 (mod 3), 2x2 + x3 + 2x4 + x5 = 0 (mod 3).

(2)

Equivalently, we write

I = ABCD2 = A2B2C2D = AB2E2 = A2BE = AC2DE = A2CD2E2 = BC2DE2 = B2CD2E,

(3)

where I is the identity element and ABCD2, A2B2C2D, etc. are called defining words. Each

word represents a contrast with 2 degrees of freedom. Words ABCD2 and A2B2C2D represent

the same contrast because their corresponding equations x1 + x2 + x3 + 2x4 = 0 (mod 3) and

2x1 +2x2 +2x3 +x4 = 0 (mod 3) are equivalent. To avoid ambiguity, the convention is to set the

first nonzero coefficient to be 1. Then (3) reduces to

I = ABCD2 = AB2E2 = AC2DE = BC2DE2, (4)

which is called the defining contrast subgroup for the design. This design has one word of length

three and three words of length four. The resolution is III because the shortest word has length 3.

For a three-level design, a main effect has two degrees of freedom. A two-factor interaction (2fi)

A×B has 4 degrees of freedom and can be decomposed into two orthogonal components AB and

AB2, each representing a contrast of 2 degrees of freedom. A three-factor interaction A × B × C

has 8 degrees of freedom and four orthogonal components ABC, ABC2, AB2C, and AB2C2.

The defining contrast subgroup completely specifies the aliasing pattern. For example, multi-

plying (3) by A and letting A3 = I yields

A = A2BCD2 = B2C2D = A2B2E2 = BE = A2C2DE = CD2E2 = ABC2DE2 = AB2CD2E.

Adopting the previous convention gives

A = AB2C2D = BCD2 = ABE = BE = ACD2E2 = CD2E2 = ABC2DE2 = AB2CD2E.
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This equation implies that the main effect A is aliased with 8 interaction components but not with

any other main effects. Therefore, the main effect A is estimable if two-factor or higher order

interactions are negligible. Similarly, the main effect C has the following aliasing pattern:

C = ABC2D2 = ABD2 = AB2CE2 = AB2C2E2 = ADE = ACDE = BDE2 = BCDE2.

The main effect C is not aliased with any other main effects or 2fi’s; therefore, the main effect C

is estimable if three-factor or higher order interactions are negligible.

The following concept of clear effects is due to Wu and Chen (1992) and Wu and Hamada (2000,

Section 5.4) although Connor and Zelen (1959) used the term “measurable” effects earlier. A main

effect or 2fi component is clear if it is not aliased with any other main effects or 2fi components.

The 2fi, say a × b, is called clear if both of its components, ab and ab2, are clear. Assuming that

three-factor or higher order interactions are negligible, clear effects are estimable. One can verify

that for the first design in Table 1, the clear effects are C, D and CD.

Some useful rules regarding clear effects and resolutions are (i) in any resolution III design, all

main effects are estimable if 2fi’s or higher-order interactions are negligible; (ii) in any resolution

IV design, all main effects are clear; (iii) in any resolution V design, all main effects and all 2fi’s

are clear.

Now look at the second design in Table 1. The defining contrast subgroup is

I = ABD = AB2E2 = AD2E = BD2E2.

All four words have length 3; therefore, the resolution is III. It has one clear main effect (C) and

four clear 2fi’s (A× C, B × C, C ×D and C × E). Note that C does not appear in any word.

An important issue is the choice of designs such as the two designs in Table 1. Both designs

have the same resolution III. The minimum aberration criterion (defined next) would choose the

first design because it has one word of length three while the second design has four words of length

three. Indeed, the first design is the minimum aberration design. Therefore, the first design is often

recommended especially when the experimenter considers all factors being equally important. On

the other hand, if the experimenter knows in advance that one factor and some 2fi’s involving that

factor is important, then the second design is recommended because it has more clear 2fi’s. See

CSW for further discussions.

In general, an sn−k FF design is an N × n matrix, which has N = sn−k runs, n factors,

each at s levels. There are n − k independent columns and other k columns are related to the
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n − k independent columns through defining words. All defining words and the identity element

I together form the defining contrast subgroup. The words W,W 2, . . . ,W s−1 represent the same

contrast and therefore they are viewed as the same. There are (sk − 1)/(s− 1) distinct words. Let

Aj be the number of distinct words of length j. The vector (A1, . . . , An) is called the wordlength

pattern. The resolution is the shortest wordlength. The minimum aberration criterion (Fries and

Hunter, 1980) is to sequentially minimize Aj for j = 1, . . . , n.

For an sn−k FF design, the defining contrast subgroup has (sk − 1)/(s − 1) different words,

which raises some computational issues when k is large (e.g., k > 10). For example, for a 320−16 FF

design, there are 21,523,360 words. It is quite inefficient and sometimes impractical to compute the

wordlength pattern and find clear effects via counting all words in the defining contrast subgroup.

In the next section, we propose alternative ways to compute the wordlength pattern and find clear

effects based on coding theory.

3 A coding theory approach

3.1 Linear codes

The connection between FF designs and linear codes was first observed by Bose (1961). For an

introduction to coding theory, see MacWilliams and Sloane (1977), van Lint (1999) and Hedayat,

Sloane and Stufken (1999, chap. 4).

For a prime power s, let GF (s) be the finite field of s elements. An sn−k FF design D is a

linear code of length n and dimension n − k over GF (s), called an [n, n − k] code. The defining

contrast subgroup of D corresponds to the dual code D⊥, an [n, k] linear code that consists of all

row vectors (u1, . . . , un) over GF (s) such that
∑n

i=1 uivi = 0 for all (v1, . . . , vn) in D.

The Hamming weight of a vector (u1, . . . , un) is the number of nonzero components ui. Let

Bi(D) and Bi(D⊥) be the number of rows with Hamming weight i in D and D⊥, respectively.

The vectors (B0(D), B1(D), . . . , Bn(D)) and (B0(D⊥), B1(D⊥), . . . , Bn(D⊥)) are called the weight

distributions of D and D⊥.

The weight distributions of D and D⊥ are related through the MacWilliams identities and Pless

power moment identities, two fundamental results in coding theory.

Lemma 1. For an sn−k FF design D and j = 0, 1, . . . , n,

Bj(D⊥) = s−(n−k)
n∑

i=0

Pj(i;n, s)Bi(D), (5)
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Bj(D) = s−k
n∑

i=0

Pj(i;n, s)Bi(D⊥), (6)

where Pj(x;n, s) =
∑j

i=0(−1)i(s− 1)j−i
(x

i

)(n−x
j−i

)
are the Krawtchouk polynomials.

Lemma 2. For an sn−k FF design D and positive integers t

n∑
i=0

itBi(D) = sn−k
n∑

i=0

Qt(i;n, s)Bi(D⊥), (7)

where Qt(i;n, s) = (−1)i∑t
j=0 j!S(t, j)s−j(s − 1)j−i

(n−i
j−i

)
and S(t, j) = (1/j!)

∑j
i=0(−1)j−i

(j
i

)
it is

a Stirling number of the second kind. When t < n, the summation
∑n

i=0 in the right hand of (7)

can be changed to
∑t

i=0.

The equations (5) and (6) are known as the MacWilliams identities. The equation (7) is known

as the Pless power moment identities after Pless (1963).

The wordlength pattern of D is proportional to the weight distribution of the dual D⊥ as

follows:

Ai(D) = Bi(D⊥)/(s− 1) for i = 1, . . . , n,

As a result, the wordlength pattern can be computed through MacWilliams identities (5). In the

following we introduce another convenient approach due to Xu (2001, 2003) that uses the Pless

power moment identities (7).

3.2 Minimum moment aberration criterion

For an N × n matrix and positive integers t, define power moments

Kt = N−2
N∑

i=1

N∑
j=1

(δij)t, (8)

where δij is the number of coincidences between the ith and jth rows. For an sn−k FF design, (8)

can be simplified as Kt = N−1∑N
i=1(δij)t, where j can be any row number between 1 and N . Note

that a FF design contains the vector of zeros. Let Ci be the number of rows with i zero components.

The vector (C0, C1, . . . , Cn) are called the coincidence distribution. Then (8) becomes

Kt = N−1
n∑

i=1

itCi. (9)

By applying the Pless power moment identities (7), Xu (2001, 2003) showed that the power

moments Kt are linear combinations of A1, ..., At as follows.
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Theorem 1. For an sn−k FF design and positive integers t,

Kt =
t∑

i=0

ct(i;n, s)Ai, (10)

where ct(i;n, s) = (s − 1)
∑t

j=0(−1)j
(t
j

)
nt−jQj(i;n, s) for i = 0, 1, . . . , t, Qj(i;n, s) is defined in

Lemma 2, A0 = 1/(s− 1) and Ai = 0 when i > n. In addition, the leading coefficient of At in (10)

is ct(t;n, s) = (s− 1)t!/st.

Remark 1. The definition of Kt here differs from that in Xu (2001, 2003). Nevertheless, it is

evident that they are equivalent up to some constants.

For an sn−k design, K1 = n/s and K2 = n(n + s − 1)/s2 are constants because there are no

words of length one or two (i.e., A1 = A2 = 0). For s = 3 and t =3–6, (10) becomes

K3 = [12A3 + n (2 + 6 n + n2)]/27,

K4 = [48A4 + 24 (3 + 2 n)A3 + n (−6 + 20 n + 12 n2 + n3)]/81,

K5 = [240 A5 + 240 (2 + n)A4 + 60 (−3 + 10 n + 2 n2)A3 + n (−30 + 10 n + 80 n2 + 20 n3 + n4)]/243,

K6 = [1440A6 + 720 (5 + 2n)A5 + 720 (−1 + 6 n + n2)A4 + 120 (−39 + 13 n + 21 n2 + 2 n3)A3

+n (42− 320 n + 270 n2 + 220 n3 + 30 n4 + n5)]/729.

Solving A3, . . . , A6 yields

A3 = [27K3 − n (2 + 6 n + n2)]/12, (11)

A4 = [27K4 − 18 (3 + 2 n)K3 + n (6 + 8 n + 6 n2 + n3)]/16, (12)

A5 = [81K5 − 135 (2 + n)K4 + 45 (15 + 4n + 2 n2)K3

−n (60− 110 n− 25 n2 − 10 n3 − 2 n4)]/80, (13)

A6 = [729K6 − (3645 + 1458 n)K5 + 1215 (11 + 3n + n2)K4 − 135 (165 + 80 n + 6 n2 + 4 n3)K3

+n (2148 + 3010 n + 1485 n2 + 175 n3 + 30 n4 + 10 n5)]/1440. (14)

Example 1. Consider the first design in Table 1. It is easy to verify that C0 = 4, C1 = 6, C2 = 14,

C3 = 2, C4 = 0, and C5 = 1. Definition (9) gives K3 = 11, K4 = 113/3, K5 = 1355/9 and

K6 = 5995/9. Then equations (11)–(14) yield A3 = 1, A4 = 3, A5 = 0 and A6 = 0. Note that

equation (14) is valid although n = 5 here.

Since the power moments Kt measure the similarity among runs (i.e., rows), it is natural that

a good design should have small power moments. The smaller the Kt, the better the design. Xu
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(2001, 2003) proposed the minimum moment aberration criterion which sequentially minimizes

K1,K2, . . . ,Kn.

The following result relates minimum moment aberration and minimum aberration.

Theorem 2. Sequentially minimizing K1,K2, . . . ,Kn is equivalent to sequentially minimizing A1,

A2, . . . , An. Therefore, minimum moment aberration is equivalent to minimum aberration.

The proof follows from the fact that the leading coefficient of At in (10) is a positive constant.

In this paper we use the minimum moment aberration criterion to rank designs because the power

moments are easier to compute than the wordlength patterns.

3.3 Power moments and clear effects

Here we introduce a simple method to find clear effects without using the defining contrast subgroup.

To determine whether the main effect of column j is clear, for i = 0, . . . , n − 1, let C̃i be the

number of rows with i + 1 zero elements and the jth element being zero. Define

K̃2 = K̃
(j)
2 = N−1

n−1∑
i=1

i2C̃i. (15)

Theorem 3. For an sn−k FF design,

K̃
(j)
2 ≥ (n− 1)(n + s− 2)/s3. (16)

The main effect of column j is clear if and only if the lower bound is achieved.

The proof is beyond this paper. Interested readers are referred to Xu (2001, Section 4.3), who

derived some general identities relating power moments to split wordlength patterns. Theorem 3

can be verified from these identities. It is worth noting that this procedure works even if a design

has duplicate columns.

Example 2. Consider the first design in Table 1. For n = 5 and s = 3, the lower bound in (16)

is 8/9. First consider column A. It is easy to verify that C̃0 = 2, C̃1 = 4, C̃2 = 2, C̃3 = 0, and

C̃4 = 1. Definition (15) gives K̃2 = 28/27, which is greater than the lower bound; therefore, A is

not clear. Next consider column C. It is easy to verify that C̃0 = 0, C̃1 = 8, C̃2 = 0, C̃3 = 0, and

C̃4 = 1. Definition (15) gives K̃2 = 8/9, which is equal to the lower bound; therefore, C is clear.

To determine whether 2fi components ab and ab2 are clear, first replace the columns a and b

with their interactions ab and ab2 and then follow the above procedure to check whether the new
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Table 2: Generator matrix for 27-run designs

1 2 3 4 5 6 7 8 9 10 11 12 13
a 1 0 1 1 0 1 0 1 1 1 0 1 1
b 0 1 1 2 0 0 1 1 2 0 1 1 2
c 0 0 0 0 1 1 1 1 1 2 2 2 2

column ab (or ab2) is clear as a main effect. The 2fi component ab (or ab2) is clear if and only if

the new column ab (or ab2) is clear as a main effect.

Example 3. Consider the first design in Table 1. To determine whether CD and CD2 are clear,

first replace columns C and D by their interaction components CD and CD2. The resulting design

is the second design in Table 1, where the third and fourth columns correspond to CD and CD2,

respectively. First consider whether CD (i.e., the third column in the second design) is clear. It is

easy to verify that C̃0 = 0, C̃1 = 8, C̃2 = 0, C̃3 = 0, and C̃4 = 1. Definition (15) gives K̃2 = 8/9,

which is equal to the lower bound; therefore, CD is clear. Next consider whether CD2 (i.e., the

fourth column in the second design) is clear. It is easy to verify that C̃0 = 4, C̃1 = 2, C̃2 = 0,

C̃3 = 2, and C̃4 = 1. Definition (15) gives K̃2 = 4/3, which is greater than the lower bound;

therefore, CD2 is not clear.

4 Construction method

To obtain the complete catalogue, we take a sequential approach as CSW did. We review CSW’s

construction method, point out some shortcomings of their method and then introduce our method.

4.1 Basic idea

Let r = n − k, N = sr and m = (N − 1)/(s − 1). An sn−(n−r) FF design can be viewed as n

columns of an N ×m matrix H, where H is a saturated FF design with N runs, m factors and s

levels. Let G consist of all nonzero r-tuples (u1, . . . , ur)T from GF (s) in which the first nonzero ui

is 1. Then H is formed by taking all linear combinations of the rows of G. For example, for s = 3

and r = 3, the generator matrix G and design matrix H are given in Tables 2 and 3, respectively.

Two designs are isomorphic if one can be obtained from the other by permuting the rows, the

columns and the levels of each column.

Let Dn be the set of nonisomorphic designs with n columns. CSW constructed Dn+1 from

10



Table 3: Design matrix for 27-run designs

Run 1 2 3 4 5 6 7 8 9 10 11 12 13
1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 1 1 1 1 1 2 2 2 2
3 0 0 0 0 2 2 2 2 2 1 1 1 1
4 0 1 1 2 0 0 1 1 2 0 1 1 2
5 0 1 1 2 1 1 2 2 0 2 0 0 1
6 0 1 1 2 2 2 0 0 1 1 2 2 0
7 0 2 2 1 0 0 2 2 1 0 2 2 1
8 0 2 2 1 1 1 0 0 2 2 1 1 0
9 0 2 2 1 2 2 1 1 0 1 0 0 2

10 1 0 1 1 0 1 0 1 1 1 0 1 1
11 1 0 1 1 1 2 1 2 2 0 2 0 0
12 1 0 1 1 2 0 2 0 0 2 1 2 2
13 1 1 2 0 0 1 1 2 0 1 1 2 0
14 1 1 2 0 1 2 2 0 1 0 0 1 2
15 1 1 2 0 2 0 0 1 2 2 2 0 1
16 1 2 0 2 0 1 2 0 2 1 2 0 2
17 1 2 0 2 1 2 0 1 0 0 1 2 1
18 1 2 0 2 2 0 1 2 1 2 0 1 0
19 2 0 2 2 0 2 0 2 2 2 0 2 2
20 2 0 2 2 1 0 1 0 0 1 2 1 1
21 2 0 2 2 2 1 2 1 1 0 1 0 0
22 2 1 0 1 0 2 1 0 1 2 1 0 1
23 2 1 0 1 1 0 2 1 2 1 0 2 0
24 2 1 0 1 2 1 0 2 0 0 2 1 2
25 2 2 1 0 0 2 2 1 0 2 2 1 0
26 2 2 1 0 1 0 0 2 1 1 1 0 2
27 2 2 1 0 2 1 1 0 2 0 0 2 1
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Dn by adding an additional column. For each design in Dn, there are m − n ways to add a

column to produce a design with n + 1 columns. Let D̃n+1 be the set of these designs. Obviously,

|D̃n+1| = (m − n)|Dn|. CSW showed that Dn+1 is a subset of D̃n+1. However, some designs in

D̃n+1 are isomorphic and therefore it is necessary to eliminate these redundant designs to construct

Dn+1.

To identify nonisomorphic designs, CSW divided all designs into different categories according

to their wordlength patterns and letter patterns. The letter pattern counts the frequency of the

letters contained in the words of different lengths (Draper and Mitchell, 1970). Obviously, designs

in different categories are not isomorphic. However, designs in the same category are not necessarily

isomorphic; see Chen and Lin (1991) for a counter example. For designs in the same category, CSW

applied a complete isomorphism check procedure to determine whether two designs are isomorphic.

The complete isomorphism check considers all possible ways of choosing independent columns and

relabeling letters and words.

We observe that the use of wordlength patterns and letter patterns is not efficient in identifying

nonisomorphic designs for three-level FF designs. A close examination on the complexity shows

that letter pattern check might be more time consuming than complete isomorphism check. Indeed,

for sn−(n−r) designs, the complexity of wordlength pattern and letter pattern check is O(nsn−r)

while the complexity of complete isomorphism check is O(n
(n
r

)
r!(s − 1)r). The former is much

larger than the latter when n is large (for fixed s > 2 and r).

Our algorithm differs from CSW’s in the ways how designs are categorized. We divide all designs

into different categories according to their coincidence distributions and moment projection patterns

(to be defined next). The use of coincidence distributions is equivalent to the use of wordlength

patterns in terms of distinguishing designs but is more efficient in terms of computation. The use

of moment projection patterns is proven to be more efficient than the use of letter patterns in terms

of both distinguishing designs and computation. For designs in the same category, we apply the

complete isomorphism check as CSW did.

4.2 Moment projection patterns

The idea of moment projection patterns comes from some recent work on the isomorphism check of

nonregular designs. It is quite often that nonregular designs have the same (generalized) wordlength

pattern but different projection properties. The approach taken here is inspired by Clark and Dean

(2001) and Ma, Fang, and Lin (2001), who proposed algorithms for identifying nonisomorphic
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designs by examining some properties of their projection designs. See also Xu and Deng (2002) for

a related procedure.

For an sn−(n−r) FF design, consider projection designs. For each projection design, we can

compute the power moments as in (9) for any t. For given p (1 ≤ p ≤ n), there are
(n
p

)
projection

designs with p columns. The frequency distribution of Kt-values of these projection designs is

called the p-dimensional Kt-value distribution. It is evident that isomorphic designs have the same

p-dimenionsonal Kt-value distribution for all positive integers t and 1 ≤ p ≤ n. Whenever two

designs have different p-dimensional Kt-value distributions for some t and p, these two designs

must be nonisomorphic.

In the implementation, we fix t arbitrarily at t = 10 and let p take on values n−1, n−2, . . . , n−q,

where q is a pre-chosen number. The choice of t does not make a difference provided t > 5 in most

cases. The complexity of moment projection pattern check is O(nqs2r). Recall that the complexity

of complete isomorphism check is O(n
(n
r

)
r!(s − 1)r) or O(nr+1) for fixed s and r. Therefore, we

should choose q ≤ r. We find the choice of q = 2 or 3 works well for s = 3 and r = 4, 5, 6.

As an experimentation, we compared the real computer time on identifying all nonisomorphic

315−11 designs from nonisomorphic 314−10 designs with different choices of q. The algorithm took

more than 67 hours with q = 0 and about one hour (62–66 minutes) with q = 1, 2, 3 on a 1GHz Mac

Xserve. The numbers clearly indicate that the use of moment projection pattern check speeds up the

algorithm significantly. We note that with q = 3, nonisomorphic designs have different coincidence

distributions or moment projection patterns; therefore, the complete isomorphism check could be

omitted and the time reduced to 14 minutes. Indeed, with q = 3, all 81-run designs have different

coincidence distributions or moment projection patterns; therefore, the complete isomorphism check

can be omitted.

5 A catalogue of selected designs

We apply the above construction method to obtain the complete collections of designs with 27

and 81 runs. The number of 243-run and 729-run designs is so large that our algorithm fails to

produce all designs. Nevertheless, we have obtained the complete collections of 243-run designs

with resolution VI or higher and 729-run designs with resolution V or higher. Once all designs are

obtained, we rank the designs according to the minimum moment aberration criterion. If two or

more designs are equivalent under the minimum moment aberration criterion, which happens when
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they have the same coincidence distribution (and wordlength pattern), their rankings are arbitrary.

Then we compute the partial wordlength pattern (A3, A4, A5, A6) according to (11)–(14) and find

clear effects according to Section 3.3.

The catalogue shows the ranked design, selected columns, partial wordlength pattern (WLP),

the number of clear main effects (C1), the number of clear 2fi’s (C2), the number of clear 2fi

components (CC), clear main effects (CME) and clear 2fi’s if any. A 3n−k FF design is labeled as

n-k.i, where i denotes the rank under the minimum moment aberration criterion. The first design

n-k.1 is always a minimum aberration (MA) 3n−k design. An entry such as a:b under the column

of clear 2fi’s represents the a× b interaction.

For 81, 243 and 729 runs, there are too many designs to be all included. The concept of

admissibility (Sun, Wu and Chen, 1997) is useful in selecting designs of interest. For a given

number of criteria, a design d1 is called to be inadmissible if there exists another design d2 such

that d2 is better than or equal to d1 for all the criteria and strictly better than d1 for at least one

of the criteria. Otherwise, d1 is admissible.

We use C1, C2 and CC to define the admissibility and compile a list of admissible designs with

81, 243 and 729 runs. When two or more admissible designs have the same C1, C2 and CC, only

the design with lowest rank is given. In most cases, the first three designs ranked by the minimum

moment aberration criterion are also given.

5.1 Designs of 27 runs

A 27-run FF design has up to 13 columns and Table 2 shows the generator matrix. The independent

columns (in boldface) are 1, 2 and 5.

Table 8 gives the complete collection of 27-run designs. There is only one design for 1, 2, 11 and

12 columns; therefore, no designs are given. A complete collection of 27-run designs was previously

given by CSW. Our rankings are exactly the same as theirs except that we include two more designs

3-0.2 and 4-1.3. These two designs are degenerated and have only nine distinct runs, indicated by

an asterisk in the table.

Table 8 provides more information than CSW’s table. We include C1, C2, CC and the actual

clear effects whereas CSW report only C2. It is interesting to note that design 5-2.2 has larger CC

than other two designs and design 6-3.3 has larger CC than other three designs. These facts cannot

be observed from CSW’s table directly.

Observe that nonisomorphic designs have different wordlength patterns; therefore, wordlength

14



Table 4: Generator matrix for 81-run designs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
a 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0 1
b 0 1 1 2 0 0 1 1 2 0 1 1 2 0 0 1 1 2 0 0
c 0 0 0 0 1 1 1 1 1 2 2 2 2 0 0 0 0 0 1 1
d 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
a 0 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1
b 1 1 2 0 1 1 2 0 1 1 2 0 0 1 1 2 0 1 1 2
c 1 1 1 2 2 2 2 0 0 0 0 1 1 1 1 1 2 2 2 2
d 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2

pattern (indeed A3 alone) completely determines a 27-run FF design. Since designs are constructed

sequentially, we have the following interesting observation. If we arrange the columns in the fol-

lowing order:

1 2 5 8 4 12 6 11 13 3 10 12,

then the first n columns form the MA 3n−(n−3) design for n = 1, . . . , 13.

Example 4. Look at 35−2 designs. The first design 5-2.1 in Table 8 has columns 1, 2, 5, 8, 4. This

design has one word of length 3 and three words of length 4 (WLP=(1, 3, 0)), two clear main effects

(C1=2), no clear 2fi (C2=0) and one clear 2fi component (CC=1). Assign the five columns to

factors A, B, C, D, and E. From the table, we find that C (column 5) and D (column 8) are clear,

none of the 2fi’s are clear and one 2fi component is clear. The generator matrix in Table 2 can be

used to determine the defining relations. Column 8 is the sum of columns 1, 2, and 5 (mod 3);

therefore, D = ABC. Column 4 = column 1 + 2× column 2 (mod 3); therefore, E = AB2. This

is indeed the first design in Table 1.

5.2 Designs of 81 runs

An 81-run FF design has up to 40 columns and Table 4 shows the generator matrix. The inde-

pendent columns (in boldface) are 1, 2, 5 and 14. We apply the algorithm to obtain the complete

collection of designs up to 20 columns. This collection also completely classifies all designs with

more than 20 columns. For example, a set of 21 columns corresponds to a unique set of 19 remain-

ing columns (i.e, complementary design). Therefore, by taking the complementary of all designs

with 19 columns, we obtain all designs with 21 columns.

Table 5 shows the number of nonisomorphic designs for n=1–20. Here we treat any 27-run
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Table 5: Number of nonisomorphic 81-run designs

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# of designs 1 1 2 4 6 12 23 47 94 201 402 807 1505 2659 4304 6472 8846 11127 12723 13358

design as a (degenerated) 81-run design; therefore, the number of nonisomorphic designs with n

columns, 20 < n < 40, is equal to the number of nonisomorphic designs with 40− n columns.

Table 9 lists selected 81-run designs for n=5–20 columns. It includes all designs with resolution

IV or higher. There is only one resolution V design, namely design 5-1.1. Resolution IV designs

exist for n=5–10 columns. The maximum resolution is III when n ≥ 11.

In all cases, MA 81-run designs are unique up to isomorphism. From Table 9, we have the

following result. For n=3–11, the first n columns of

1 2 5 14 22 9 24 31 34 39 3

form an MA design; for n=12–20, the first n columns of

1 2 5 14 22 9 24 31 3 25 13 37 6 18 7 35 12 38 15 16

form an MA design. For n=21–37, MA designs can be determined via the complementary design

theory (see Suen, Chen and Wu, 1997; Xu and Wu, 2001 and Xu, 2003). Previously, MA designs

for n ≤ 10 were given by Franklin (1984) and Wu and Hamada (2000, Table 5A.3). These designs

are equivalent to MA designs given here.

It is interesting to note that designs with maximum C2 (or CC) are often different from MA

designs. For n=6–10, Maximum C2 (or CC) designs have resolution III while MA designs have

resolution IV. For n=10–14, Maximum C2 designs have a special structure: Column 14 does not

appear in any defining words; therefore, column 14 and any 2fi’s involving it are clear. For n > 15,

no design has clear effects (i.e., C1 = C2 = CC = 0).

As Franklin (1984) noted, designs given by National Bureau of Standards (Connor and Zelen,

1959) may not have MA. Connor and Zelen (1959) chose resolution IV designs having maximum CC.

From Table 9, we observe that there are two cases where MA designs are different from maximum

CC resolution IV designs. They recommended design 7-3.2 (plan 27.7.3 in their notation) and

design 8-4.2 (plan 81.8.3). These two designs have more clear 2fi components than the competing

MA designs 7-3.1 and 8-4.1.
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Table 6: Number of nonisomorphic 243-run designs with resolution IV or higher

n 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# of designs 5 8 19 46 137 356 844 1532 2020 1778 1019 337 90 20 9

5.3 Designs of 243 runs

A 243-run FF design has up to 121 columns. Let G = (y1, y2, . . . , y121) be the generator matrix

whose columns are defined as

yi =

(
xi

0

)
, yi+41 =

(
xi

1

)
, yi+81 =

(
xi

2

)
, for i = 1, . . . , 40,

and y41 = (0, 0, 0, 0, 1)T , where xi is the ith column of the generator matrix for 81-run designs given

in Table 4. The independent columns are 1, 2, 5, 14, and 41.

For 243 runs, resolution IV designs have at most 20 columns. Table 6 shows the number of

nonisomorphic designs with resolution IV or higher for n=6–20. Note that any 81-run design with

resolution IV or higher is a (degenerated) 243-run design.

Table 10 lists the selected 243-run designs with resolution IV or higher for n=6–20 columns.

Because all main effects are clear for resolution IV designs, C1 and clear main effects are omitted

in the table.

The most interesting result is that MA 243-run designs are not unique. There are two MA

designs for n = 14, 16, 19 and 20; nine MA designs for n = 17; and five MA designs for n = 18.

For n ≤ 13 or n = 15, MA designs are unique.

For n ≤ 11, MA designs have resolution V or VI; therefore, no resolution IV designs is given.

For n=7–11, resolution V designs are unique. The MA 311−6 design 11-6.1 is saturated for a model

with all main effects and all 2fi’s. Any 7–11 columns of this design form an MA design. For

n=12–15, MA designs do not have maximum C2; for n=12–18, MA designs do not have maximum

CC.

Previously, Connor and Zelen (1959) gave designs for n=6-10 and Franklin (1984) gave MA

designs for n=7–11. All these designs are isomorphic to MA designs given here.
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Table 7: Number of nonisomorphic 729-nun designs with resolution V or higher

n 7 8 9 10 11 12 13 14
# of designs 4 6 11 22 37 38 6 1

5.4 Designs of 729 runs

A 729-run FF design has up to 364 columns. Let G = (z1, z2, . . . , z364) be the generator matrix

whose columns are defined as

zi =

(
yi

0

)
, zi+122 =

(
yi

1

)
, zi+243 =

(
yi

2

)
, for i = 1, . . . , 121,

and z122 = (0, 0, 0, 0, 0, 1)T , where yi is the ith column of the generator matrix for 243-run FF

designs given in Section 5.3. The independent columns are 1, 2, 5, 14, 41, and 122.

For 729 runs, resolution V designs have at most 14 columns. Table 7 shows the number of

nonisomorphic designs with resolution V or higher for n=7–14. Again, any 243-run design with

resolution V or higher is a (degenerated) 729-run design.

Table 11 lists the selected 729-run designs with resolution V or higher for n=7–14 columns.

Because all main effects and 2fi’s are clear for resolution V designs, C1, C2, CC and clear effects

are omitted in the table.

For n=7–14, MA designs are unique. For n=7–12, there is one unique resolution VI design, i.e.,

the MA design. Previously, Connor and Zelen (1959) gave designs for n=7–9, and Franklin (1984)

gave MA designs for n=8–12. All these designs are isomorphic to MA designs given here except

for one case. For n = 8, the design given in Connor and Zelen (1959) is isomorphic to design 8-2.2

which has resolution V while the MA design 8-2.1 has resolution VI.

6 Concluding remarks

Based on coding theory, we use minimum moment aberration and moment projection pattern to

classify and rank FF designs, and use power moments to compute wordlength patterns and find

clear effects. By modifying CSW’s algorithm, we obtain complete collections of 3-level FF designs

with 27 and 81 runs, 243 runs with resolution IV or higher and 729 runs with resolution V or higher.

Selected designs of interest are given in Tables 8–11. For easy reference, the complete catalogue

is available at the author’s web site (http://www.stat.ucla.edu/~hqxu/). The online catalogue

includes the actual clear 2fi components ab and ab2.
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One interesting result is that 243-run MA designs are not unique. This is the smallest case

known so far where MA designs are not unique. Chen (1992) showed that MA 2n−k designs are

unique for k = 1, 2, 3, 4. The catalogue of CSW shows that MA designs are unique for 16, 32 and 64

runs. One interesting question is whether 2-level MA designs are unique. The answer is negative.

Bouyukliev and Jaffe (2001) showed that there are exactly seven [43, 7, 20] linear codes (that is,

seven 243−7 designs with resolution 20 or higher). According to their complete enumeration, MA

243−7 designs have wordlength pattern A20 = 84, A24 = 35, A28 = 7, A36 = 1 and other Ai = 0; and

there are two nonisomorphic designs having this wordlength pattern.
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Table 8: Complete catalogue of 27-run designs

Design Columns WLP C1 C2 CC CME Clear 2fi’s
3-0.1 1 2 5 0 3 3 6 all all
3-0.2* 1 2 3 1 0 0 3
4-1.1 1 2 5 8 0 1 4 0 6 all
4-1.2 1 2 5 3 1 0 1 3 9 5 1:5 2:5 5:3
4-1.3* 1 2 3 4 4 0 0 0 0
5-2.1 1 2 5 8 4 1 3 0 2 0 1 5 8
5-2.2 1 2 5 8 3 2 1 1 0 0 10
5-2.3 1 2 5 3 4 4 0 0 1 4 8 5 1:5 2:5 5:3 5:4
6-3.1 1 2 5 8 4 12 2 9 0 2 0 0 0
6-3.2 1 2 5 8 4 6 3 6 3 1 0 0 0
6-3.3 1 2 5 8 3 6 4 3 6 0 0 0 12
6-3.4 1 2 5 8 4 3 5 3 3 2 0 0 3
7-4.1 1 2 5 8 4 12 6 5 15 9 8 0 0 0
7-4.2 1 2 5 8 4 6 7 6 11 15 4 0 0 0
7-4.3 1 2 5 8 4 6 3 7 10 12 9 0 0 0
7-4.4 1 2 5 8 4 12 3 8 9 9 14 0 0 0
8-5.1 1 2 5 8 4 12 6 11 8 30 24 32 0 0 0
8-5.2 1 2 5 8 4 12 6 7 10 23 32 30 0 0 0
8-5.3 1 2 5 8 4 12 6 3 11 21 30 38 0 0 0
9-6.1 1 2 5 8 4 12 6 11 13 12 54 54 96 0 0 0
9-6.2 1 2 5 8 4 12 6 11 3 15 42 69 96 0 0 0
9-6.3 1 2 5 8 4 12 6 7 3 16 39 69 106 0 0 0
10-7.1 1 2 5 8 4 12 6 11 13 3 21 72 135 240 0 0 0
10-7.2 1 2 5 8 4 12 6 11 3 7 22 68 138 250 0 0 0

Note: Designs with 1, 2, 11 or 12 columns are unique and not listed.

Table 9: Selected 81-run designs for 5–20 columns

Design Columns WLP C1 C2 CC CME Clear 2fi’s
5-1.1 1 2 5 14 22 0 0 1 5 10 20 all all
5-1.2 1 2 5 14 8 0 1 0 5 4 14 all 1:14 2:14 5:14 14:8
5-1.3 1 2 5 14 3 1 0 0 2 7 17 5 14 1:5 1:14 2:5 2:14 5:14 5:3 14:3
6-2.1 1 2 5 14 22 9 0 2 2 0 6 4 18 all 1:14 1:22 5:14 5:22
6-2.2 1 2 5 14 8 17 0 3 0 1 6 0 15 all
6-2.3 1 2 5 14 22 4 1 0 3 0 3 12 27 5 14 22 1:5 1:14 1:22 2:5 2:14 2:22 5:14 5:22 5:4

14:22 14:4 22:4
7-3.1 1 2 5 14 22 9 24 0 5 6 1 7 0 15 all
7-3.2 1 2 5 14 22 9 18 0 6 3 4 7 0 18 all
7-3.3 1 2 5 14 22 9 15 1 3 6 3 4 3 21 2 5 22 9 1:22 5:14 9:15
7-3.4 1 2 5 14 22 9 10 1 4 6 0 4 6 17 2 14 22 9 1:14 1:22 5:14 5:22 14:10 22:10
7-3.7 1 2 5 14 22 4 26 2 0 9 2 1 15 36 14 1:5 1:14 1:22 1:26 2:5 2:14 2:22 2:26 5:14

5:4 14:22 14:4 14:26 22:4 4:26
7-3.8 1 2 5 14 22 9 4 2 2 6 2 2 6 26 14 22 1:14 1:22 5:14 5:22 14:4 22:4
7-3.16 1 2 5 14 22 4 3 4 1 3 3 3 9 24 5 14 22 1:5 1:14 1:22 2:5 2:14 2:22 5:4 14:4 22:4
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Table 9: Continued

Design Columns WLP C1 C2 CC CME Clear 2fi’s
8-4.1 1 2 5 14 22 9 24 31 0 10 16 4 8 0 8 all
8-4.2 1 2 5 14 22 9 24 25 0 11 12 10 8 0 16 all
8-4.3 1 2 5 14 22 9 18 38 0 12 8 16 8 0 16 all
8-4.8 1 2 5 14 22 9 10 35 2 6 18 2 2 9 18 2 9 1:14 1:22 1:35 5:14 5:22 5:35 14:10

22:10 10:35
8-4.26 1 2 5 14 22 9 15 28 4 4 12 12 4 4 20 2 5 22 9 1:22 2:28 5:14 9:15
8-4.29 1 2 5 14 22 9 4 11 4 5 14 9 2 4 29 14 22 1:14 1:22 5:14 5:22
8-4.30 1 2 5 14 22 9 4 6 4 6 13 6 2 6 22 14 22 1:14 1:22 5:14 5:22 14:4 22:4
8-4.33 1 2 5 14 22 4 26 3 5 3 9 17 1 12 25 14 1:5 1:14 1:22 1:26 2:5 2:14 2:22 2:26

5:4 14:4 22:4 4:26
8-4.43 1 2 5 14 3 19 4 32 8 0 0 32 0 16 32 1:5 1:14 1:19 1:32 2:5 2:14 2:19 2:32

5:3 5:4 14:3 14:4 3:19 3:32 19:4 4:32
9-5.1 1 2 5 14 22 9 24 31 34 0 18 36 12 9 0 0 all
9-5.2 1 2 5 14 22 9 24 31 3 1 18 27 28 6 0 7 5 14 22 9 24 31
9-5.3 1 2 5 14 22 9 24 25 7 1 20 20 36 6 0 9 1 14 22 9 24 25
9-5.7 1 2 5 14 22 9 24 25 6 2 17 23 34 4 0 12 14 22 24 25
9-5.35 1 2 5 14 22 9 24 4 6 4 12 30 25 3 0 13 14 22 24
9-5.48 1 2 5 14 22 9 18 6 4 5 10 28 33 1 2 24 22 22:4 18:6
9-5.50 1 2 5 14 22 9 24 16 29 5 11 26 31 3 1 11 1 5 24 5:29
9-5.55 1 2 5 14 22 9 10 23 8 5 12 27 26 0 9 27 1:14 1:22 1:23 5:14 5:22 5:23 14:10

22:10 10:23
9-5.58 1 2 5 14 22 9 3 13 10 5 18 24 23 2 2 17 14 22 14:10 22:10
9-5.61 1 2 5 14 8 17 6 15 22 6 9 18 54 0 0 36
9-5.70 1 2 5 14 22 9 10 3 12 6 15 27 21 2 4 13 14 22 1:14 1:22 14:10 22:10
9-5.86 1 2 5 14 8 4 12 6 11 8 30 24 32 1 8 16 14 all 2fi’s involving 14
10-6.1 1 2 5 14 22 9 24 31 34 39 0 30 72 30 10 0 0 all
10-6.2 1 2 5 14 22 9 24 31 34 3 2 28 57 65 5 0 1 5 14 22 9 31
10-6.3 1 2 5 14 22 9 24 31 3 25 2 30 48 80 4 0 2 5 14 9 24
10-6.11 1 2 5 14 22 9 24 31 3 6 3 30 42 84 4 0 6 14 22 24 31
10-6.57 1 2 5 14 22 9 24 7 12 4 5 28 48 68 3 0 9 14 22 24
10-6.104 1 2 5 14 22 9 24 4 21 11 7 17 54 88 1 0 22 14
10-6.152 1 2 5 14 22 9 15 4 7 8 8 21 48 77 0 3 21 5:14 22:4 9:15
10-6.157 1 2 5 14 22 9 3 13 10 11 8 34 48 62 2 0 17 14 22
10-6.160 1 2 5 14 8 17 6 15 22 3 9 15 45 102 0 0 36
10-6.182 1 2 5 14 22 9 3 13 10 6 10 28 51 67 2 2 13 14 22 14:10 22:10
10-6.183 1 2 5 14 8 17 4 12 6 7 10 29 48 67 2 4 9 14 17 14:6 14:7 17:6 17:7
10-6.197 1 2 5 14 8 4 12 6 11 13 12 54 54 96 1 9 18 14 all 2fi’s involving 14
11-7.1 1 2 5 14 22 9 24 31 34 39 3 3 42 111 132 4 0 0 5 14 9 31
11-7.2 1 2 5 14 22 9 24 31 3 25 13 3 48 84 177 2 0 1 14 24
11-7.3 1 2 5 14 22 9 24 25 7 12 18 3 54 63 195 2 0 1 14 25
11-7.23 1 2 5 14 22 9 24 31 3 13 6 5 47 77 182 4 0 4 14 22 24 31
11-7.248 1 2 5 14 22 9 24 4 21 11 20 10 27 95 196 1 0 22 14
11-7.302 1 2 5 14 22 9 24 7 12 4 3 10 40 91 154 3 0 5 14 22 24
11-7.340 1 2 5 14 22 9 18 38 4 11 23 12 24 84 222 0 0 40
11-7.392 1 2 5 14 22 9 3 13 10 11 4 15 48 99 162 2 0 13 14 22
11-7.393 1 2 5 14 22 9 3 13 6 7 4 15 49 95 165 2 2 9 14 22 14:4 22:4
11-7.400 1 2 5 14 8 4 12 6 11 13 3 21 72 135 240 1 10 20 14 all 2fi’s involving 14
12-8.1 1 2 5 14 22 9 24 31 3 25 13 37 4 72 144 354 0 0 0
12-8.2 1 2 5 14 22 9 24 25 7 12 18 38 4 81 108 390 0 0 0
12-8.3 1 2 5 14 22 9 24 31 3 25 13 38 5 69 141 375 0 0 0
12-8.72 1 2 5 14 22 9 24 31 3 13 6 7 8 73 124 364 4 0 4 14 22 24 31
12-8.740 1 2 5 14 22 9 18 38 4 11 23 29 16 36 144 444 0 0 48
12-8.800 1 2 5 14 22 9 3 13 6 7 12 4 21 81 171 357 2 2 5 14 22 14:4 22:4
12-8.801 1 2 5 14 22 9 3 13 10 11 4 6 22 76 178 364 2 0 9 14 22
12-8.806 1 2 5 14 8 4 12 6 11 13 3 7 30 108 252 546 1 11 22 14 all 2fi’s involving 14
13-9.1 1 2 5 14 22 9 24 31 3 25 13 37 6 7 102 219 690 0 0 0
13-9.2 1 2 5 14 22 9 24 25 7 12 18 38 3 7 105 207 696 0 0 0
13-9.3 1 2 5 14 22 9 24 31 3 25 13 37 15 8 92 249 654 0 0 0
13-9.209 1 2 5 14 22 9 24 31 3 13 6 7 12 12 109 198 672 4 0 4 14 22 24 31
13-9.1501 1 2 5 14 22 9 3 13 6 7 12 4 10 30 118 306 726 2 0 5 14 22
13-9.1504 1 2 5 14 8 4 12 6 11 13 3 7 9 40 162 432 1092 1 12 24 14 all 2fi’s involving 14
14-10.1 1 2 5 14 22 9 24 31 3 25 13 37 6 18 10 140 334 1236 0 0 0
14-10.2 1 2 5 14 22 9 24 25 7 12 18 38 3 31 10 141 330 1236 0 0 0
14-10.3 1 2 5 14 22 9 24 31 3 25 13 37 6 7 10 144 330 1209 0 0 0
14-10.46 1 2 5 14 22 9 24 31 3 25 13 6 7 12 13 147 315 1200 2 0 1 14 24
14-10.2659 1 2 5 14 8 4 12 6 11 13 3 7 9 10 52 234 702 2028 1 13 26 14 all 2fi’s involving 14
15-11.1 1 2 5 14 22 9 24 31 3 25 13 37 6 18 7 13 192 495 2055 0 0 0
15-11.2 1 2 5 14 22 9 24 31 3 25 13 37 6 7 12 14 198 486 2009 0 0 0
15-11.3 1 2 5 14 22 9 24 31 3 25 13 37 6 23 30 15 171 564 1963 0 0 0
15-11.4253 1 2 5 14 22 9 24 25 6 35 11 16 33 20 36 32 138 561 2012 0 0 12
16-12.1 1 2 5 14 22 9 24 31 3 25 13 37 6 18 7 35 16 256 720 3288 0 0 0
16-12.2 1 2 5 14 22 9 24 31 3 25 13 37 6 18 7 12 17 258 711 3275 0 0 0
16-12.3 1 2 5 14 22 9 24 31 3 25 13 37 6 18 7 21 19 232 789 3201 0 0 0
17-13.1 1 2 5 14 22 9 24 31 3 25 13 37 6 18 7 35 12 20 336 1014 5072 0 0 0
17-13.2 1 2 5 14 22 9 24 31 3 25 13 37 6 18 7 35 16 23 306 1107 4952 0 0 0
17-13.3 1 2 5 14 22 9 24 31 3 25 13 37 6 18 7 35 15 24 304 1096 4984 0 0 0
18-14.1 1 2 5 14 22 9 24 31 3 25 13 37 6 18 7 35 12 38 24 432 1404 7608 0 0 0
18-14.2 1 2 5 14 22 9 24 31 3 25 13 37 6 18 7 35 12 15 28 396 1518 7438 0 0 0
18-14.3 1 2 5 14 22 9 24 31 3 25 13 37 15 23 16 34 6 38 30 369 1602 7443 0 0 0
19-15.1 1 2 5 14 22 9 24 31 3 25 13 37 6 18 7 35 12 38 15 33 504 2052 10884 0 0 0
19-15.2 1 2 5 14 22 9 24 31 3 25 13 37 6 18 7 35 12 15 16 36 480 2112 10875 0 0 0
19-15.3 1 2 5 14 22 9 24 31 3 25 13 37 6 18 7 35 12 15 36 37 464 2202 10600 0 0 0
20-16.1 1 2 5 14 22 9 24 31 3 25 13 37 6 18 7 35 12 38 15 16 42 603 2808 15537 0 0 0
20-16.2 1 2 5 14 22 9 24 31 3 25 13 37 15 23 16 34 6 38 7 18 44 584 2852 15608 0 0 0
20-16.3 1 2 5 14 22 9 24 31 3 25 13 37 6 18 7 35 12 38 15 17 44 584 2900 15212 0 0 0
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Table 10: Selected 243-run designs with resolution IV or higher

Design Columns WLP C2 CC Clear 2fi’s
6-1.1 1 2 5 14 41 63 0 0 0 1 15 30 all
6-1.2 1 2 5 14 41 22 0 0 1 0 15 30 all
7-2.1 1 2 5 14 41 63 27 0 0 3 1 21 42 all
8-3.1 1 2 5 14 41 63 27 72 0 0 8 4 28 56 all
9-4.1 1 2 5 14 41 63 27 72 79 0 0 18 12 36 72 all
10-5.1 1 2 5 14 41 63 27 72 79 93 0 0 36 30 45 90 all
11-6.1 1 2 5 14 41 63 27 72 79 93 114 0 0 66 66 55 110 all
12-7.1 1 2 5 14 41 63 27 72 79 93 9 17 0 14 74 110 14 57 1:63 1:79 2:41 2:63 2:93 5:72 5:79 5:93 14:41

14:72 41:79 63:27 63:72 27:79
12-7.2 1 2 5 14 41 63 27 72 79 9 44 116 0 15 66 126 6 54 1:14 1:72 5:41 5:72 14:79 41:79
12-7.3 1 2 5 14 41 63 27 72 79 9 44 57 0 15 69 120 9 54 1:27 2:27 5:41 5:72 41:63 41:79 63:72 27:79 27:57
12-7.4 1 2 5 14 41 63 27 72 12 91 33 38 0 15 72 126 16 60 1:63 1:72 2:63 2:72 5:63 5:72 14:41 14:91 41:27

41:33 41:38 63:12 27:91 72:12 91:33 91:38
13-8.1 1 2 5 14 41 63 27 72 79 9 44 57 39 0 24 105 222 4 42 5:41 5:72 27:79 27:57
13-8.2 1 2 5 14 41 63 27 72 79 93 9 17 44 0 24 108 207 5 42 2:63 5:72 5:79 41:79 63:72
13-8.3 1 2 5 14 41 63 27 72 79 93 9 17 65 0 24 108 207 3 39 2:93 5:72 14:41
13-8.346 1 2 5 14 41 63 27 72 12 91 33 102 17 0 28 96 228 8 52 2:63 2:72 14:41 14:91 41:27 63:12 27:91 72:12
13-8.493 1 2 5 14 41 63 27 72 12 91 33 52 17 0 29 90 231 6 53 14:41 14:63 41:33 63:12 27:91 91:33
13-8.936 1 2 5 14 41 63 27 72 12 48 57 73 115 0 31 83 233 3 54 1:73 5:27 5:72
13-8.1398 1 2 5 14 41 63 27 45 97 9 105 20 100 0 34 75 216 0 60
14-9.1 1 2 5 14 41 63 27 72 79 9 44 57 39 65 0 36 155 390 1 33 5:41
14-9.2 1 2 5 14 41 63 27 72 79 9 44 57 39 87 0 36 155 390 1 32 27:57
14-9.3 1 2 5 14 41 63 27 72 79 93 9 17 44 74 0 36 158 372 0 28
14-9.76 1 2 5 14 41 63 27 72 12 91 33 38 44 50 0 38 152 402 8 40 1:63 1:72 14:41 14:91 41:38 63:12 72:12 91:38
14-9.367 1 2 5 14 41 63 27 72 12 91 33 38 44 48 0 40 144 399 4 44 14:41 14:91 41:38 91:38
14-9.631 1 2 5 14 41 63 27 72 12 66 44 78 87 104 0 41 140 390 3 46 1:27 14:41 63:27
14-9.834 1 2 5 14 41 63 27 72 12 91 33 102 89 30 0 42 134 408 2 49 14:91 27:91
14-9.2019 1 2 5 14 41 63 27 44 9 104 21 17 89 48 0 54 100 396 0 52
15-10.1 1 2 5 14 41 63 27 72 79 93 9 17 44 74 117 0 50 231 635 0 15
15-10.2 1 2 5 14 41 63 27 72 79 9 44 57 39 65 73 0 51 226 651 0 21
15-10.3 1 2 5 14 41 63 27 72 79 9 44 57 39 65 92 0 51 226 651 0 22
15-10.916 1 2 5 14 41 63 27 72 12 91 33 102 65 89 17 0 58 199 680 1 41 72:12
15-10.1228 1 2 5 14 41 63 27 72 12 66 44 78 87 104 94 0 59 203 642 2 39 1:27 63:27
15-10.1777 1 2 5 14 41 63 27 44 9 104 21 17 89 33 48 0 72 162 640 0 54
16-11.1 1 2 5 14 41 63 27 72 79 9 44 57 39 65 73 21 0 70 334 974 0 13
16-11.2 1 2 5 14 41 63 27 72 79 9 44 57 39 65 92 21 0 70 334 974 0 14
16-11.3 1 2 5 14 41 63 27 72 79 93 9 17 44 74 117 21 0 71 324 1006 0 12
16-11.1018 1 2 5 14 41 63 27 44 9 104 21 17 89 33 39 48 0 95 252 991 0 60
17-12.1 1 2 5 14 41 63 27 72 79 93 9 17 44 74 117 21 48 0 95 450 1561 0 9
17-12.2 1 2 5 14 41 63 27 72 12 66 44 118 38 73 50 87 20 0 95 450 1561 0 11
17-12.3 1 2 5 14 41 63 27 72 79 9 44 92 99 120 74 117 17 0 95 450 1561 0 12
17-12.4 1 2 5 14 41 63 27 72 79 9 44 92 99 120 74 117 21 0 95 450 1561 0 10
17-12.5 1 2 5 14 41 63 27 72 79 9 44 48 21 113 17 74 87 0 95 450 1561 0 10
17-12.6 1 2 5 14 41 63 27 72 79 93 9 17 44 74 21 48 109 0 95 450 1561 0 7
17-12.7 1 2 5 14 41 63 27 72 12 66 44 118 38 73 50 20 99 0 95 450 1561 0 13
17-12.8 1 2 5 14 41 63 27 72 12 66 44 118 38 73 50 107 110 0 95 450 1561 0 9
17-12.9 1 2 5 14 41 63 27 72 79 9 44 92 99 120 74 21 89 0 95 450 1561 0 12
17-12.187 1 2 5 14 41 63 27 72 12 66 44 118 38 73 94 17 70 0 101 417 1615 0 24
18-13.1 1 2 5 14 41 63 27 72 79 93 9 17 44 74 117 21 48 101 0 123 618 2352 0 8
18-13.2 1 2 5 14 41 63 27 72 12 66 44 118 38 73 50 87 20 99 0 123 618 2352 0 7
18-13.3 1 2 5 14 41 63 27 72 12 66 44 118 38 73 50 87 20 107 0 123 618 2352 0 2
18-13.4 1 2 5 14 41 63 27 72 12 66 44 118 38 73 50 87 20 110 0 123 618 2352 0 8
18-13.5 1 2 5 14 41 63 27 72 79 9 44 92 99 120 74 117 17 89 0 123 618 2352 0 7
18-13.78 1 2 5 14 41 63 27 72 79 9 44 57 54 21 87 74 109 65 0 134 594 2296 0 20
19-14.1 1 2 5 14 41 63 27 72 79 93 9 17 44 74 117 21 48 101 109 0 156 837 3444 0 9
19-14.2 1 2 5 14 41 63 27 72 12 66 44 118 38 73 50 87 20 99 107 0 156 837 3444 0 2
19-14.3 1 2 5 14 41 63 27 72 12 66 44 118 38 50 104 110 107 116 48 0 160 826 3433 0 0
20-15.1 1 2 5 14 41 63 27 72 79 93 9 17 44 74 117 21 48 101 109 113 0 195 1116 4920 0 10
20-15.2 1 2 5 14 41 63 27 72 12 66 44 118 38 73 50 87 20 99 107 110 0 195 1116 4920 0 0
20-15.3 1 2 5 14 41 63 27 72 79 93 9 17 44 74 117 21 48 101 109 65 0 201 1101 4857 0 10

Note: All main effects are clear.
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Table 11: Selected 729-run designs with resolution V or higher

Design Columns WLP
7-1.1 1 2 5 14 41 122 185 0 0 0 0
7-1.2 1 2 5 14 41 122 63 0 0 0 1
7-1.3 1 2 5 14 41 122 22 0 0 1 0
8-2.1 1 2 5 14 41 122 63 149 0 0 0 4
8-2.2 1 2 5 14 41 122 185 27 0 0 1 2
8-2.3 1 2 5 14 41 122 185 23 0 0 2 0
9-3.1 1 2 5 14 41 122 63 149 201 0 0 0 12
9-3.2 1 2 5 14 41 122 63 149 166 0 0 2 7
9-3.3 1 2 5 14 41 122 185 27 206 0 0 3 4
10-4.1 1 2 5 14 41 122 63 149 201 236 0 0 0 30
10-4.2 1 2 5 14 41 122 63 149 201 36 0 0 5 17
10-4.3 1 2 5 14 41 122 63 149 166 188 0 0 6 14
11-5.1 1 2 5 14 41 122 63 149 201 236 315 0 0 0 66
11-5.2 1 2 5 14 41 122 63 149 201 236 36 0 0 9 39
11-5.3 1 2 5 14 41 122 63 149 201 36 54 0 0 12 33
12-6.1 1 2 5 14 41 122 63 149 201 236 315 336 0 0 0 132
12-6.2 1 2 5 14 41 122 63 149 201 236 315 36 0 0 15 81
12-6.3 1 2 5 14 41 122 63 149 201 236 36 105 0 0 21 66
13-7.1 1 2 5 14 41 122 63 149 166 188 78 213 354 0 0 39 91
13-7.2 1 2 5 14 41 122 63 149 201 236 36 173 115 0 0 44 86
13-7.3 1 2 5 14 41 122 63 149 166 188 54 242 105 0 0 45 80
14-8.1 1 2 5 14 41 122 63 149 166 188 54 242 105 212 0 0 70 140

Note: All main effects and 2fi’s are clear.
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